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ABSTRACT 

In this paper, we propose a new reconstruction 

framework that utilizes nonlinear models to sparsely 

represent the MR parameter-weighted image in a high 

dimensional feature space. Different from the prior work 

with nonlinear models where the image series is 

reconstructed simultaneously, each image at a specific time 

point is assumed to lie in a low-dimensional manifold and is 

reconstructed individually. The low-dimensional manifold is 

learned from the training images generated by the 

parametric model. To reconstruct each image, among 

infinite number of solutions that satisfy the data consistent 

constraint, the one that is closest to the manifold is selected 
as the desired solution. The underlying optimization 

problem is solved using kernel trick and split Bregman 

iteration algorithm. The proposed method was evaluated on 

a set of in-vivo brain T2 mapping data set and shown to be 

superior to the conventional compressed sensing methods. 

 

Index Terms— MR parameter mapping, compressed 

sensing, nonlinear manifold learning, kernel PCA, 

regularized pre-image 

 

1. INTRODUCTION 

As a powerful quantitative imaging tool for tissue 

characterizations, MR parameter mapping has demonstrated 

great potential in various clinical applications [1]. However, 

to accurately obtain the MR parameters values, a large 

amount of contrast-weighted images need to be acquired 

which can lead to a relatively long acquisition time that 

limits the practical utility of MR parameter mapping.  

A range of fast imaging techniques have been developed 

to accelerate the MR parameter mapping. These methods 

explicitly or implicitly use the parametric signal model and 

utilize various constraints associate with it. Typical 

examples include temporal smoothness constraint [3], 
sparsity or structured sparsity constraint [4]-[9], low rank 

constraint [10][11], contrast-weighting constraint [12]-[14], 

or a combination of them [15]-[17].  

The above mentioned methods all use linear models for 

the constraints. In recent years, nonlinear models have been 

proposed in the compressed sensing framework and shown 
superiority on characterizing the nonlinearity in the signal 

models over linear models for dynamic imaging applications 

[17][19].  The core concept of nonlinear model is to map the 

original signal space to a high dimensional feature space via 

a nonlinear function and seek the corresponding sparse 

representation of the mapped signal in the feature space.    

In this paper, we propose a novel framework to utilize 

nonlinear models to sparsely represent the unknown image. 

Different from the prior work with nonlinear models where 

the image series is reconstructed simultaneously, each image 

at a specific time point is assumed to lie in a low-

dimensional manifold and is reconstructed individually. The 
low-dimensional manifold is learned from the training 

images generated by the parametric model. To reconstruct 

each image, among infinite number of solutions that satisfy 

the data consistent constraint, the one that is closest to the 

manifold is selected as the desired solution. The underlying 

optimization problem is solved using kernel trick [20] and 

split Bregman iteration algorithm [21]. Experimental results 

on T2 mapping using retrospectively undersampled data 

show that the proposed method is capable of recovering the 

T2 map at high reduction factors accurately when the 

conventional compressed sensing methods with linear 
models fail. 

This paper is structured as follows. In Section 2, we 

describe in details how the proposed method decouples the 

reconstruction process into two sequential steps: kernel-

based manifold learning and regularized pre-imaging with 

data consistency and sparsity constraint. Section 3 evaluates 

the proposed method using in-vivo T2-weighted brain 

datasets. The paper is concluded in Section 4. 

 

2. PROPOSED METHOD 

2.1 Problem Formulation 

To describe the data acquisition process, we represent the 

MR parameter-weighted image at the t-th acquisition to be 

reconstructed as an 1N   vector x. A finite number of 

measurements, denotes as y, are collected whose i-th entry 

can be written as 

 ,i i iy   x f   (1) 



where     denotes the inner product,  
1

n

i i
f  denotes i-th 

row of the undersampled Fourier measurement matrix F, 

and 
i  denotes the complex white Gaussian noise. Since the 

measurement operation is under-determined, the direct 

recovery of x from measurement y is ill-posed. 

   To reveal the nonlinear sparseness of the parameter-

weighted image x, we define a nonlinear mapping 

: p q    that maps the original data space p  into a 

much higher, even infinite, dimensional feature space q  

via a nonlinear function ( )  . We assume that x is 

nonlinearly d-sparse, meaning it can be sparsely represented 

by the first d largest coefficients in an orthonormal basis of 

the feature space q  
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with β being the unknown coefficients, and  
1

q

k k
v  being 

the basis constructed using a set of training images 
1

L

i i
J  

generated beforehand based on the parametric model via 

kernel PCA (kPCA) [22]. Specifically, in kPCA, each
q

k v  is represented in the expansion of 
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where  
1

L
k

i i
 is the representation coefficients that can be  

obtained by solving the following eigenvalue problem 

 
k kK    (4) 

where Κ  is a L L  kernel matrix with the ( , )i j th  entry  

, ( , ) ( ), ( )i j i j i j   K J J J J  with ( , )i j J J being a 

kernel function  and   is the eigenvalues of  K. For 

simplicity, we assume that both ( )l J  and Κ are centered 

in q . Otherwise we must replace ( )l J  with the centered 

1
( ) ( )

L

l l ll
L


  J J J  and replace Κ  with centered

c

L L L L   K Κ 1 Κ Κ1 1 Κ1 .   

Based on the above assumption, the desired MR 

parameter-weighted image x lies in a low dimensional 
manifold where the key information of x is preserved by a 

small number of projection coefficients  1 2, ,...,
T

d  β . 

Therefore, we propose the following two step sequential 

reconstruction scheme to recover x.  

2.2 Nonlinear Manifold Learning 

In this step, we aim to find the projection coefficients  

 1 2, ,...,
T

d  β  in the feature space q  by solving 

 . s Gβ δ   (5) 

where ( , )i is x f . Here we focus on a polynomial kernel  

 ( , ) ( ) ( )i i iy        x f x,f   (6) 

where   is a positive scalar and   is the polynomial order, 

G MΛ with M an n L  matrix with the ( , )i j th entries 

defined as  , ,  i j j i JM f  andΛ is an L d  matrix whose 

rows are formed by 
1
.

L
T

i i
   The least square solution of Eq. 

(5) is given by 

 1( )H Hβ G G G s . (7) 

Thereby we can obtain the unknown image in the feature 

space as 
1

d

k kk
v


z .  

2.3 Supervised Pre-Imaging 

     The objective of this step is to find the desired image x in 

the original space, which is a pre-image of z [23][24], that is, 

( ) x z . We also enforce that the pre-image satisfies the 

data consistency and transform sparse constraints. Therefore 

finding x is formulated as a supervised pre-image problem   
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where H  denotes the two-dimensional finite difference 
operation matrix. The first term represents the data 

consistency, the second term exploits the sparsity constraint, 

and the third term enforces the solution to lie on the 

manifold spanned by the predefined feature space.      

      Equation (8) can be highly nonlinear and nonconvex. 

However, when the polynomial kernel function has an odd 

order  , the kernel function ( , ) ( )i if  x f x,fk  is 

invertible, and there is a unique solution to ( ) x z : 
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
 . To solve the optimization problem, 

we rewrite Eq. (8) as 
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      subject to and  ,         V x U HV ,       (9) 

where V and U are called the auxiliary variables. Eq. (9) 

now can be solved iteratively by minimizing the cost 

function with respect to x, V and U separately using split 

Bregman algorithm without venturing into feature space 

[23]. Specifically, at the µ-th iteration, the scaled augmented 

Lagrangian function of Eq. (9) is 
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We now describe the three steps to be performed to solve Eq.  

(10). 

 x-step: Optimization with respect to x 



In this step, Eq. (10) reduces to  
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where ( ) ( ) ( )

1

   ζ V D .  Eq. (12) has a closed-form solution 
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 V-step: Optimization with respect to V 

In this step, Eq. (16) reduces to 
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Taking the first order derivative of Eq. (14) with respect to 

V yields  
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 U-step: Optimization with respect to U 

The last step we have to consider is  

 ( 1) ( 1) ( )2
13 2 2

argmin
2

  
    

U
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This is a typical L1 minimization problem which can be 

easily solved by any off-the-shelf optimization method.  

Finally, by iterating through the abovementioned three steps 

we may accurately recover the desired MR parameter 

weighted image x from the t-th acquisition.    

3. EXPERIMENTS AND RESULTS  

     We evaluate the proposed method using T2 mapping 

experiments, where the signal is described by an exponential 

decay. However, the method can be generalized for any 

other parameter mapping models. A set of brain data was 

acquired on a 3T scanner using a 12-channel head coil with 

a turbo spin echo sequence (matrix size = 192 × 192, FOV = 

192 × 192 mm, slice thickness = 3.0 mm, ETL = 16, ΔTE = 

8.8 ms, TR = 4000 ms, bandwidth = 362 Hz/pixel). The k-

space obtained at the first echo time was not used due to its 

hypointense. To simulate the reduced acquisition 
retrospectively, the k-space data was randomly 

undersampled along the phase encoding direction at each 

echo time with net reduction factors of 4 and 8, respectively. 

Different sampling patterns were used at different TEs. The 

T2 map obtained by pixel-wise fitting using the Levenberg-

Marquardt algorithm from the fully sampled data was used 

as the gold standard for comparison between the proposed 

method and the conventional compressed sensing method 

with principle component analysis as the sparsifying 

transform (CS-PCA).  

      As previously stated, the proposed method requires 

training images to estimate the basis function in the feature 
space. The k-space at the second echo time was fully 

sampled and used to form an image ρ . Similar to MR 

fingerprinting [25], the training images were generated by
( / 2)TE Te 

ρ  with a number of possible T2 map based on the 

segmentation of different tissues. A total of 976 training 

images were generated for each echo time. We used the 

polynomial kernel with 15   and 5  . The regularization 

parameters were manually tuned to get the best result and 

we chose
1 0.5  , 

2 0.2   and 
3 0.001  .  

Fig. 1 shows the reconstructed T2 maps and their 

corresponding pixel-wise error maps. The overall 

percentage errors are shown on the left top corner of the 

error maps. For better visualization, the error maps are 

magnified by 6. Visually the T2 maps obtained from the 

proposed method are indistinguishable from those obtained 

from the fully sampled data while the ones obtained from 

conventional CS reconstruction using linear PCA shows 

significant aliasing artifacts, especially in the white matter. 

We noticed that for the proposed method relatively higher 
error appears on the gray matter. This is likely due to the 

limited number of training images. Increasing the number of 

training images is expected to improve the reconstruction 

quality but at a cost of increased computational complexity. 

Another possibility is to improve the tissue segmentation so 

that the training images can be closer to the unknown image. 

To quantitatively assess our proposed method, the overall 

percentage errors were shown on the left top corner of the 

error maps. The results from the proposed method show 

good agreement with those from the fully sampled reference 

and are consistent for both undersampling factors of 4 and 8.  

4. CONCLUSION 

In this paper, a novel reconstruction method is proposed to 

accelerate the MR quantitative imaging. Compared to the 

existing compressed sensing methods, the proposed method 

constrains both the linear and nonlinear sparsity of the 

images using nonlinear manifold learning and supervised 

pre-imaging. The underlying optimization problem is solved 

by kernel trick and split Bregman algorithm. Experimental 

results show that the proposed method can accurately 

recover MR parameter maps from highly undersampled 

datasets. Future work will investigate selection of kernel 

functions and evaluation on other MR parametric models.  
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Figure 1. Estimated T2 maps and pixel-wise error maps of the 
brain dataset using the reconstruction from fully sampled data, CS-

PCA and the proposed method with reduction factors of 4 and 8.  
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