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Parallel magnetic resonance imaging (pMRI) using multichannel
receiver coils has emerged as an effective tool to reduce imag-
ing time in various applications. However, the issue of accurate
estimation of coil sensitivities has not been fully addressed,
which limits the level of speed enhancement achievable with
the technology. The self-calibrating (SC) technique for sensitiv-
ity extraction has been well accepted, especially for dynamic
imaging, and complements the common calibration technique
that uses a separate scan. However, the existing method to
extract the sensitivity information from the SC data is not ac-
curate enough when the number of data is small, and thus
erroneous sensitivities affect the reconstruction quality when
they are directly applied to the reconstruction equation. This
paper considers this problem of error propagation in the se-
quential procedure of sensitivity estimation followed by image
reconstruction in existing methods, such as sensitivity encod-
ing (SENSE) and simultaneous acquisition of spatial harmonics
(SMASH), and reformulates the image reconstruction problem
as a joint estimation of the coil sensitivities and the desired
image, which is solved by an iterative optimization algorithm.
The proposed method was tested on various data sets. The
results from a set of in vivo data are shown to demonstrate the
effectiveness of the proposed method, especially when a rather
large net acceleration factor is used. Magn Reson Med 57:
1196–1202, 2007. © 2007 Wiley-Liss, Inc.

Key words: joint estimation; SENSE; self calibration; variable
density acquisition; sensitivity estimation

Parallel magnetic resonance imaging (pMRI), as a fast im-
aging method, uses an array of RF receiver surface coils to
acquire multiple sets of undersampled k-space data simul-
taneously. Over the past few years a number of pMRI
techniques have been proposed for reconstructing a com-
plete MR image from these undersampled data in either
k-space or the image domain. Some of these methods, such
as partially parallel imaging with localized sensitivities
(PILS) (1), auto simultaneous acquisition of spatial har-
monics (AUTO-SMASH) (2), variable density (VD)-AUTO-
SMASH (3), and generalized autocalibrating partially par-
allel acquisitions (GRAPPA) (4), do not need the explicit
functions of coil sensitivity, while others, such as SMASH
(5), sensitivity encoding (SENSE) (6), and sensitivity pro-
files from an array of coils for encoding and reconstruction
in parallel (SPACE-RIP) (7), require the functions to be
given exactly. For the methods in the latter category, the

sensitivity estimation method is as important as the recon-
struction algorithm (8).

Unfortunately, the existing techniques for determining
sensitivity functions are not yet satisfactory. The most
common technique has been to derive sensitivities directly
from a set of reference images obtained in a separate cali-
bration scan before or after the accelerated scans. This
calibration scan can prolong the total imaging time, par-
tially counteracting the benefits of reduced acquisition
time associated with pMRI. Another practical problem
with this technique is that misregistrations or inconsisten-
cies between the calibration scan and the accelerated scan
result in artifacts in the reconstructed images, which is a
major concern in dynamic imaging applications. Adaptive
sensitivity estimation (9,10) has been proposed for these
applications. Based solely on the data from accelerated
scans, the method uses unaliasing by Fourier-encoding the
overlaps using the temporal dimension (UNFOLD) (11) to
generate low-temporal-resolution, aliasing-free reference
images for sensitivity estimation. However, UNFOLD is
limited to dynamic applications in which at least half of
the field of view (FOV) remains static over time. A more
general method is the self-calibrating (SC) technique,
which also eliminates a separate calibration scan but ac-
quires VD k-space data during the accelerated scan (8). The
VD acquisition includes a small number of fully sampled
lines at the center of k-space, known as autocalibration
signal (ACS) lines, in addition to the down-sampled lines
at outer k-space. These central k-space lines after Fourier
transformation produce low-resolution in vivo reference
images ���r��sl�r���*h�r��, where the product of the coil sensi-
tivity Sl�r�� of the lth channel and the image of transverse
magnetization ��r�� is convolved (*) with h�r��, the Fourier
transform of the truncation window that truncates the
central k-space. The convolution is due to the use of only
the central k-space data, which results in a low-resolution
measurement. To derive the sensitivities, these low-reso-
lution reference images are divided by their sum-of-
squares (SoS) combination (8,12):

ŝl�r�� �
���r��sl�r���*h�r��

��l����r��sl�r���*h�r���2
[1]

In addition to the assumption of spatially uniform
��l��sl�r���2, which is in common with the calibrating tech-
nique with a separate scan, Eq. [1] also assumes that the
multiplication with sl�r�� and the convolution with h�r�� are
commute, i.e.,

���r��sl�r���*h�r�� � ���r��*h�r���sl�r��. [2]

where equality holds only if h�r�� is a Dirac delta function,
i.e., when there is no data truncation, or sl�r�� is spatially a
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constant. In general, the approximation in Eq. [2] requires
sl�r�� to be much smoother than h�r��, i.e., the range of spatial
frequencies covered in the ACS lines is much broader than
the spatial frequency band of the coil sensitivity functions
(13); however, this contradicts the goal of pMRI. Apodiza-
tion of the central k-space data can also be used to shape
h�r�� for a better approximation in Eq. [2] (8). If a small
number of ACS lines are used, suggesting large data trun-
cation, the approximation in Eq. [2] fails such that the
Gibbs ringing artifacts due to truncation in the reference
images cannot be canceled by the division of their SoS
combination described in Eq. [1]. This leads to the pres-
ence of truncation errors in all sensitivity functions, which
become serious especially at locations where the object
transverse magnetization has high-spatial-frequency com-
ponents. These ringing errors can hardly be reduced by the
commonly used polynomial-fitting (6) or wavelet-denois-
ing techniques (14) for sensitivities. Consequently, the
pMRI reconstruction suffers from aliasing artifacts. There-
fore, to improve the sensitivity accuracy with a small
number of ACS data is crucial for pMRI techniques to
achieve a high acceleration.

In this paper we propose a novel approach that jointly
estimates the coil sensitivities and reconstructs the desired
image, in contrast to the sequential sensitivity estimation
followed by image reconstruction in conventional tech-
niques. In particular, the proposed method addresses the
issue of sensitivity errors by iteratively correcting the sen-
sitivity functions using all acquired VD k-space data in-
stead of only ACS lines. Extending the linear formulation
of generalized SENSE (GSENSE) with VD data (6,15), the
image reconstruction problem is reformulated as a nonlin-
ear optimization problem, with the sensitivity functions
represented by a parametric model with a set of unknown
parameters. In solving the optimization problem, an itera-
tive method is used. Specifically, starting with an initial
estimation of coil sensitivities, the method alternately up-
dates the reconstructed images and the coil sensitivity
functions in each iteration, and repeats until convergence.
The reconstruction results from a set of in vivo brain data
are given in this paper to demonstrate its superior quality
compared to SC GSENSE.

THEORY

Formulation of GSENSE

In GSENSE with VD acquisition, the imaging equation can
be formulated as a linear operation of the transverse mag-
netization image (6,15):

Ef�d, [3]

where d is the vector formed from all k-space data ac-
quired at all channels, and f is the unknown vector formed
from the desired full-FOV image to be solved for. The
encoding matrix E consists of the product of Fourier en-
coding with subsampled k-space and coil-specific sensi-
tivity modulation over the image, i.e.,

E�l,m�,n � e	i2
k� m�r�nsl�r�n�, [4]

where m and n denote the indices for the k-space data and
image pixels, respectively. In image reconstruction, the
image f is solved by the least-squares method either di-
rectly (7,8) or iteratively (15,17), given knowledge of ac-
quired data d and sensitivities sl�r��, where the sensitivities
are usually estimated by Eq. [1] and directly plugged into
the reconstruction algorithms. With this sequential pro-
cessing, any inaccuracy in sensitivity estimation can prop-
agate to the reconstructed image.

Formulation of Proposed JSENSE

To improve the accuracy of sensitivity estimation using
ACS data, we propose a novel method that jointly esti-
mates the sensitivities and SENSE reconstruction (called
JSENSE). The method is based on VD acquisition with
both the ACS data and the reduced data used for recon-
struction. In JSENSE, instead of assuming that the sensi-
tivity functions estimated from the ACS data are exactly
accurate, we introduce some degree of uncertainty. Spe-
cifically, noting the encoding matrix E is a function of
sensitivity, the imaging equation in Eq. [3] becomes

E(a)f�d, [5]

where a is the parameter representing the coil sensitivities
and is also an unknown to be solved. Although there can
be different ways to parameterize the sensitivities, we use
a simple polynomial function to model the coil sensitivi-
ties as

sl�r�� � �
i�0

N �
j�0

N

al,i,j�x � x� �i�y � y� �j, [6]

where �x,y� � r� denotes the location of a pixel, (x� ,y�),
denotes the averaged location, and al,i, j is the coefficient of
a polynomial, forming the unknown vector a. We choose
the highest power of x and y to be the same and define it as
the order of the polynomial. A high-order polynomial im-
proves the accuracy of the model, but also increases the
number of unknowns to be solved for. Because of the
smooth nature of coil sensitivity in general, a polynomial
of low order is usually sufficient. Under this model, the
encoding matrix explicitly becomes

E�a��l,m�,n � �
i,j

al,i,j�xn � x� �i�yn � y��je	i2
�kxm�xn�kym�yn�. [7]

Taking into account the k-space data noise, which is
usually additive white Gaussian, we can jointly estimate
the coefficients for coil sensitivities a and the desired
image f by finding a least-squares solution. Specifically,

�a,f}�arg min
{a,f}

U(a,f), [8]

where the cost function to be minimized is
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U(a,f)�
1
2

�d�E(a)f�2. [9]

Since the polynomial model already incorporates the
smoothness constraint, no regularization is needed on sen-
sitivity functions. Theoretically, as long as the dimension
of data d exceeds the total dimension of the unknowns a
and f, the above least-squares problem is overdetermined
and thus has a unique solution. The novel nonlinear for-
mulation of image reconstruction allows the sensitivity
and the image to be estimated simultaneously, and thus
prevents the errors of the independently estimated sensi-
tivities from propagating to the final reconstruction as in
conventional SENSE.

Implementation of JSENSE

Directly solving the joint optimization problem in Eq. [8] is
practically intractable. We resort to a greedy iterative al-
gorithm (16). Specifically, starting with an initial estimate
of sensitivities by Eq. [1] using the ACS data, we alternate
between updating the image and updating the polynomial
coefficients of the coil sensitivities, both based on the
optimization criterion in Eq. [8]. This updating procedure
is repeated iteratively until the cost function stops de-
creasing. The corresponding image reconstructed at the
final iteration gives the desired image.

To update the image, we fix the sensitivity functions to
be the ones given by the previous iteration. Thus the image
f can be reconstructed by minimizing Eq. [9]:

f�min
f

1
2

�d�Ef�2, [10]

with E given by fixing a. Equation [10] becomes the same
as the formulation of GSENSE with regularization (12,18).
The solution is then found by the iterative conjugate gra-
dient method, as described in detail in Ref. 15. Other
image reconstruction methods that are applicable to VD
acquisition, such as SPACE-RIP (7), projection onto con-
vex set based SENSE (POCSENSE) (17), and VD-SENSE
(10,19), can also be used. Even the efficient Cartesian
SENSE method (6) can be used for the reconstruction
component, but it is expected to have degraded image
quality because the ACS data are not used.

Similarly, to update the sensitivity functions, the image
is fixed. Specifically, we minimize the cost in Eq. [9] with
respect to the coefficients a given f:

a�min
a

1
2

�d � E�a�f�2. [11]

With the polynomial model, the encoding equation E(a)f
can be rewritten as a linear function of the polynomial
coefficients; thus Eq. [11] becomes

a�min
a

1
2

�d � Fa�2, [12]

which is a standard least-squares problem where
F�l,m�,�l,i, j� � �n��xn,yn�xn

iyn
je	i2
�kxm � xn�kym � yn� is given. In

general, the order of the polynomial used to represent the
sensitivities is relatively low, so the least-squares solution
can be directly obtained by

a � �FHF�	1FHd. [13]

The obtained polynomial coefficients are then plugged
back into Eq. [6] to refine the polynomial functions of
sensitivities.

MATERIALS AND METHODS

The proposed method was implemented in Matlab (Math-
Works, Natick, MA, USA). To test its performance, in vivo
data from a healthy volunteer were acquired on a 3T Excite
MR system (GE Healthcare Technologies, Waukesha, WI,
USA) using an eight-channel head coil (MRI Devices,
Waukesha, WI, USA) and a 3D spoiled gradient-echo
(SPGR) pulse sequence (TE � 2.38 ms, TR � 7.32 ms, flip
angle � 12°, FOV � 18.7 cm  18.7 cm, matrix � 200 
200, slice thickness � 1.2 mm). Informed consent was
obtained from the volunteer in accordance with the insti-
tutional review board policy.

The data set was acquired in full, and some phase en-
codings were then manually removed to simulate the VD
acquisition in pMRI. The full data were combined to ob-
tain the SoS reconstruction, which serves as a gold stan-
dard for comparison. The reduced VD data with different
nominal reduction factors excluding the ACS data (Rnom)
and different numbers of ACS lines were used to recon-
struct the desired image using the proposed JSENSE
method, as well as SC GSENSE (15). For different nominal
reduction factors and numbers of ACS lines, the net reduc-
tion factors (Rnet) were calculated. In JSENSE, the order of
the polynomial for coil sensitivities was chosen to be N �
17. In SC GSENSE, the coil sensitivities were carefully
estimated from the central ACS lines using the method
described in Ref. 8. Briefly, the ACS data were apodized
using a Kaiser window with a window shape parameter of
4, followed by the sensitivity estimation formulated in Eq.
[1]. The obtained sensitivity map was then smoothed by

FIG. 1. Estimated sensitivity maps of the
first channel based on (a) full-scan data, (b)
SC with 32 ACS lines, and (c) JSENSE with
32 ACS lines and Rnom � 4.

1198 Ying and Sheng



polynomial fitting as described in Ref. 6 before it was used
for GSENSE reconstruction. For comparison, the standard
sensitivity map from the full-scan data was also generated
using Eq. [1] followed by the same polynomial fitting pro-
cedure.

The estimated sensitivity maps, the corresponding g-
maps, and the final reconstructions obtained by SoS,
JSENSE, and GSENSE were evaluated visually in terms of
image quality (e.g., noise and artifacts). With SoS as the
gold standard, reconstructions were also compared quan-
titatively in terms of the normalized mean squared error
(NMSE). The NMSE is defined as the normalized differ-
ence square between the reconstructed image (Iestimated) and
the SoS as the gold standard (Istandard):

NMSE�

�
r�

�Iestimated�r��� � Istandard�r���2

�
r�

Istandard�r���2
. [14]

This definition is equivalent to the artifact power (AP)
defined in Ref. 8. As noted in Ref. 8, a higher value of
NMSE (or AP) represents reduced image quality, which
suggests both increased image artifacts and noise. In addi-
tion, the sensitivity estimation errors were also calculated
using Eq. [14], where we used the SoS weighted by the
estimated sensitivity map for Iestimated and the SoS weighted
by the standard sensitivity map calculated from the full
scan for Istandard. We did not subtract the estimated and
standard sensitivity maps directly because the standard
one is not exactly accurate due to noise amplification of
division in Eq. [1], which is especially serious in the
regions where the full-scan image has low intensity. Sub-
tracting the sensitivity-weighted SoS gives more insight
because the subtraction gives zero if the estimated sensi-
tivity is accurate.

RESULTS

Figure 1a–c show the estimated sensitivity maps of the
first channel based on the full scan data, the 32 ACS lines
using the SC method, and the proposed JSENSE (JS)
method with Rnom � 4. The sensitivity map estimated from
the full scan has spatially dependent noise that is large at
the skull area, where the image intensity is low. The SC
method generates a map that is less noisy but has a trun-
cation effect. The map estimated by JSENSE visually
agrees with the smooth variation of the electromagnetic
field with no noise or truncation effect. The qualitative

FIG. 2. The first row shows the
reconstructed brain images from
a set of eight-channel VD data us-
ing (a) SoS, (b) SC GSENSE, and
(c) the proposed JSENSE. The
nominal reduction factor is 3 with
32 ACS lines at the central
k-space. Their g-maps are also
shown on the second row corre-
sponding to the sensitivities from
(d) full-scan data, (e) SC, and (f)
JSENSE. The difference maps
between (g) SC GSENSE and SoS
reconstructions, and (h) JSENSE
and SoS reconstructions are
shown on the third row.

Table 1
NMSEs of Sensitivity Weighted Images From Eight Channels

Channels

1 2 3 4 5 6 7 8

JS (%) 5.37 5.46 4.96 4.45 4.67 4.72 4.53 4.59
SC (%) 5.99 6.01 5.48 5.02 5.05 5.17 5.06 5.11
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evaluation of these sensitivity errors for all eight chan-
nels is given in Table 1. The error for the sensitivity map
from the full scan is zero, as expected, and thus is not
shown. The comparison suggests that the JSENSE
method improves the accuracy of the sensitivities
through iterations.

Figure 2a–c show the reconstructed images using the
SoS, SC GSENSE, and proposed JSENSE methods also
with 32 ACS lines and Rnom � 3 (Rnet � 2.27), and Fig. 2d–f
show the corresponding g-maps. Note that the g-maps are
shown for comparison only, and they do not reflect the
actual noise enhancement in the GSENSE- and JSENSE-
reconstructed images because the ACS data are used in
both cases and the conjugate gradient method has an in-
herent regularization effect. All images are normalized and
shown on the same scale. It can be seen that JSENSE is
superior to SC GSENSE due to more accurate sensitivities.
This can be seen more clearly in the difference image with
SoS in Fig. 2g and h. The same set of comparison for 32
ACS lines and Rnom� 5 (Rnet � 3.05) is given in Fig. 3,

which also demonstrates the superior image quality of
JSENSE.

The NMSEs (with the SoS reconstruction as the gold
standard) of the SC GSENSE and JSENSE reconstruc-
tions are compared in Table 2 with columns represent-
ing the numbers of ACS lines and rows representing the
nominal reduction factors. The net reduction factors are
also shown in the table. For small (Rnet � 2.03) or large
(Rnet � 3.75) net reduction factors, all methods achieve
similar good or poor visual quality; thus the NMSEs in
these cases may provide little insight and are not in-
cluded here. The results suggest that the proposed
method is preferred when a rather large data reduction
is desired.

As an iterative technique, the convergence behavior of
JSENSE is also studied. In Fig. 4a and b, the NMSE is
plotted as a function of the number of iterations for differ-
ent numbers of ACS lines and different nominal reduction
factors. It shows that JSENSE converges rather quickly for
all cases.

FIG. 3. The set of results with the
same parameters as in Fig. 2 ex-
cept that the nominal reduction
factor is 5.

Table 2
NMSEs of Reconstructions From Brain Data

ACS
Rnom � 3 Rnom � 4 Rnom � 5 Rnom � 6

Rnet JS (%) GS (%) Rnet JS (%) GS (%) Rnet JS (%) GS (%) Rnet JS (%) GS (%)

24 2.4 0.41 0.67 2.9 0.91 1.40 3.4 1.29 2.29 3.8 1.73 3.31
32 2.3 0.36 0.56 2.7 0.69 1.13 3.1 1.08 2.06 3.3 1.54 2.73
40 2.1 0.32 0.49 2.5 0.60 0.99 2.8 0.97 1.71 3.0 1.39 2.68
48 2.0 0.29 0.41 2.3 0.52 0.86 2.6 0.87 1.49 2.7 1.25 2.46
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DISCUSSION

The proposed JSENSE method is an extension of the SC
technique in the image domain (8). In particular, JSENSE
is able to address two problems that arise in the existing
image-domain SC technique when a large number of phase
encodings are skipped for high acceleration. First, when a
small number of ACS data are used for sensitivity estima-
tion, these data are truncated from the original full data
with a small truncation window, which causes the esti-
mated sensitivities to have serious ringing at object bound-
aries. The erroneous sensitivities, when directly applied to
a reconstruction algorithm, lead to aliasing artifacts in the
final reconstruction. In JSENSE, the iterative update of the
coil sensitivities implicitly takes advantage of the sub-
sampled data from outer k-space in addition to the ACS
data so that the truncation error in sensitivity is reduced.
Second, when a large reduction factor is used, the g-factor
is deteriorated by the inaccurate sensitivities, which leads
to poor SNR in the reconstruction. The problem is allevi-
ated by JSENSE because the iterative cross-validation reg-
ularizes the sensitivity functions such that the g-factor is
improved.

A major limitation of JSENSE is that it exhibits a large
computational complexity. Each iteration of JSENSE re-
quires a complete GSENSE reconstruction and sensitivity
estimation. The GSENSE reconstruction can be replaced
by any other methods applicable to VD acquisition, and
because of the separability of VD data, it can be decom-
posed to several 1D reconstructions. In contrast, sensitiv-
ity estimation has to be carried out in two dimensions
because of the 2D parametric model, and thus dominates
the computational complexity of the JSENSE method. Its
computation increases with the order of the polynomial
model. For an order-N polynomial, the number of un-
known coefficients to be solved is L�N � 1�2 (where L is
the number of coils), and therefore it requires O�L3N6 com-
putations to solve the linear equation for the coefficients.
For the brain data, the running time of JSENSE is 510 s per
iteration, in contrast to 36 s for GSENSE on an Intel Pen-
tium IV 1.3 GHz desktop. Although the computational
burden may present a difficulty in practice (especially in
3D imaging, due to the increased number of coefficients for
a 3D polynomial), the burden may be alleviated by opti-
mizing the code implementation of JSENSE. In addition, as
computers become faster, the computational speed may be
of less concern than the data acquisition speed.

Reformulation of the image reconstruction problem in
the context of joint estimation presents appealing possibil-
ities for future research. For example, models other than

the polynomial one may be investigated to accurately rep-
resent the spatial variation of coil sensitivities with fewer
model coefficients to be solved. Other optimization algo-
rithms, such as variable projection, may be applied to
improve computational efficiency. The use of a VD acqui-
sition pattern other than the one used in this paper may
also improve the quality of JSENSE reconstruction under a
given net acceleration factor (20). In addition, it would
also be of great interest to generalize JSENSE to non-Car-
tesian trajectories, such as spiral and radial trajectories.
These trajectories automatically sample the center of k-
space densely such that central k-space automatically sat-
isfies the Nyquist sampling rate even with reduced encod-
ing.

CONCLUSIONS

We have demonstrated a novel pMRI-reconstruction
method with improved self calibration of coil sensitivities.
The method iteratively refines the sensitivities so that the
SNR of reconstruction is improved and the image artifact
is reduced. The proposed JSENSE method is expected to
improve the image reconstruction quality in dynamic par-
allel imaging applications because of its ability to accu-
rately update the continuously changing sensitivities, as
well as its superior reconstruction quality when a large net
acceleration factor is used to reduce motion artifacts due to
long acquisition times.
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