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ABSTRACT 

 

Compressed sensing (CS) has recently drawn great 
attentions in the MRI research community. The most 
desirable property of CS in MRI application is that it allows 
sampling of k-space well below Nyquist sampling rate, 
while still being able to reconstruct the image if certain 
conditions are satisfied. Recent work has successfully 
applied CS to reduce scanning time in conventional Fourier 
imaging. In this paper, the application of CS to parallel 
imaging, a fast imaging technique, is investigated to achieve 
an even higher imaging speed. The sampling scheme for 
incoherence is discussed and reconstruction method using 
Begman iteration is proposed. Our experiments show that 
the combined method, named SparseSENSE, can achieve a 
reduction factor higher than the number of channels.  
 
Index Terms— SENSE, Compressed Sensing, Bregman 
iteration 
 

1. INTRODUCTION 
 

Conventional MRI using Fourier imaging is based on 
Shannon sampling theory. The large number of required 
samples that are sequentially sampled greatly limits the MR 
imaging speed. The new CS theory [1,2] allows exact 
recovery of a sparse signal from a set of samples that 
appears to be highly incomplete in Shannon sampling 
theory. This feature is very desirable in MRI for significant 
reduction in scan time without the requirement of improved 
gradient performance. Lustig et al [3,4] have applied CS to 
MRI to reduce the number of samples and have reported 
impressive results. 

Improving on Fourier imaging, parallel MRI is an 
advanced fast imaging technique to reduce the number of 
samples using multiple channels for simultaneous data 
acquisition. Based on the generalized sampling theory, its 
maximum reduction in the number of samples is limited by 
the number of channels. In this paper, we apply CS to 
parallel MRI to achieve a reduction factor even higher than 
the number of channels. We randomly undersample the k-
space along the phase encoding direction to ensure 
incoherent point spread functions required by CS. In 
reconstruction of the desired image from the reduced 
samples, we use Bregman iterations, in replace of the 
commonly used L1 regularization method, to solve the 

constrained convex programming in CS accurately and 
efficiently.   It has been shown that Bregman iteration is 
able to achieve a very accurate solution to the original 
constrained problem of CS, yet with a low computational 
and memory cost even when the equation is large-scale [5].  
The feasibility of the proposed method has been validated 
by experiment results. The results show that the CS-based 
parallel MRI, named SparseSENSE, can achieve a reduction 
factor higher than the number of channels. 
 

2. REVIEW OF THE EXISTING WORK 
 

2.1 Compressed Sensing in MRI 
In CS theory, a signal x with a sparse representation in the 
basis , can be recovered from the compressive 
measurements 

Ψ
Φxy = , if the Φ  and  are incoherent [6]. 

To recover the signal x, CS solves the convex programming  
Ψ

Minimize 
1

( )xΨ    subject to  Φx = y            (1) 
In MRI, incoherence is satisfied when Ψ is the gradient 
matrix or the finer scales of a wavelet transform and Φ  is a 
random subset of rows from the discrete Fourier matrix [7].  

However, there are two major issues with the practical 
implementation of CS theory in MRI. First, the random 
sampling of k-space in all dimensions is generally 
impractical as the k-space trajectories have to be relatively 
smooth due to hardware and physical considerations [3]. 
Instead, Lustig et al [3] designed practical sampling scheme 
for conventional Fourier imaging which randomly 
undersamples Cartesian grid along the phase-encoding 
directions only and fully samples the readouts. The level of 
incoherence was measured by the shape of the point spread 
function. In addition, the constrained problem in Eq. (1) is 
computationally and memory intensive when the equation is 
large-scale [5]. To simplify the calculation of the 
constrained optimization problem in Eq. (1), the 
unconstrained problem known as L1-norm regularization is 
usually solved instead: 
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where λ  is the regularization parameter which manages the 
tradeoff between data consistency and the sparsity prior. In 
[3], both wavelet and total variation are used as the sparse 
representations to solve 
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where W is the wavelet transform matrix, and )(TV ⋅  is total 
variation [8]. Several numerical methods can be used to 
solve the L1 regularization problem in Eq. (2), such as 
nonlinear conjugate gradients (CG) [9] and primal-dual 
interior point solver [10]. Most method reduce complexity 
by local linearization for the L1-norm term.  
 
2.2 Parallel MRI 
 

Parallel MRI [11-13] is a new technique to improve on 
conventional Fourier encoding for fast imaging. In parallel 
imaging, the k-space data are acquired from multiple 
channels simultaneously, but sampled with a rate lower than 
the Nyquist sampling rate such that the data acquisition time 
is reduced. The imaging equation for the k-space data 
acquired at the lth receiver coil can be expressed as  

2( ) ( ) ( ) mi k r
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where  is the spin density of the desired object, 

 is the data measured at the k-space location 

( )rρ r
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the lth receiver channel whose sensitivity profile is ( )rls r . 
The imaging equation is written in matrix form as  

dEf = ,                                          (5) 
where d  is the vector formed from all k-space data acquired 
at all channels, and f  is the unknown vector formed from 
the desired image to be reconstructed, both with a 
lexicographical column ordering of the two-dimensional 
array components. The encoding matrix E consists of the 
product of Fourier encoding with undersampled k-space and 
channel-specific sensitivity modulation over the image, i.e. 
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According to the generalized sampling theorem [14], the 
maximum reduction factor is equal to the number of 
channels if E is of full rank and d is free of noise. Because 
these conditions are rarely guaranteed in practice, the 
reduction factor is usually lower. In presence of noise in 
MR data measurement, SENSE algorithm [11] is popularly 
used to solve the matrix equation: 

min || ||
f

d - Ef .                                    (7) 

If E is ill-conditioned (close to rank deficient), 
regularization is usually used. 
 

3. PROPOSED METHOD  
 

We combine CS with parallel imaging to achieve an even 
higher reduction in data samples. The combined method 
should satisfy the incoherence requirement of CS, and solve 
a constrained optimization problem accurately and 
efficiently.  
 

3.1  Sampling Scheme 
In Fourier imaging, the random sampling can be denoted by 
element-wise multiplication with a vector whose 
components are either 0 or 1 distributed randomly. This 

multiplication in Fourier domain is equivalent to 
convolution with a random point spread function in image 
domain. The degree of randomness in the point spread 
function is used to measure level of incoherence in [3]. In 
parallel imaging, the point spread function depends not only 
on the sampling pattern, but also on the channel sensitivities. 
In addition to random sampling, the extra degrees of 
freedom from the sensitivity functions can be utilized to 
improve the incoherence for better performance. CS-based 
parallel imaging may have an even greater potential for high 
reduction factors when incoherence is also considered in 
coil design.    

Due to the practical constraints in our study, we use 
commercially available phased array coils with deterministic 
sensitivities. Similarly to [3], we randomly generate some 
sampling patterns that undersample the k-space along the 
phase encoding direction, and evaluate the goodness of the 
patterns based on the shape of the point spread functions. 
The sampling pattern resulting in noise-like random point 
spread functions is chosen for data acquisition. 

 
3.2 Reconstruction algorithm 
In noise-free CS parallel MRI, the image is reconstructed by 
the constrained nonlinear convex program: 
          Minimize 

1
( )Ψ f    subject to                   (8) dEf =

In [3], the above program is approximated by the 
unconstrained L1 regularization problem  
                  2
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                         (9) 

for simplified computation. However, the solution never 
equals that of Eq. (8) unless the solution is trivial. Here we 
use Bregman iteration on top of the L1 regularization. It has 
been shown that Bregman iteration is able to achieve an 
accurate solution to the original constrained problem in (8) 
with a very small multiple of the computational complexity 
of (9) [5].  

To solve (8), in each Bregman iteration, the solution is 
obtained for the regularization problem [15, 16] 

      2
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where  is the Bregman distance based on a 
convex functional 

1( kDΨ −f,f
( )Ψ ⋅  between point f  and 1k −f : 
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                                                                                        (11) 
where ,⋅ ⋅  denotes inner product and  is 
subgradient of 

1 1(|| ( ) || )k−∂ Ψ f

1 1|| ( ) ||k−Ψ f  at the point f . The Bregman 
distance is an indication of the increase in 

1k −

1|| ( ) ||Ψ f  over 

1 1|| ( ) ||k−Ψ f  above linear growth with slope 1 1|| ( ) ||k−∂ Ψ f

k

. It 
has been shown that the sequence Ef  monotonically 
converges to the acquired data d  such that the constraint in 
(8) holds [16]. We name the proposed Bregman iterative 



nonlinear reconstruction method for randomly 
undersampled parallel MRI SparseSENSE. 
 
3.3 Implementation 

The minimization problem in Eq. (10) seems 
complicated, but is actually equivalent to [16]  

}||)(||||{||minarg 11 fEfdvf
f

Ψ+−+= − λkk ,       (11) 

where  for . It is seen that 
the above formulation is the same as an L1 regularization 
except that d  is replaced by . Among many algorithms 
for the nonlinear L1 regularization, we use lagged diffusivity 
fixed-point algorithm, whose details can be found in [17]. 
When the regularization parameter 

1k k−= + −v v d Efk 00, 0k > =v

kv

λ  is chosen properly, 
only several Bregman iterations would be sufficient for an 
accurate solution of Eq. (8). 

There are several popular choices for the sparse 
representation including gradient and wavelet transform. 
Here, we select  to be the total variation such that  1|| ( ) ||Ψ ⋅
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where 
rf  and if  are real and imaginary part of the complex 

MR image, and  and  denote the gradient along x 

and y respectively. In addition, to speed up computation, 
NUFFT [18], a min-max optimal method for nonuniform 
fast Fourier transform, has been used for the variable-
density Cartesian trajectory. 

x∇ y∇

 
4. EXPERIMENTAL RESULTS 

 
We show representative results from both phantom and in 
vivo data sets. To demonstrate the feasibility of the 
proposed method to achieve a reduction factor higher than 
the number of channels, the results here are for the noise-
free case only. In present of noise, parallel imaging may 
suffer from ill-conditioning problem, which requires 
additional regularization and results in a lower achievable 
reduction factor. In both experiments, we use the image and 
sensitivity functions generated from real data sets to 
simulate the acquired k-space data without noise.   

Phantom data were collected on a Hitachi Airis Elite 
0.3T permanent magnet scanner with a four-channel head 
coil and a single slice spin echo sequence (TE/TR = 
40/1000ms, 8.4KHZ bw, 256x256 matrix size, FOV = 220 
mm2). 52 out of 256 k-space lines in phase-encoding 
direction were randomly selected to simulate a reduction 
factor 5. The selected sampling pattern that results in noise-
like random point spread functions is shown in Fig 1(a).  

The Bregman iterative regularization algorithm was 
implemented in MATLAB. Fig. 2 (a) shows the sum-of-
square reconstruction from the fully sampled data as the 
gold standard for comparison, (b) shows the linear 
conjugate gradient (CG) SENSE reconstruction [8] after 40 
iterations, (c) TV regularized SENSE reconstruction using 

Eq. (9) after 90 iterations, and (d) shows the reconstruction 
using the proposed SparseSENSE after 9 Bregman 
iterations, each with 10 inner-TV-based iterations for Eq. 
(10). The SparseSENSE reconstruction shows only very few 
discernable artifacts compared to the gold standard. 

 

    
(a) (b)  
 

Fig. 1 Sampling patterns for (a) phantom and (b) brain data. 
 

 

  
         (a) Gold Standard                       (b) CG-SENSE 
 

  
(c) TV regularization      (d) Proposed SparseSENSE      

 

Fig. 2 Phantom experiment results. 
 

 
A set of brain data was collected on a 1.5T SIEMENS 

Avanto system with a 4-channel head coil. Similarly, 52 out 
of 256 k-space lines in phase-encoding direction were 
randomly selected for reconstruction. The sampling pattern 
is shown in Fig. 1 (b). Similarly, the gold standard, the 
reconstruction using CG-SENSE, TV regularization, and the 
proposed SparseSENSE are shown in Fig.3 (a), (b), (c), and 
(d), respectively. 



The running time for 9 Bregman iterations is about 10 
minutes on a HP xw8400 workstation (2.33GHz CPU and 4GB 
RAM), which is about the same as that for 90 iterations of 
TV regularization. 
 

  
          (a) Gold Standard                      (b)  CG-SENSE          

  
      (c) TV regularization      (d) Proposed SparseSENSE                [10] S. J. Wright, 
 

Fig 3. In vivo experiment results 
 

5.  DISCUSSION AND CONCLUSION 
 

The proposed method demonstrates the feasibility of 
combining CS with parallel MRI. In data acquisition, we 
use the practical pseudo random sampling scheme, and in 
image reconstruction, we use the Bregman iterative 
regularization method to solve the constrained optimization 
problem. Our parallel imaging experiments show that the 
proposed method is able to achieve a reduction factor higher 
than the number of channels in absent of noise. In present of 
noise, the reduction factor may be lower when the parallel 
imaging equation is ill-conditioned. In addition, the 
computational cost of Bregman iterations is about the same 
as that of the linear CG-SENSE reconstruction method. 

In our implementation, we minimize the total variation 
under the data consistent constraint. Our future work would 
explore other sparse representations such as wavelet for 
possible improvement on reduction factors. 
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