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ABSTRACT 

 
GRAPPA has been widely used as a k-space-based parallel 
MRI reconstruction technique. It linearly combines the 
acquired k-space signals to estimate the missing k-space 
signals where the coefficients are obtained by linear 
regression using auto-calibration signals. At high 
acceleration factors, GRAPPA reconstruction can suffer 
from a high level of noise even with a large number of auto-
calibration signals. In this work, we improve the GRAPPA 
model using a kernel approach. Specifically, the acquired k-
space data are mapped through a nonlinear transform to a 
high-dimensional space and then linearly combined to 
estimate the missing k-space data. A polynomial kernel is 
investigated in this work. Experimental results using 
phantom and in vivo data demonstrate that the proposed 
kernel GRAPPA method can significantly improve the 
reconstruction quality over the existing methods. 
 

Index Terms— Parallel MRI, GRAPPA, Kernel 
method, Nonlinear filtering 
 

1. INTRODUCTION 
 
Generalized autocalibrating partially parallel acquisitions 
(GRAPPA) [1] has been widely used for reconstructing MR 
images from reduced acquisitions with multiple receivers. 
When the net acceleration factor is high, GRAPPA 
reconstruction can suffer from aliasing artifacts and noise 
amplifications. Methods have been developed in recent 
years to improve GRAPPA using localized coil calibration 
and variable density sampling [2], multicolumn multiline 
interpolation [3], regularization [4,5], iteratively reweighted 
least-squares [6], high-pass filtering [7], cross-validation 
[8,9], iterative optimization [10], virtual coil using 
conjugate symmetric signals [11], multi-slice weighting 
[12], or infinite pulse response (IIR) filtering [13], etc. 

The conventional GRAPPA methods [1,3] reconstruct 
the missing k-space data by a linear combination of the 
acquired data, where the coefficients for combination are 
estimated using some additionally acquired auto-calibration 
signal (ACS) lines. Huang et al [14] analyzed two kinds of 
errors in GRAPPA reconstruction: truncation error and 
inversion error. Nana et al [8,9] extended the analysis and 
used more general terms: model error and noise-related 

error. While the first kind of error mainly originates from a 
limited number of ACS lines and data truncation, the second 
kind of errors generates from noise in the measured data and 
noise-induced error in estimating the coefficients for linear 
combination. Some methods use regularization [4,5] or 
iterative reweighted least-squares [6] to reduce the noise-
induced error in the estimated coefficients. However, they 
are not widely accepted partially due to limited 
improvement or high computational complexity. 

In this paper, we propose a kernel method to improve 
the conventional GRAPPA model and reduce the 
reconstruction error. We define a polynomial kernel 
function for the nonlinear mapping and the reconstruction 
problem of the missing k-space data is thereby formulated 
as a nonlinear combination of the acquired k-space data. 
Experimental results demonstrate that the proposed method 
outperforms the conventional GRAPPA, regularized 
GRAPPA, and the iterative reweighted least-squares 
methods in suppressing the spatial-varying noise. 
 

2. BACKGROUND 
 
The GRAPPA reconstruction can be represented as  
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where the unacquired k-space signal Sj on the left-hand side 
is obtained by a linear combination of the acquired k-space 
signals on the right-hand side. Here w denotes the 
coefficient set, R represents the reduction factor,  j is the 
target coil, l counts all coils, b and h transverse the acquired 
neighboring k-space data in ky and kx directions respectively, 
and the variables kx and ky represent the coordinates along 
the frequency- and phase-encoding directions, respectively. 
The formulation of GRAPPA can be simplified as a matrix 
equation  

1M M K T K× × ×=b A x ,                        (2) 
where A represents the matrix comprised of the acquired 
data, b denotes the vector of the missing data, and x 
represents the coefficients.  

In general, the coefficients depend on the coil 
sensitivities and are not known a priori. In GRAPPA, some 
auto-calibration data are acquired and used as the vector b 
to estimate the coefficient vector x. The least-squares 
method is commonly used to calculate the coefficients: 
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When the matrix A is ill-conditioned at high reduction 
factors, the noise can be greatly amplified in the estimated 
coefficients.  Regularization methods [4,5] have been used 
to solve for coefficients using 
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x
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where R(x) is a regularization function (e.g., R(x)=||x||2 in 
Tikhonov) and λ is regularization parameter. It also has 
been noted that “outliers” due to noise and low sensitivity 
can lead to large error in the least-squares method. Iterative 
reweighted least-squares method [6] iteratively assigns and 
adjusts weights for the acquired data. “Outliers” are given 
less weights or removed in the final estimation so that the 
fitting accuracy and reconstruction quality is improved. 

 
3. PROPOSED METHOD 

 
The above GRAPPA formulation models the reconstruction 
as a standard linear regression and prediction problem. In 
practice, this linear model is not necessarily valid due to the 
noise in all measurements. The kernel method has recently 
been studied and shown to outperform linear regression and 
prediction [15,16,17]. The idea of kernel method is to 
transform the data nonlinearly to a higher dimensional space 
such that linear combination in the new space can 
approximate a broader class of nonlinear functions. Due to 
the improved accuracy in the regression model, the kernel 
method can improve the regression and prediction accuracy.  

To transform the least square estimation into a kernel 
method algorithm, we apply a nonlinear mapping over the 
acquired k-space data ( ),l y y x xS k bR k k h k+ Δ + Δ . Under such 

a mapping, we will need to solve the following linear 
system: 
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matrix, the superscript T represents matrix transpose, M is 
the number of acquired ACS data, NK is the dimension in 
the reproducing kernel Hilbert space (RKHS) [18] which is 
usually much higher than M, and ai’s are row vectors of the 
matrix A.  

A kernel is a continuous, symmetric and positive-
definite function, and is related to the mapping Φ in that 

( ) ( ) ( )1 2 1 2 1 2, , , ,κ =<Φ Φ > ∀ ∈a a a a a a A  ,         (6) 
where <,> represents the inner product. The generally used 
kernel includes polynomial kernel [19] and Gaussian kernel 
[20].  

It is seen that the regression process to find x can still 
be solved by a linear algorithm: 
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Once the coefficients are estimated in Eq. (7), they are used 
in the prediction process to reconstruct the missing data in 
outer k-space, like the conventional GRAPPA does. 

Since polynomials are widely used to approximate 
smooth unknown functions, we choose a polynomial kernel 
for Φ mapping. A polynomial kernel takes the following 
form 
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where γ and r are scalars and d is the degree of the 
polynomial. The polynomial kernel is the inner product 
between two vectors Φ(ai) and Φ(aj). If γ = r = 1 and d = 2, 
Φ(a) is given by [21]  
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where a1, a2, …, aK  are components of the vector a. We can 
see that the vector also includes the second-order terms. 
However, all components of Φ(a) cannot be incorporated in 
calculating the coefficients due to both large computation 
cost and over-fitting problem [22]. We keep the first-order 
components 11, 2 , , 2 Ka K a , and randomly and sparsely 
choose the second-order components to construct a 
hypothesis space 

( )
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where i, j are randomly chosen from 1, 2,…,K, such that the 
size of ( )Φ a  is equal to the desired dimension NK. The 
proposed kernel GRAPPA method is thereby formulated as 
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where P(n) and Q(n) are randomly chosen from 
( ),l y y x xS k bR k k h k+ Δ + Δ

1 2, ,h H H

 with  and 1, , ;  l L= L 1 , , ;b B B= L 2

= L , and N is the number of randomly selected 
second-order terms. 

The above kernel formulation represents a more general 
model for GRAPPA, which includes the conventional 
GRAPPA as a special case. It is seen that the second part of 
kernel GRAPPA in Eq. (11) is equivalent to the 
conventional GRAPPA, which mainly captures the linear 
relationship between the missing and acquired signals in 
absent of noise and approximations. The first and third parts 
of the Eq. (11) can be used to characterize other nonlinear 
effects in practice such that noise and approximation errors 
are suppressed.   

The performance of the proposed kernel GRAPPA 
method depends on the dimension of the RKHS, or the 
number of second-order terms N in Eq. (11). If the 
dimension is too low, prediction is inaccurate because the 
kernel space is not complex enough to accurately describe 

b  .               (7) 



the true relationship between the missing and acquired data, 
and thus the reconstructed image still suffers from large 
errors. On the other hand, if the dimension is too high, the 
model overfits the calibration data but poorly represents the 
missing data, thus leading to aliasing artifacts in 
reconstruction. Similar to conventional GAPPA where the 
number of blocks has to be optimized [8], the dimension of 
RKHS also needs to be chosen carefully to achieve a good 
reconstruction quality. As analyzed and demonstrated in our 
experiments, reconstruction result is generally good when N 
is 3-12 times of the number of the first-order terms. Within 
this range, the reconstruction is not sensitive to the changes 
in N. 
 

4. EXPERIMENTAL RESULTS 
 

The proposed method was tested on both phantom and in 
vivo data sets. All data sets were acquired in full and then 
manually undersampled to simulate the accelerated 
acquisition. The sum-of-squares (SoS) reconstruction from 
the fully sampled data of all channels was used as the 
reference image for comparison.  The reconstructions from 
reduced data using the conventional GRAPPA, Tikhonov 
regularized GRAPPA [4], GRAPPA with iterative 
reweighted least-squares (IRLS) [6], and the proposed 
kernel GRAPPA method were compared visually and also 
in terms of normalized mean-squared error (NMSE). In all 
methods, the number of blocks (size of b) takes 4 and the 
number of columns (size of h) takes 15 for the phantom data 
and 7 for the brain data. An outer reduction factor (ORF) of 
5 with 56 ACS lines was used for the 8-channel phantom 
data and an ORF of 4 with 48 ACS lines for the 4-channel 
brain data. For the proposed kernel GRAPPA method, N 
was chosen to be 4 and 7 times of the number of the first-
order terms for the phantom and brain data, respectively. 

Figure 1 shows the reconstructions of the phantom. It is 
seen that the conventional GRAPPA suffers from large 
noise at high accelerations. Tikhonov regularization and 
IRLS can both improve the signal-to-noise ratio (SNR) to 
some extent but at the cost of aliasing artifacts. The 
proposed kernel GRAPPA method suppresses most noise 
without introducing additional artifacts. 

Figure 2 shows the reconstruction results from a set of 
in vivo brain data. A small region is zoomed to show more 
details. It is seen that the reconstruction using the proposed 
method achieves a quality superior to all other methods. The 
proposed method effectively removes the spatial-varying 
noise in the conventional GRAPPA reconstruction without 
the artifacts in Tikhonov regularization and IRLS methods. 
Furthermore, the proposed method also preserves the 
resolution of the original image without blurring. 
Quantitative measure via NMSE also shows that the 
proposed method outperforms other methods. 
 

 
Fig.1 With (a) the SoS reconstruction of the phantom image as the 
reference, we compare (b) conventional GRAPPA, (c) Tikhonov 
regularization, (d) IRLS reconstruction, and (e) the proposed 
method when ORF = 5, ACS = 56. 

In the proposed method, the number of second-order 
terms N needs to be tuned to achieve optimal reconstruction 
quality. We study the effects of N in reconstruction quality 
by changing it from one time of the number of the first-
order terms to larger times. When the value of N is 
increasing, noise is gradually suppressed, but aliasing 
artifacts gradually appear. Quantitative measure via NMSE 
also illustrates that too small or too large N deteriorates 
reconstruction quality as shown in Fig. 3. There is an 
optimal range for the value of N at the bottom of the U 
shape where both noise and aliasing artifacts are suppressed. 
The rather flat bottom of the U shape indicates that the 
proposed method is insensitive to the choice of N within a 
certain range. Because the value of N directly affects the 
computational complexity, smaller N’s are preferred within 
this range. It is also worth noting that the performance is 
insensitive to the choice of second-order terms (e.g., random 
or fixed) as long as the same number of terms is used. The 
computation time of the proposed method is about 3-5 times 
of the conventional GRAPPA and Tikhonov-regularized 
GRAPPA, while IRLS is the most time consuming among 
all. Furthermore, Tikhonov regularization can also be easily 
incorporated into the proposed reconstruction method in 
high-dimensional RKHS. 

 
5. CONCLUSION 

 

In this paper, we propose a novel kernel-based k-space 
reconstruction algorithm for parallel MRI. The method 
maps the data onto a higher dimensional space through a 
nonlinear transformation such that the nonlinear model can 
characterize the relationship between the acquired and 
missing data more accurately. The experimental results 
demonstrate that the proposed method is superior to the 
conventional GRAPPA and other improved GRAPPA 
methods in suppressing both noise and artifacts. 



 

 

Fig.3 NMSE curves of the proposed method as a function of 
different N values for the brain data. 
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