
  

  

Abstract—The combination of Compressed Sensing (CS) and 
SENSitivity Encoding (SENSE) for improving MRI acquisition 
speed and robustness has recently drawn great attentions. 
However, in  the direct combination, the encoding matrix which 
represents the Fourier transform of channel-specific sensitivity 
modulation is not guaranteed to be a good CS matrix. In this 
paper, we propose a different approach that applies CS and 
SENSE sequentially. The method first uses CS to reconstruct a 
set of aliased images in each coil, and then applies the basic 
SENSE on these images to reconstruct the final image. The total 
reduction factor can achieve the product of the factors of each 
individual method. The experimental results show that overall 
performance of our proposed method is superior to the direct 
combination method with the same reduction factor.  
 
Index Terms-Compressed Sensing, SENSE, MRI 

I. INTRODUCTION 
arallel MRI improves imaging speed by reducing the 
number of samples simultaneous acquired from multiple 

channels. SENSitivity Encoding (SENSE) [1, 2] is one of the 
standard parallel MRI reconstruction methods. The basic 
SENSE generates a set of aliased images with reduced 
field-of-view (FOV) from the uniformly downsampled 
k-space data, and then the final image is reconstructed from 
the aliased images using the coil sensitivity information. 
Based on the generalized sampling theory [3], its maximum 
reduction factor should equal to the number of channels under 
ideal conditions. However, the conditions are rarely met in 
practice, so the reduction factor is usually far less than the 
number of channels. The large number of required samples 
beyond the theory limits the parallel MR imaging speed.  

Compressed Sensing (CS) [4, 5] is a new framework for 
data acquisition and signal recovery. It allows measuring 
sparse and compressible signals at a rate close to their 
intrinsic information rate rather than their Nyquist rate. These 
signals can be reconstructed exactly from very few incoherent 
measurements by a non-linear procedure [5, 6]. This feature is 
very desirable in MRI for significant reduction in the number 
of sampled data, because MRI obeys two key conditions of 
successful application of CS. The first is that most MR 
images have a sparse representation in a known transform 
domain (e.g., image domain or wavelet domain). The second 
is that MR acquisition is Fourier encoding, which can be 
design to be incoherent with the sparsifying transform 
domain by random sampling.   
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SparseMRI [7, 8] has successfully applied CS to MRI for 
reduced Cartesian sampling. Direct extension of the method 
to parallel MRI (SparseSENSE et al. [9-12]) has shown some 
success. These methods formulate image reconstruction from 
randomly sampled multi-channel data as the same 
constrained nonlinear convex program, except that the 
Fourier encoding is replaced by the sensitivity encoding. 
However, the incoherence between the sensitivity encoding 
and the sparse transformation cannot be guaranteed, which 
limits the maximum reduction factors.  

In this paper, we propose a different approach to apply CS 
to parallel imaging, named CS-SENSE. The method first uses 
SparseMRI to reconstruct a set of aliased images from 
randomly undersampled data in each coil, and then applies 
the basic SENSE on these images to reconstruct the final 
image. In this sequential reconstruction, the CS matrix in 
SparseMRI is Fourier encoding whose incoherence with the 
sparse transformations has been investigated [7] and 
successful reconstruction is guaranteed. Our experiment 
results show that CS-SENSE can achieve a reduction factor 
being the product of the factors achieved by SparseMRI and 
SENSE individually, and the image quality is superior to the 
direct methods.   

II. COMPRESSED SENSING AND SENSITIVITY ENCODING 

A. Parallel MRI and SENSitivity Encoding  
Parallel MRI [1, 2, 13] is a new technique to improve on 

conventional Fourier encoding for fast imaging. In parallel 
imaging, k-space data are acquired from multiple channels 
simultaneously such that they can be sampled with a rate 
lower than the Nyquist sampling rate. The imaging equation 
can be written in matrix form as  
                                     =Ef d                                          (1) 

where d is a concatenation of data  from all channels, and f  
the desired image to be reconstructed. The entries of the 
encoding matrix E are 
                            2

{ , }, ( )m ni k r
l m n l ne s rπ− ⋅=E                          (2) 

 where mk  denotes the m-th sampling position in k-space, 

nr the position of the n-th pixel, and ls the sensitivity profile 
of the l-th receiver channel.  The image can be reconstructed 
by the least-squares solution to Eq. (1). 

B.  Compressed Sensing in MRI 
The central problem in compressed sensing (CS) is the 

recovery of a signal n∈x  from its linear measurements  
m∈y : 

                                          y = Φx                                   (3) 
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where m is assumed to be much smaller than n. This 
underdetermined system of equations makes the recovery of 
the original vector x impossible without further assumption. 
However, the vectors x to be recovered usually have sparse 
representations under certain bases in MRI. Candès et al. [14] 
showed that under the condition that the encoding matrix Φ is 
incoherent with the sparse transformation Ψ, one can actually 
recover x from a sample y which is much smaller in size than 
x by solving a convex program 

                  minimize 
1

Ψx    s.t.  Φx = y                  (4) 
In conventional MRI, the acquired data is the Fourier 

encoding of the desired image. For most MR images, there 
exists a sparse representation in a known transform domain 
(i.e. image domain or wavelet domain). It has been shown that 
incoherence is satisfied when Φ is a random subset of the 
Fourier basis and Ψ is the canonical basis or the finer scales of 
a wavelet transform [15]. Thereby the application of CS has 
great potential for significant reduction of data samples in 
MRI.  

SparseMRI [7] has been proposed to apply CS to Cartesian 
MRI with the least modifications on the existing systems. 
Considering the random sampling of k-space in all 
dimensions is generally impractical, a practical sampling 
scheme was designed for conventional Fourier imaging. 
Specifically, the k-space is randomly undersampled on a 
Cartesian grid along the phase-encoding direction and fully 
sampled along the readout direction.  In addition, the level of 
incoherence was measured by the point spread function (PSF). 
In [7], both wavelet transform and total variation were used as 
the sparse representations. Taking noise into account, the 
image is reconstructed by 

          2
1 22 1

arg min{ TV( )}u λ λ− + +
x

b F f Wf f ,              (5)          

where b is the measured k-space data from scanner, uF  is the 
random subset of the rows of the Fourier encoding matrix, W 
is the wavelet transform matrix, and TV( )⋅  is total variation.  

Directly extending SpareseMRI to parallel imaging, some 
work [9] has replaced the Fourier encoding matrix in (5) with 
the sensitivity encoding matrix E. With the same random 
sampling pattern, the image is reconstructed by solving 

         2
1 22 1

arg min{ TV( )}λ λ− + +
f

d Ef Wf f .              (6) 

In this formulation, the incoherence between the encoding 
matrix E and sparse transformation matrix Ψ has not been 
validated theoretically. Therefore, the performance is not 
guaranteed.  

III. PROPOSED METHOD  
In Cartesian SENSE, the sensitivity encoding in Eq. (1) can 

be decomposed to two sequential linear operations. The first 
one is a number of sensitivity modulations,  
                                       A

Ω Ω=Cf f                                     (7) 
where C is the sensitivity modulation matrix, vector Ωf  the 
pixels of desired image f that are superimposed in the aliased 
image, and vector A

Ωf  the pixels at same position of the 

aliased images from all channels; the second one is Fourier 
transform of all pixels 
                                      A

l l=Ff d                                        (8) 
where F the Fourier operator, A

lf  the aliased image of the l-th 
coil with reduced FOV, ld the reduced k-space data from the 
l-th coil. Based on the fact that Eq. (8) is the same as the 
conventional Fourier encoding formulation, we can apply 
SparseMRI directly to the aliased image from each channel 
without compromising the incoherence condition. In our 
proposed CS-SENSE method, we randomly undersample the 
k-space of the aliased images with reduced FOV, which is 
represented as 

A
u l l=F f b .                                  (9) 

In generating the random sampling pattern, similar to [7], 
variable-density sampling schemes with denser sampling near 
the center of k-space are applied, taking into account the fact 
that the energy of MR images in concentrated in the central 
k-space[12]. The aliased image A

lf is then reconstructed by 

( ){ }2

1 22 1
arg min TV

A
l

A A A
l u l l lλ λ− + +

f
b F f Wf f ,   (10) 

which is solved numerically using nonlinear conjugate 
gradients [7]. With the aliased images, we can then generated 
the desired full FOV image f pixel by pixel using the least 
squares solution to Eq. (7) 

                       1( ) A−
Ω Ω= H Hf C C C f .                                 (11) 

Please note, For  CS-SENSE, the net reduction factor R is 
equal to the product of the reduction factor R1 in SparseMRI 
for aliased images and the reduction factor R2 in SENSE, i.e., 
R = R1 × R2. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experiments Settings 
The feasibility of the proposed method was validated on 

two datasets. A T1-weighted phantom scan was performed 
using a 2D spin echo sequence  on a 3T commercial scanner 
(GE Healthcare, Waukesha, WI ) equipped with an 8-channel 
torso  coil   ( TE/TR = 11/300 ms, 18cm FOV, 8 slices, 
256×256 matrix). The second is a set of in vivo brain data, 
which were acquired on a 3T commercial scanner (GE 
Healthcare, Waukesha, WI) with an 8-channel head coil 
(Invivo, Gainesville, FL). A healthy volunteer was scanned 
with a 2D T1-weighted spin echo protocol (axial plane, 
TE/TR = 11/700 ms, 22cm FOV, 10 slices, 256×256 matrix). 
Informed consent was obtained from the volunteer in 
accordance with the institutional review board policy. The 
sensitivity information of each coil was obtained by 
pre-scanning. 

All methods are implemented in MATLAB (Mathworks, 
Natick, MA). The sum-of-square (SoS) reconstructions from 
the fully sampled data of all channels are shown in Fig. 1 as 
the reference for comparison, where the left is the phantom 
image and the right is the brain image. Both the proposed 
CS-SENSE and the direct combination methods were used to 
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reconstruct the desired image with different reduction factors. 
All images are normalized and shown in the same scale. We 
label the method and reduction factor on the top-left and 
top-right corners of each reconstructed image, respectively.  

 

  
Fig. 1  The reference images denoted by “Ref” on the top-left  corner. 

B. Results and Discussion 
In the case of phantom data, the reduction factor takes R = 2 

× 2, 3 × 2, 4 × 2 and 6 × 2 for CS-SENSE, and R = 4, 6, 8 and 
12 for direct combination method. R2 is fixed to 2 in 
CS-SENSE to avoid noise amplification due to the 
ill-conditioning at large reduction factors in SENSE. Fig. 2 
shows the reconstructions from the scanned phantom data. 
The first and third rows show the reconstructed images of 
CS-SENSE method and direct combination method 
respectively. The second and fourth rows show the 
corresponding zoomed region containing the “comb” to 
reveal details.  

 

    

    

    

    
 
Fig. 2. The reconstructions (first and third rows) and the zoomed “comb” 
regions (second and fourth rows) from the scanned phantom data with 
reduction factor R=4, 6, 8 and 12 shown on the top-right corners. The 
proposed CS-SENSE is denoted as method “A” (top two rows) and the direct 
combination is denoted as method “B” (bottom two rows) on the top-left 
corners.  

We can see that for moderate reduction factor (R=4), the 
reconstructions using both methods are visually almost the 
same as the reference image. As the reduction factor becomes 
larger (R=6), the superior performance of the proposed 

method is more visible; the reconstructed image is less blurry 
with more details as seen in the zoomed “comb” region. For 
the reduction factor equal to the number of channels (R=8), 
the direct reconstruction has aliasing artifacts with most 
details lost. In comparison, the proposed CS-SENSE method 
has little artifacts and preserves much more details. When 
reduction factor is larger than the number of channels (R=12), 
the reconstructed image of CS-SENSE method shows 
obvious degradation because too few measurements were 
used in reconstructing aliased coil images but still preserves 
more details than the direct combination method. 

Fig. 3 shows the reconstructions and corresponding error 
images with different reduction factors for human brain data. 
For better visualization, the error images were amplified 1000 
times and then any values greater than 255 were truncated. 
We took reduction factors of R = 4, 6, and 8. Different 
combinations of  R1 =2, 3 and 4, R2 =2 and R1=2, R2 =4 were 
used. 

  

    

    

    

    
 
Fig. 3. The reconstructions (first and third rows) and the corresponding error 
images (second and fourth rows) from the human brain data with reduction 
factor R=4, 6 and 8 shown on the top-right corners. The proposed CS-SENSE 
is denoted as method “A” (top two rows) and the direct combination is 
denoted as method “B” (bottom two rows) on the top-left corners. The error 
images were amplified 1000 times and truncated at 255.  
 

Similarly, for moderate reduction factor (R=4), both 
methods can reconstruct images visually almost the same as 
the reference image. The CS-SENSE has slightly higher noise 
level at some locations, and the direct reconstruction has 
more aliasing artifacts near the skull. As the reduction factor 
increases to 6, the direct reconstruction has more aliasing 
artifacts, and the image is more blurry and loses more details. 
For high reduction factor equal to the number of channels 
(R=8), the proposed method with R2=4 for SENSE is much 
noisier due to the ill-conditioning problem, but preserves 
much more details, while the direct reconstruction has serious 
aliasing artifacts with most details lost. The proposed method 
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with R2=2 for SENSE is visibly superior to the above two 
reconstructions with a good compromise between noise, 
aliasing artifacts, and blurriness. The results suggest that a 
larger R1 will result in more aliasing artifacts and a larger R2 
will result in more noise amplification. Depending on the 
noise level and the condition of SENSE reconstruction, this 
observation could be a guideline for selection of the reduction 
factors R1 and R2.   

 
Table 1. Comparison of NMSEs 

NMSE 
(x10-002) R=4 R=6 R=8 

R=2x4 R=4x2 
A 0.25 0.83 1.04 1.17 
B 0.59 1.06 1.25 

 
The normalized mean square error (NMSE) provides a 

combined metric for both image noise and artifacts. The 
NMSE between the reference and reconstructed images for 
human brain data were also computed to evaluate the 
reconstruction performance, given in Table 1. In terms of 
NMSE, the proposed CS-SENSE method is superior to the 
direct combination method with the same reduction factor. 
This may be due to the improved incoherence between the 
encoding matrix and the sparse representation matrix in 
CS-SENSE.  

The current implementation of CS-SENSE method needs 
longer time than the direct combination method. This is due to 
the repetition in solving Eq. (10) for all channels and the extra 
computation of Eq. (11) in CS-SENSE method, while the 
direct combination method only solves Eq. (6) once. 
However, the running time could be reduced by parallel 
solving Eq. (10) for all channels using multiprocessors or 
dedicated hardware systems, because the k-space data are 
acquired from multiple channels simultaneously in pMRI and 
reconstruction of the aliased image for each channel is 
independent of each other. In this way, compared to 
SparseSENSE, CS-SENSE only needs an extra computation 
for SENSE, which is non-iterative and efficient [2].  

V. CONCLUSION 
In this paper, a method for further accelerating parallel 

imaging using CS is proposed. This method uses CS in 
replace of Fourier transform to reconstruct the aliased images 
with reduced FOV for basic SENSE reconstruction. The 
experimental results demonstrate the proposed method is able 
to accelerate conventional MRI by a large factor being the 
product of the factors achieve by SparseMRI and SENSE 
individually.  
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