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ABSTRACT  

In compressed sensing MRI, it is very important to design sampling pattern for random sampling. For example, SAKE 
(simultaneous auto-calibrating and k-space estimation) is a parallel MRI reconstruction method using random 
undersampling. It formulates image reconstruction as a structured low-rank matrix completion problem. Variable density 
(VD) Poisson discs are typically adopted for 2D random sampling. The basic concept of Poisson disc generation is to 
guarantee samples are neither too close to nor too far away from each other. However, it is difficult to meet such a 
condition especially in the high density region. Therefore the sampling becomes inefficient. In this paper, we present an 
improved random sampling pattern for SAKE reconstruction. The pattern is generated based on a conflict cost with a 
probability model. The conflict cost measures how many dense samples already assigned are around a target location, 
while the probability model adopts the generalized Gaussian distribution which includes uniform and Gaussian-like 
distributions as special cases. Our method preferentially assigns a sample to a k-space location with the least conflict cost 
on the circle of the highest probability. To evaluate the effectiveness of the proposed random pattern, we compare the 
performance of SAKEs using both VD Poisson discs and the proposed pattern.  Experimental results for brain data show 
that the proposed pattern yields lower normalized mean square error (NMSE) than VD Poisson discs.  
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1. INTRODUCTION  
Compressed sensing is introduced to enable exact recovery of sparse signals from data sampled below what the 
Shannon-Nyquist sampling theorem1 requires. Compressed sensing becomes very useful in MRI2 because it allows the 
image to be acquired with much faster speed. For success of compressed sensing, the sampling needs to satisfy the 
incoherent requirement. Random sampling of the k-space (data domain) has been adopted in Sparse MRI3 and many 
subsequent studies. It allows the aliasing artifacts to be noise-like such that they can be effectively removed using some 
nonlinear reconstruction algorithms. Many different random sampling patterns have been introduced such as power 
density function3, Poisson disk4-5, and variable density (VD) Poisson disk sampling6 in order to make the sampling more 
effectively and satisfy the incoherent requirement for compressed sensing. 

The challenge in sampling pattern design is how to sample most efficiently. In MRI, we usually take advantage of the 
fact that most important information is around the low frequencies, especially zero frequency or direct current (DC), 
when we sample the Fourier domain (called k-space in MRI) of natural images. Therefore most random sampling 
methods consider full sampling in the center part and random sampling in the outer region.  

Recently, Poisson disc sampling pattern or its advanced versions, VD Poisson sampling patterns have been used 
extensively. Poisson disc sampling pattern requires any two points to be separated by at least a minimum distance7. 
However, in the case of reduction factor of 2 or 3 which is typically used to obtain high quality reconstructions, it is 
difficult for all samples to satisfy the minimum distance requirement. This is because Poisson disc method usually uses 
dart throwing6 to generate the random pattern and the pattern can be arbitrary. Also it is usually computationally 
expensive to generate a Poisson disc pattern, which can be an issue for real implementation or experiments8. 

In this work, we propose a new random sampling pattern using a probability model and cost function. In order to 
produce a desired random sampling pattern, we will first allocate samples to a set with the same probability using the 
probability function of a generalized Gaussian shape. We next will use a cost function to assign samples to points of the 
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least cost so as to make the sampling pattern more incoherent. Then we reconstruct a brain image using SAKE 
(simultaneous auto-calibrating and k-space estimation)9 with the proposed sampling pattern. We finally compare the 
performance of our random sampling mask with that of VD Poisson disk. 

 

2. METHODS  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Flow chart of the reconstruction process 

 
 

Figure 1 shows the whole process of the proposed reconstruction. We first generate a random sampling mask. Then 
we use the mask to randomly sample the k-space and apply SAKE to the sampled data to get the reconstruction image. 
The proposed method is explained in section 2.1 Probability Model, 2.2 Conflict Cost and section 2.2 Sample Selection 
Algorithm. The new method exploits a generalized Gaussian probability including a wide range of distributions from a 
uniform one to a Gaussian-like one centralized in a center frequency.  

 

2.1 Probability Model  

In order to control the distribution of sampling locations, one needs a probability model. Let ݌(ݎԦ) be the probability of 
assigning a sample to a spatial point ݎԦ where ݎԦ = ,௫ݎ]  becomes the success probability of a Bernoulli (Ԧݎ)݌ ௬]. Thenݎ
random process. If ݌(ݎԦ) is a constant with regard to ݎԦ, then it shows a uniform distribution as in Poisson disks. As a good 
probability model, we choose an exponential function which is bounded in [0, 1] while the power density function3, 
which is used in some conventional random sampling for compressed sensing, does not satisfy the bounded property. 
Introducing a shape parameter into the function as in a generalized Gaussian probability density function (pdf)10, we can 
control how much concentrated samples are around DC. Since DC and near-DC Fourier components contain meaningful 
information more than other regions, it is important to sample densely in those regions to produce good SNR. 

The generalized Gaussian probability model of sample allocation using a shape parameter is formulated as ݌(ݎԦ) = exp ቊ− ோߤ1 ቆ‖ݎԦ − ‖Ԧ଴ݎ‖‖Ԧ଴ݎ ቇ஑ቋ																																																																											(1) 
where ݎԦ଴ denotes a center point and ߙ the parameter controlling the probability shape. The parameter ߤோ depends on the 
reduction factor ܴ, which satisfies the following constraint: ෍݌(ݎԦ)௥Ԧ∈ூ = ܴ|ܫ| 	,																																																																																											(2) 
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where I stands for the set of all locations in the whole k-space and |ܫ| the size of ܫ. Also, Eq. (2) is equivalent to the total 
number of the samples. Given an ܴ, the parameter ߤோ is determined based on (2) not explicitly but by numerical iteration 
such as bisection method. The number of samples is an integer that is not exactly the same every time, but we can get a 
number close to the reduction factor. We will talk about this more on section 2.3. 

Grouping all points into sets of points of the same probabilities, we rewrite (2) into the following: ෍ ෍ ௥Ԧ∈ௌ೙௡(Ԧݎ)݌ = ܴ|ܫ| ,																																																																																							(3) 
where ܵ௡, n=1,2, …, represents the set of all points of the same probability. We now determine the number of samples to 
be allocated to the points of the same probability as 

௡ܰ = ෍ ௥Ԧ∈ௌ೙(Ԧݎ)݌ .																																																																																							(4) 
 

2.2 Conflict Cost  

Considering the incoherence requirement of compressed sensing, assigning samples purely randomly according to the 
probability model may not meet the incoherence requirements. To address the issue, we introduce conflict cost for each 
sample allocation in order to distribute samples evenly. We define the conflict cost of a point ݎԦ to a sample ݏԦ as ∆ܿ(ݎԦ; (Ԧݏ = ݁(ିఊ‖௥Ԧି௦Ԧ‖)				for		ݎԦ ∈  (5)																																																																	,(Ԧݏ)ܤ
where ܤ(ݏԦ) denotes the set of neighbor points within a distance ݀ around ݏԦ and ߛ the exponential slope parameter. The 
slope parameter should be larger than 0 because farther neighbor samples have to contribute less to the cost. Therefore, 
the total conflict cost of a point ݎԦ is obtained by summing the conflict costs between the point ݎԦ and all its neighbor 
samples. 

 

2.3 Sample Allocation Algorithm 

Let M be a sampling matrix, and initialize ܯ(ݎԦ) = 0 for ݎԦ ∈ ܫ . Whenever a sample is allocated to a point ݎԦ , the 
corresponding mask value becomes ܯ(ݎԦ) = 1. 

Next are the steps for the sample allocation algorithm based on the probability model and conflict cost. 
Step 1: Initialize a sampling mask and a conflict cost array as ܯ(ݎԦ) = 0 and ܿ(ݎԦ) = 0 for  ݎԦ ∈  .ܫ
Step 2: Compute ݌(ݎԦ) for ݎԦ ∈  .ோ according to (1) and (2)ߤ and the parameter ܫ
Step 3: Group all points into sets ܵ௡ of points with the same probabilities, ݊ = 1,… , ௚ܰ. 
Step 4: Do the following operations for the set ܵே೒ of the highest probability to the set ଵܵ of the lowest probability.  

(1) Compute the number of samples ௡ܰ to be allocated to ܵ௡ according to (4). 
(2) Do the following operations for ݉ = 1 to ݉ = ௡ܰ. 
    - Sort the conflict costs of all points ݎԦ in ܵ௡. 
    - Find the points of minimum conflict cost. 
    - If there are multiple minimum points, then select a point randomly and let it be ݏԦ. 
    - Set ܯ(ݏԦ) = 1		and		ܿ(ݏԦ) = ∞. 
    - Set ܿ(ݎԦ) ← (Ԧݎ)ܿ + ;Ԧݎ)ܿ∆ Ԧݎ		for			Ԧ)ݏ ∈ ;Ԧݎ)ܿ∆ where ,(Ԧݏ)ܤ  .Ԧ) is given in (5)ݏ

The reason why we set the conflict cost of ݏԦ to be infinity is that the same point should not be selected as a sample 
point again in the following steps. 

For more practical implementation, we need to round ௡ܰ  in (4) into an integer because the number of samples 
should be an integer. However, excess or shortage in sum of probabilities caused by the integer rounding should be 
compensated in the next iteration. Especially, in case of ௡ܰ= 0 after rounding, we have to do ܵ௡ାଵ ← ܵ௡ ∪ ܵ௡ାଵ. Next are 
the steps for the image reconstruction algorithm. 
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2.4 Image reconstruction 

We use SAKE as an image reconstruction. SAKE is one of the parallel imaging reconstruction algorithms using low rank 
completion. Next is a brief review about SAKE. 

Unlike GRAPPA11, one of the well-known parallel imaging techniques, which needs ACS (auto calibration signal) 
lines to reconstruct images from undersampled multi-channel data, SAKE is an algorithm to reconstruct images from 
randomly undersampled data without calibration data. SAKE first connects all the coil data in series and the connected 
data are reformulated as the shape of the Hankel matrix used for Cadzow’s signal enhancement. As a result, the 
reconstruction becomes a low rank matrix completion problem in k-space. The solution is obtained by singular value 
thresholding, especially hard-thresholding. The SAKE reconstruction is formulated as follows: Minimize		‖ܦx − y‖ଶ																																																																																			(6) 

subject to rank(ܣ) = ݇, x =  (ܣ)ାܪ
where D denotes the sampling operation related to the sampling matrix M mentioned in section 2.3, x the desired image, y the acquired data, A the low-rank data matrix and ܪା the pseudo-inverse operator. 

 

3. RESULTS  

 
In order to evaluate the effectiveness of the proposed random masks, we compare the SAKE reconstructions using VD 
Poisson discs6 and the proposed random masks. The VD Poisson disk is generated from a Poisson disk using ߤ-law12. 
Assuming samples are in the area of [−1,1] × [−1,1], each sample location is converted using ݎᇱ = 	sgn(ݎ)(1 − 1)ܨ| − ;|ݎ|  (7)																																																																												(|(ߤ
where ݎ and ݎ′  denote the radius from the original sample location and the new location, respectively. The function ܨ(∙	;  We generate Poisson disks using the Poisson disk generation code from the .ߤ law of parameter-ߤ means the  (ߤ
website http://www.cs.virginia.edu/~gfx/pubs/antimony/13. For fair comparison, we also used three masks provided by 
one of the authors of SAKE9, called Shin masks here. Figure 2 shows Shin and ߤ-law masks, where the parameter ߤ  is 
chosen as 0.4=ߤ(R-1). The ߤ-law patterns are shown to be very close to the Shin masks. We will use the VD Poisson 
disk with ߤ-law to compare with our proposed method for SAKE reconstruction. In the following experiments, we 
generate our masks and ߤ-law masks randomly fifty times at each reduction factor R to investigate the averaged behavior 
of the masks. Because of the way that the VD Poisson masks are generated, it is hard to get the exact reduction factor we 
want, while our masks show exact reduction factors. We place a fully sampled area called core in the center of all the 
masks and choose the circle of radius 3. 

In (5), the slope parameter ߛ is set to be ln4 and the maximum neighbor distance d=1ڿ +  The MRI data first used .ۀܴ
for test is the vivo axial brain data scanned on a 1.5T MRI scanner (GE, Waukesha, Wisconsin, USA) using an eight-
channel receive-only head coil with data size 200 × 200 9. The second scanned dataset was an axial brain image 
acquired on a GE 3T scanner (GE Healthcare, Waukesha, WI) using an 8-channel head coil with data size 256 × 256 
from http://www.acsu.buffalo.edu/~jlv27/14. 

Figure 3 shows the normalized mean square error (NMSE) of SAKE using the proposed mask with R = 3.0 according 
to the shape parameter ߙ. The number of SAKE iterations is set to 15 for ߙ > 0.5, and to 100, 45, and 30 for ߙ =0, 0.2, 0.4, respectively. In the figure, the NMSE of ߙ = 1.0 is shown to be minimum and other shape parameters yield 
higher NMSEs. We can see that NMSE of ߙ = 1.0 is somewhat less than that of ߙ = 2.0 which indicates Gaussian 
function. Figure 4 shows the masks according to various shape parameters ߙ at R=3. The mask of ߙ = 0 is close to 
uniform random mask and ߙ = 2.0 shows the Gaussian mask. We see that one can easily control the concentration of 
samples around DC in the proposed mask by varying the shape parameter. The magnification of center parts of the masks 
is shown in figure 5. We can see that samples in the center part of our mask are more uniformly distributed and 
especially along circles than those of VD Poisson disks by ߤ-law and Shin.  
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The effect of conflict cost for the proposed generalized Gaussian (GG) mask is shown in Figure 6 as a function of the 
reduction factor R. Figure 6(a) shows the NMSE comparison of SAKE using the proposed mask with and without 
conflict cost. We can clearly see that our method with conflict cost has less noise than that without. Figure 6(b) shows 
the maximum correlation coefficients (MCC) between pixels and their eight nearest neighbors for reconstruction error 
images. Since the ideal reconstruction has noise-like reconstruction errors, we can say that the smaller MCC is, the more 
incoherent the sampling mask is15. 

The normalized mean square errors (NMSEs) of various types of masks applied to SAKE according to R=3.0 are 
plotted in figure 7(a). The NMSEs curve for all method show the mean curve with the minimum and maximum for fifty 
masks. We see in the figure that the proposed random mask shows the best performance and least deviations all over the 
reduction factors. Figure 7(b) shows that the MCCs of our proposed masks are less than half of those of VD Poisson disk 
all over the reduction factors. The correlation coefficients for our proposed method are also shown to be less varied than 
those of VD Poisson disk. It suggests that our mask is more incoherent than the VD Poisson masks. 

The experiments on the brain data9 are shown in figure 8. Our method using the proposed masks pattern reduces the 
reconstruction errors compared to the original method using the VD Poisson disks. Figure 9 shows the results from the 
second brain data. The NMSE using our sampling mask is below the mask used in the original SAKE paper. The 
reconstructed images of the brain using our method are more accurate than those using the VD Poisson disk. 

 

4. CONCLUSION 
 

We have proposed a new method to generate VD random sampling. Our masks have the following advantages over VD 
Poisson discs: Our method can always generate masks with a constant reduction factor, which means it is easy to control 
the number of samples with a parameter. Furthermore, our method is conceptually easy to implement using probability 
model and cost function satisfying the incoherence requirement. In addition, our proposed masks yield better image 
quality and lower NMSEs over VD Poisson disks. Future work will apply our proposed method to 3D MRI 
reconstruction or reconstruction of dynamic MR images in k-t domain. 

 

 
 

Figure 2. Shin and ߤ-law masks according to various reduction factor R. 
 

Shin R=2.6 R=3.1 R=3.6

μ-law R=2.5 R=3.0 R=3.5
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(a) (b) 

Figure 6. Effect of conflict cost.  Comparison of SAKE reconstruction: (a) NMSEs and (b) maximum correlations 
using the proposed generalized Gaussian (GG) masks with and without conflict cost as a function of the reduction 
factor R. 

 
 

 

(a) (b) 

Figure 7. Comparison of SAKE reconstruction: (a) NMSEs and (b) maximum correlations using VD Poisson disk 
sampling of Shin, ߤ-law, and the proposed GG masks as a function of the reduction factor R. 
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Figure 8.   For the first dataset at R=3, (a) sampling mask (top), reference and reconstructions (middle), and the 
corresponding error images (bottom) , (b)  reconstructions in region of interest.
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(a) 

 

(b) 

Figure 9.  For the second dataset at R=3, (a) sampling mask (top), reference and reconstructions (middle), and the 
corresponding error images (bottom),  (b) reconstructions in region of interest. 
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