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Both parallel MRI and compressed sensing (CS) are emerging
techniques to accelerate conventional MRI by reducing the
number of acquired data. The combination of parallel MRI and
CS for further acceleration is of great interest. In this paper, we
propose a novel method to combine sensitivity encoding
(SENSE), one of the standard methods for parallel MRI, and
compressed sensing for rapid MR imaging (SparseMRI), a re-
cently proposed method for applying CS in MR imaging with
Cartesian trajectories. The proposed method, named CS-
SENSE, sequentially reconstructs a set of aliased reduced-
field-of-view images in each channel using SparseMRI and then
reconstructs the final image from the aliased images using
Cartesian SENSE. The results from simulations and phantom
and in vivo experiments demonstrate that CS-SENSE can
achieve a reduction factor higher than those achieved by
SparseMRI and SENSE individually and outperform the existing
method that combines parallel MRI and CS. Magn Reson Med
62:1574–1584, 2009. © 2009 Wiley-Liss, Inc.
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MRI speed is usually limited by the large number of sam-
ples needed along the phase-encoding direction. In con-
ventional MRI using Fourier encoding, the required num-
ber of samples is determined by the field of view (FOV)
and the resolution of the image based on the Shannon
sampling theory. To accelerate conventional MRI, both
parallel MRI (pMRI) and compressed sensing MRI (CS-
MRI) are advanced techniques to reduce the number of
acquired data. In pMRI, due to the availability of mul-
tichannel coils, the MR images can be reconstructed from
multichannel k-space data sampled below the Nyquist
sampling rate. Standard reconstruction methods include
SENSE (1), simultaneous acquisition of spatial harmonics
(SMASH) (2), generalized autocalibrating partially parallel
acquisitions (GRAPPA) (3), etc. Theoretically, the maxi-
mum reduction factor can be up to the number of channels
under ideal conditions. However, this maximum usually
cannot be achieved due to practical limitations such as
noise and imperfect coil geometry. CS-MRI is based on CS
theory (4-9), a new framework for data sampling and signal
recovery. CS-MRI takes advantage of the fact that MRI
meets two conditions of CS. One is the MR images are
sparse or compressible after certain transformations. The
other is the Fourier encoding is incoherent with these

sparse transformations. Therefore, the MR images can be
reconstructed using a nonlinear convex program from data
sampled at a rate close to their intrinsic information rate,
which is well below the Nyquist rate. CS-MRI methods
include SparseMRI for Cartesian trajectories (10) and
methods for other trajectories (11,12).

Because pMRI and CS-MRI reduce sampling based on
different ancillary information (channel sensitivities for
pMRI and image sparseness for CS), it is desirable to com-
bine pMRI and CS for further reduction. SparseSENSE and
its equivalence (13-16) have been proposed as a straight-
forward combination method. This method reconstructs
images from the multichannel data, using the same non-
linear convex program as that employed in SparseMRI,
except that the Fourier encoding is replaced by the sensi-
tivity encoding (comprising Fourier encoding and sensi-
tivity weighting). However, the incoherence between the
sensitivity encoding matrix and any sparsifying transform,
which is one of prerequisites of CS, has not been explored
theoretically in SparseSENSE. It has been stated (15), but
without mathematical proof, that the sensitivity encoding
matrix is not as incoherent with the standard sparsifying
transform (e.g., wavelet) as the Fourier matrix. This is
partially because the sensitivity encoding matrix is not an
orthonormal basis primarily considered in the CS theory
and can vary from scan to scan due to its dependence on
channel sensitivities. In this paper, we propose a novel
method named CS-SENSE, which has been partially pre-
sented (17), to combine CS-MRI and pMRI for the Carte-
sian case with guaranteed incoherence. CS-SENSE sequen-
tially carries out CS reconstruction (using SparseMRI) for
the aliased image of each channel and Cartesian SENSE for
the final unfolded image. Because the encoding matrix in
the first CS reconstruction is the Fourier matrix, as in
conventional MR imaging, incoherence with identity ma-
trix or the fine scales of a wavelet transform has been
proven (6). Our simulation and experimental results show
that CS-SENSE can achieve a reduction factor higher than
those achieved by SparseMRI and SENSE individually and
can outperform SparseSENSE in terms of resolution.

THEORY

Summary of SENSE

SENSE is one of the standard reconstruction methods for
parallel imaging. For arbitrary trajectories, the general
SENSE equation is (18)

Ef � d [1]

where d is the vector formed from the k-space data ac-
quired in all channels, f is the unknown vector defining
the desired full FOV image to be computed, both with a
lexicographical row ordering of the two-dimensional array
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components, and E is the sensitivity encoding matrix
whose entries are

E�l,m�,n � e�i2��kxx�kyy�Sl�x,y� [2]

where kx and ky denote the k-space sampling position for
the mth element in d, (x, y) denotes the pixel position for
the nth element in f, and sl is the sensitivity profile of the lth

receiver channel.

Summary of CS

CS (4-9) is a new mathematical framework for signal sam-
pling and recovery. It allows faithful recovery of a trans-
form-sparse signal x of size n from its linear measurements
y � �x whose size m is much less than n, by solving a
convex program

min
x

��x�1 s.t. �x � y [3]

where � is the CS encoding matrix, 	 a sparsifying trans-
form, and �x�1 the �1 norm, defined as the sum of the
complex modulus �x�1 � �i�i�. To achieve faithful recovery
from very few measurements, some sufficient conditions
need to be satisfied (6,7): (a) the signal is sparse after a
known sparsifying transform 	, (b) the encoding matrix �
is incoherent with the sparsifying transform 	, and (c) the
measurements exceed the minimum requirement, which is
usually two to five times the sparsity of �x.

Although these conditions are not exactly satisfied in
practical sampling and reconstruction problems, the signal
can still be recovered with good fidelity under relaxed
conditions when sufficient incoherent measurements are
acquired. For example, the signals may not be strictly
sparse but only compressible instead (i.e., sparse after
thresholding the transform coefficients), and the measure-
ments y may contain some noise e whose �2 norm is
bounded by a constant 
, i.e.,

y � �x � e �e�2 � ε [4]

Under this circumstance, the signal can be recovered by

x* � arg min
x

��x�1 s.t.��x�y�2 � ε [5]

and the reconstruction error is proved to be bounded by (8)

�x* � x�2 � c1

�x � xS�1

�S
� c2ε [6]

which is proportional to the noise level ε and the approx-
imation error between the signal x and its closest S-sparse
signal xS. The c1 and c2 are the constants whose values are
smaller with a higher level of incoherence and a larger
number of measurements (8). In summary, under practical
conditions, the CS reconstruction quality depends on the
incoherence, the number of measurements, measurement
noise, and compressibility of the image.

Summary of SparseMRI and SparseSENSE

SparseMRI (10) is a practical technique to apply CS to
conventional Cartesian MRI. Conventional Fourier imag-
ing meets the relaxed CS conditions: most MR images are
compressible with identity transform or wavelet transform
and the Fourier encoding is sufficiently incoherent with
these sparsifying transforms (19). The SparseMRI method
fully samples the k-space along the readout direction and
randomly undersamples the k-space along the phase-en-
coding direction, using a variable-density sampling
scheme with denser sampling near the center of the k-
space. The randomly generated sampling pattern with the
lowest peak transform point spread function (10) is chosen
for data acquisition. The final image is reconstructed from
the undersampled k-space data by solving a constrained
convex optimization problem (10):

min
f

(��f �1 � ��f �TV) s.t.�Fuf � du�2 � ε [7]

where F and d are the Fourier encoding matrix and the
corresponding vector formed from the fully sampled k-
space data, respectively, the subscript u denotes a random
subset of the rows, and �f � is the total variation, defined as
�f �TV � ���
xf �2 � �
yf �2 with 
x and 
y being the finite
difference along x and y respectively, and � � � being the
complex modulus (20). This formulation requires the im-
age to be sparse in both the transform domain defined by 	
and the finite difference domain, whose tradeoff is con-
trolled by the constant �. The constrained minimization in
Eq. 7 is usually achieved by solving an equivalent uncon-
strained regularization problem:

arg min
f

��Fuf � du�2
2 � �(��f �1 � ��f �TV)} [8]

where � is the regularization parameter to be selected to
make the solution of Eq. 8 the same as that of Eq. 7 (10).

SparseSENSE or its equivalence (13-16) are a direct ex-
tension of SparseMRI to apply CS to SENSE. It employs the
same random sampling scheme as that of SparseMRI and
solves a similar constrained convex optimization problem:

min
f

(��f �1 � ��f �TV) s.t.�Ef � d�2 � ε [9]

The difference lies in that the Fourier encoding matrix
in SparseMRI is replaced by the sensitivity encoding ma-
trix E which consists of both Fourier encoding and sensi-
tivity weighting. The major issue with this method is that
the incoherence between the encoding matrix E and the
sparsifying basis 	 such as the identity or wavelet has not
yet been explored. It is still well accepted that E will be
less incoherent with the sparsifying basis than the Fourier
encoding matrix (15).

Proposed CS-SENSE

When the sampling is on a uniform Cartesian grid, the
sensitivity encoding in Eq. 1 can be decomposed into two
sequential linear operations (21). The first one is the sen-
sitivity modulation C̃, where the original full FOV image f,
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weighted by different sensitivities from all channels, is
folded to generate a set of aliased images with reduced
FOV fA, i.e.,

C̃f � fA [10]

The second one is Fourier transform of each aliased
image

Ffl
A � dl [11]

where fl
A is the aliased image of the lth channel with re-

duced FOV, dl the reduced k-space data from the lth chan-
nel. The image vector fA is a stack of vectors fl

A from all
channels. The basic Cartesian SENSE reconstruction (1)
takes advantage of the above two-step formulation. It ini-
tially Fourier transforms the acquired data to obtain a set
of aliased images and then unfolds these images by solving
the linear equation of Eq. 10.

The proposed CS-SENSE method also takes advantage of
the decoupled formulation and uses a similar framework,
except that SparseMRI replaces the Fourier transform pro-
cedure. This replacement is based on the fact that the
aliased reduced FOV images fl

A are still sparse under the
same transform, if the original full FOV image is sparse
under a certain transform. In data acquisition, the same
random sampling scheme as that for SparseMRI is em-
ployed to further undersample the data along the phase-
encoding direction that is already undersampled for the
reduced FOV. One out of 20 randomly generated sampling
patterns with the lowest peak transform point spread func-
tion is chosen to acquire the data and can be reused for
other image acquisitions when the sparsifying transform
and the image size stay the same. With this random un-
dersampling, Eq. 11 becomes underdetermined and is rep-
resented as

Fufl
A � du,l [12]

where du,l is the undersampled k-space data from the lth

channel and is a subset of dl. In reconstruction, the aliased
image fl

A of each channel can be solved by

min
f l

A

���fl
A�1 � ��fl

A�TV� s.t.�Fufl
A � du,l�2 � ε [13]

Similar to Lustig et al. (10), due to its computational
complexity, the above constrained minimization is solved
by its equivalence instead

arg min
fl
A

��Fufl
A � du,l�2

2 � ����fl
A�1 � ��fl

A�TV)} [14]

where the parameter � is determined by solving Eq. 14
with different values of � and choosing one so that
�Fufl

A � du,l�2 � ε. With the aliased images from all
channels, the desired full FOV image f can be recon-
structed pixel by pixel using the image domain Carte-
sian SENSE method. No regularization is used here in
the SENSE step, though it can be easily incorporated
later. It is easy to see that the net reduction factor R of

CS-SENSE is equal to the product of the reduction factor
R1 in SparseMRI and the reduction factor R2 in Cartesian
SENSE, i.e., R � R1 � R2.

The proposed CS-SENSE method is different from
SparseSENSE in several aspects. First, CS-SENSE ran-
domly undersamples the k-space which is already reduced
for the aliased images, while SparseSENSE randomly un-
dersamples the full k-space. Second, CS-SENSE sequen-
tially applies CS and SENSE, where the nonlinear CS step
solves a set of underdetermined equations. In contrast,
SparseSENSE directly solves an overdetermined equation
using the nonlinear CS algorithm when the reduction fac-
tor is less than the number of channels. Since the CS
theory primarily considers underdetermined equations,
SparseSENSE is better regarded as a regularized SENSE
with random trajectories. Unlike the CS theory where the
sparse constraint helps to pick the best one among an
infinite number of solutions to an underdetermined equa-
tion, the �1 regularization in SparseSENSE never gives a
solution satisfying the overdetermined data consistency
exactly; there always exists a tradeoff between the data
consistency and the sparsity. Finally, and most important,
the incoherence condition required in CS is guaranteed in
CS-SENSE when the image is sparse or compressible in
image domain or in wavelet domain, but is not necessarily
satisfied in SparseSENSE. CS-SENSE uses the same Fou-
rier encoding matrix as SparseMRI does, whose incoher-
ence with the identity and wavelet transforms has been
proven (4-6). In contrast, the encoding matrix in Sparse-
SENSE depends on the coil sensitivities and is not an
orthonormal basis primarily considered in the CS theory.
It is very difficult to verify the incoherence between the
sensitivity encoding and the sparse transformation basis
such as wavelet since it can vary from scan to scan.

MATERIALS AND METHODS

The proposed CS-SENSE method was evaluated on four
datasets: simulated data (with different level of noise),
scanned phantom data, and T1-weighted human brain data
(on axial and sagittal planes). All reconstruction methods
were implemented in MATLAB (MathWorks, Natick, MA)
on a workstation (Hewlett-Packard, Palo Alto, CA) with a
2.33-GHz central processing unit and 2-GB random-access
memory. Nonlinear conjugate gradient (10) was used to
solve Eq. 14. The sum-of-square (SoS) reconstruction from
the fully sampled data was used as the reference image for
comparison. To quantitatively evaluate the performance of
the proposed method, the normalized mean square error
(NMSE) (22) between the reconstructed and the reference
images was calculated. It provides a combined metric for
image noise, artifacts, and loss of resolution. All recon-
structed images for the same dataset are shown individu-
ally on the same scale for visual evaluations of image
noise, artifacts, and resolution.

Simulation

A 256 � 256 numerical phantom was constructed and
used as the original image. The phantom is piecewise
smooth and is thus strictly sparse (i.e., most coefficients
are exactly zero) in finite difference. The objective of this
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simulation is to demonstrate that exact reconstruction of a
strictly sparse image is possible using CS-SENSE when
there are sufficient noise-free measurements. In addition,
the simulation is to show how the reconstruction quality is
affected with increasing undersampling and noise. The
simulated k-space data were generated by Fourier trans-
forming the sensitivity-weighted images and undersam-
pling according to the random sampling pattern. The sen-
sitivities of an eight-channel coil were simulated using the
Biot-Savart law (23). Different levels of Gaussian noise
were added to the simulated k-space data to investigate the
effect of noise. The average signal-to-noise ratios (SNR)
were infinity (no noise), 30, 15, and 7.5. The reduction
factors take R � 2 � 2, 3 � 2, and 4 � 2, where the first
factor R1 is the reduction factor of SparseMRI and R2 is the
reduction factor of SENSE. The combination of R1 and R2

used here is chosen to give the best reconstruction among
several possible combinations for the same reduction fac-
tor. In reconstruction, only the total variation penalty was
used to enforce the sparsity in finite difference. All results
include reconstructions from SparseSENSE for compari-
son. The normalized NMSEs were calculated as a function
of the reduction factor and SNR.

Phantom Experiment

The objective of the phantom experiment is to demonstrate
that CS-SENSE can generate high-quality reconstructions
from highly reduced, actually scanned data when the im-
age well satisfies the sparsity requirement. A phantom that
consists of well-defined, piecewise-smooth structures was
used. A T1-weighted scan was performed on the phantom
using a two-dimensional spin echo sequence on a 3T com-
mercial scanner (GE Healthcare, Waukesha, WI) with an
eight-channel torso coil (echo time/pulse repetition time �
11/300 ms, 18-cm FOV, eight slices, 256 � 256 matrix).
The full k-space data were acquired and the central 32
fully sampled phase encodings were used to estimate the
channel sensitivity profiles. Specifically, a set of low-res-
olution images was generated from the central k-space data
weighted by a cosine taper window (24). These images
were then normalized by their SoS reconstruction and
weighted by a mask that set to zeros the regions with low
image intensity. The masking step is to reduce the sensi-
tivity estimation error caused by the low-intensity region,
as pointed out by Pruessmann et al. (1). The reduced data
were generated by manually removing some data to simu-
late reduction factors of 2 � 2, 3 � 2, and 4 � 2. Only these
reduced data were used for final reconstruction, excluding
the fully sampled data for sensitivity estimation. Since the
phantom is sparse by itself, the identity matrix was used as
the sparse transformation 	 in the CS-SENSE reconstruc-
tion. For comparison, SparseSENSE and two other com-
peting methods were also used for reconstruction. One
approach was VD-SENSE (25) with �2 regularization,
whose regularization function is defined as ��f�2 � ���x f �2
� ��y f �2 as in Block et al. (11) and Ying et al. (26), and the
other used SparseMRI for a full FOV image in each chan-
nel and a SoS combination. The latter approach is similar
to Marinelli et al. (27), except that the joint sparsity was
not employed here due to its inhibitive computational
requirement.

In Vivo Human Brain Imaging Experiment

This experiment is to examine the performance of CS-
SENSE when applied to in vivo images that are usually not
as sparse as phantoms but compressible with wavelet and
finite-difference transforms. Two sets of in vivo human
brain data (axial and sagittal) were acquired. The axial data
set was from a 3T commercial scanner (GE Healthcare,
Waukesha, WI) with an eight-channel head coil (In Vivo,
Gainesville, FL) using a two-dimensional T1-weighted
spin echo protocol (TE/TR � 11/700 ms, 22-cm FOV, 10
slices, 256 � 256 matrix). The sagittal data set was on a 1.5
T Siemens Avanto system with a four-channel head coil
using a two-dimensional T1-weighted spin echo protocol
(TE/TR � min full/500 ms, 24-cm FOV, 256 � 256 matrix).
Informed consent was obtained from the volunteer in ac-
cordance with the institutional review board policy. The
sagittal image is less compressible (i.e., larger compression
error with the same compression ratio) than the axial im-
age due to numerous fine details, making it a more chal-
lenging CS-SENSE reconstruction. The Daubechies-4
wavelet (28) was used as the sparse transformation 	 in
Eq. 14. Similar to the phantom experiment, the SoS recon-
struction was used as the reference for comparison, and
the central 32 fully sampled phase encodings were used to
estimate the channel-sensitivity profiles. Different reduc-
tion factors were used for each reconstruction. The recon-
structed images and their corresponding error images were
shown for comparison.

RESULTS

All images are labeled by the method used on the top left
corner and the reduction factor on the top right corner.
“Ref” denotes the reference image, “A” the CS-SENSE, “B”
the SparseSENSE, “C” the SparseMRI followed by SoS,
and “D” the VD-SENSE with �2 regularization.

Simulation

Figure 1 shows the reconstructed image of the numerical
phantom by CS-SENSE and SparseSENSE in the ideal
noise-free case. At a reduction factor of 4, both methods
are able to reconstruct the original image exactly. No dif-
ference can be identified visually. As the net reduction
factor increases, the reconstruction qualities of both CS-
SENSE and SparseSENSE deteriorate gracefully and the
artifacts gradually show up. At a high reduction factor of 8,
both reconstructions have visible undersampling artifacts.
The CS-SENSE reconstruction is seen to be smoother.
Since the exact sensitivity profiles are used in simulation,
the SENSE step of CS-SENSE only amplifies the artifacts
from the previous step without introducing additional ar-
tifacts.

Figure 2 shows the reconstructed images for R � 4 when
different levels of noise are added to the measurements. It
is seen that at all noise levels, CS-SENSE well preserves
the image structures, with only random noise added on the
structures. The larger the measurement noise is, the larger
the reconstruction noise is. This observation agrees with
the CS reconstruction error bound in Eq. 6, which in-
creases with the measurement noise level when other con-

Compressed Sensing SENSE 1577



ditions are kept the same. In contrast, the measurement
noise not only causes reconstruction noise but also intro-
duces blocky artifacts in SparseSENSE reconstructions,
which is obvious at low SNRs. This is better explained in
the context of regularization. At low SNRs, it is known that
regularization has to suppress large noise at the cost of
increased artifacts and blurriness.

Table 1 shows the NMSEs of both methods, with differ-
ent reduction factors (R � 4, 6, 8) and SNRs (7.5, 15, and
30). The unit of 10�002 was used. Although NMSE is too
general to provide a precise metric for the image quality,
the table provides a quantitative measure for the overall
errors. As expected, both methods perform better as the
SNR increases and/or the reduction factor decreases. CS-
SENSE is superior to SparseSENSE in terms of NMSE with
the same reduction factor and SNR.

Phantom Experiment

Figure 3 shows the reconstructions from the scanned
phantom data, with the zoomed “comb” region on the
bottom left corner of each image to reveal more details. At
a reduction factor of R � 4, both CS-SENSE and Sparse-
SENSE are able to reconstruct an image visually the same
as the reference image. In contrast, SparseMRI followed by
SoS has visible undersampling artifacts. This is because
the method does not utilize the sensitivity information and
it is difficult to achieve a high reduction factor of 4 using
SparseMRI alone. VD-SENSE with �2 regularization has

more noise. As the reduction factor becomes larger (R � 6),
the superior performance of CS-SENSE becomes more vis-
ible. The CS-SENSE reconstruction is able to preserve the
image resolution, while other reconstructions become
blurry, which is clearly shown in the zoomed “comb”
region. Even at a reduction factor as high as 8 (equal to the
number of channels), the CS-SENSE reconstruction only
slightly loses resolution, while more details are lost in all
other reconstructions. In both the CS-SENSE and Sparse-
SENSE reconstructions, artifacts becomes more visible as
the reduction factor increases from 4 to 8, but noise still
keeps low even at R � 8. In contrast, the noise in VD-
SENSE with �2 regularization and the artifacts in
SparseMRI followed by SoS increase more with the reduc-
tion factor. The phantom results suggest that the SNR in a
real experiment is usually good enough for CS-SENSE to
achieve a high reduction factor in reconstructing a highly
sparse image.

In Vivo Human Brain Imaging Experiment

Figure 4 shows the axial reconstructions with a zoomed
region of interest on the bottom right corner of each image.

FIG. 2. Images reconstructed from a set of simulated eight-channel
data with different levels of noise for R � 4. The left column is for
CS-SENSE (denoted as A) and the right column is for SparseSENSE
(denoted as B), with the SNRs shown on the top right corner of each
image.

FIG. 1. Images reconstructed from a set of simulated, eight-chan-
nel, noise-free data with different net reduction factors. The left
column is for CS-SENSE (denoted as A) and the right column is for
SparseSENSE (denoted as B), with the reduction factors shown on
the top right corner of each image.
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For better visualization, all the corresponding error images
are also shown in Fig. 5 on the same scale. At a reduction
factor of R � 4, both CS-SENSE and SparseMRI reconstruc-
tions are very similar to the reference image visually. How-
ever, unlike the phantom results, both begin to lose reso-
lution, with the SparseSENSE image being slightly more
blurry than the CS-SENSE one (shown in the zoomed
region of interest). SparseMRI followed by SoS has visible
undersampling artifacts. VD-SENSE with �2 regularization
is the noisiest among all the methods shown. As the re-
duction factor becomes larger (R � 6), all images become
more blurry and show undersampling artifacts, which is
clear in the error images shown in Fig. 5. The large values
at object edges shown in the error images indicate a serious
loss of resolution. The structured ripples within the ob-
jects in the error images indicate undersampling artifacts.
In comparison, CS-SENSE preserves more details with
fewer undersampling artifacts than the other methods do.
For an even higher reduction factor, all methods fail to
reconstruct an acceptable image.

Figures 6 and 7 show the sagittal reconstructions with
the zoomed cerebellum on the bottom right corner of each
image and the corresponding error images, respectively.
Due to the large number of details in the image, none of the
methods are able to preserve the resolution with R � 3 or
4. All reconstructions show undersampling artifacts. In
comparison, CS-SENSE preserves much more detail than
the other methods, as shown in the zoomed region of
interest. From the error images, it is seen that the errors of
CS-SENSE primarily come from the spatial varying noise
due to the noise amplification by the large g-factor (1). This
is because the g-factor for the four-channel data is larger
than that for the eight-channel data, although the reduc-
tion factor R2 for the SENSE step is kept the same. The
images of the other methods show a significant amount of
artifacts and serious loss of resolution.

The in vivo experiment demonstrates that CS-SENSE
requires more measurements to be successful as the image
has more details (i.e., is less compressible). This observa-
tion agrees with the CS reconstruction error bound in Eq.

Table 1
NMSEs (�10�002) of Reconstructions Using Simulation Data

R Factor 4 (2 � 2) 6 (3 � 2) 8 (4 � 2)

SNR (dB) 7.5 15 30 7.5 15 30 7.5 15 30
CS-SENSE 2.22 0.77 0.05 2.34 0.75 0.19 2.63 0.79 0.34
SparseSENSE 3.09 0.90 0.12 3.74 1.34 0.35 3.91 1.75 0.56

FIG. 3. Phantom images reconstructed using CS-SENSE (A), SparseSENSE (B), SparseMRI followed by SoS (C), and VD-SENSE with �2

regularization (D) from a set of eight-channel scanned data with different net reduction factors shown on the top right corners. The
corresponding “comb” region was zoomed to reveal details.

Compressed Sensing SENSE 1579



6, which increases with the compression error. Compared
to the competing methods, CS-SENSE is able to preserve
many more details without a significant compromise in
SNR and artifacts.

Table 2 shows the NMSEs of both the axial and sagittal
reconstructions as a function of reduction factors. CS-
SENSE has the lowest NMSEs among the competing meth-
ods with the same reduction factor, which agrees with the
observations in Figs. 4-7.

DISCUSSION

In this paper, a novel method, CS-SENSE, is proposed to
further accelerate parallel imaging. This method is com-
pared with SparseSENSE and other existing imaging meth-
ods using computer simulation, scanned phantom, and in
vivo brain data. The experimental results demonstrate that

the proposed CS-SENSE method is superior to the existing
competing methods, especially in preserving resolution.
The superior resolution is primarily due to the decoupling
of CS and SENSE in the proposed method. Although all
methods used for comparison in Results section have “reg-
ularization” capability, the regularization of CS-SENSE
occurs only in the CS step, which shares a fraction of the
total reduction factor. As known in regularization, the
lower the reduction factor is, the less the resolution has to
be traded to suppress the undersampling artifacts and
noise. Since the CS-SENSE only regularizes at a low re-
duction factor, the resolution does not have to be compro-
mised as much as in other methods where the total reduc-
tion factor is considered in regularization. On the other
hand, since regularization is not used in the SENSE step of
CS-SENSE, the resolution is not reduced, but the noise can
be amplified in this step. This may result in slightly larger

FIG. 4. Axial brain images reconstructed using CS-SENSE (A), SparseSENSE (B), SparseMRI followed by SoS (C), and VD-SENSE with �2

regularization (D) from a set of eight-channel scanned data with different reduction factors shown on the top right corners. A region of
interest (enclosed by a rectangle in the reference image denoted as “Ref”) was zoomed and shown at the bottom right corner of each image.

FIG. 5. Error images correspond-
ing to the axial reconstructions in
Fig. 4.
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noise in CS-SENSE than the competing methods when the
g-factor is large.

Reconstruction Errors

The CS-SENSE method consists of two steps, generating
the intermediate aliased images using SparseMRI and re-
constructing the desired image from these aliased images
using SENSE. As a result, the reconstruction error of CS-
SENSE comes from both steps.

In the first step of SparseMRI, three major factors affect
the reconstruction quality with the same reduction factor:
the incoherence level, measurement noise, and the spar-
sity of the image after transformation. The effect of differ-
ent noise levels is demonstrated in the computer simula-
tion. The reconstruction only becomes noisier with in-
creased measurement noise. Noise does not introduce

artifacts. The effect of image sparsity is demonstrated in
the phantom and in vivo experiments. For example, for
high-quality reconstruction, the reduction factor can be as
high as 6 for the very sparse phantom, about 4 for the
moderately sparse axial brain image with wavelet trans-
form, and barely 3 for the sagittal brain image with many
details. It suggests that in vivo images, which usually have
larger approximation error than the phantoms when made
to be sparse, will lead to reconstructions of lower quality.
In other words, to achieve the same image quality, in vivo
images need more measurements than the phantoms do.

The sparsity of the image depends on the sparsifying
transforms, as demonstrated in Lustig et al. (10). For ex-
ample, both brain images in the experiments are not sparse
by themselves but can be sparse with a wavelet transform.
In other words, to achieve the same sparsity, the identity

FIG. 6. Sagittal brain images reconstructed using CS-SENSE (A), SparseSENSE (B), SparseMRI followed by SoS (C), and VD-SENSE with
�2 regularization (D) from a set of four-channel scanned data with different reduction factors shown on the top right corners. The zoomed
cerebellum was shown on the bottom right corner of each image to show CS-SENSE is able to preserve much more detail than the other
methods.

FIG. 7. Error images correspond-
ing to the sagittal reconstructions
in Fig. 6.
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transform results in much larger approximation error than
the wavelet transform. Therefore, according to the error
bound in Eq. 6, the use of wavelet transform in CS recon-
struction from brain data leads to much less reconstruction
error. The CS reconstruction is expected to benefit from
the future development of sophisticated transforms that
give even sparser representations than the currently used
wavelet and identity transforms.

In the second step of SENSE, two factors affect the
reconstruction quality: the accuracy of sensitivity profiles
and the g-factor. It is known that inaccurate sensitivity
profiles directly cause aliasing artifacts in basic SENSE
(22). As a result, CS-SENSE also suffers from the sensitiv-
ity error. All error images of CS-SENSE show some fold-
over aliasing artifacts. As with SENSE, the artifacts can be
reduced by improving the sensitivity accuracy. Figure 8
shows that the CS-SENSE reconstruction improves when
the sensitivity profiles are estimated from 128 encodings
instead of 32.

Both noise and artifacts in the first step will propagate to
the second step of SENSE. In SENSE, the g-factor map has
been used to characterize the spatial dependent noise am-
plification (1). In CS-SENSE, the g-factor indicates the
amplification of both noise and artifacts due to undersam-
pling from the first step of SparseMRI. Because the g-factor
usually increases with the SENSE reduction factors, the
error propagation becomes serious when R2 is large. Figure
9 shows the error propagation with R2 � 2 and R2 � 4 in
the noise-free simulation. In this figure, although the errors
are undetectable in both aliased images with R1 � 2, they
are amplified in the SENSE step more with R2 � 4 than
with R2 � 2. Because the g-factor for R2 � 4 is larger and
more spatially nonuniform, the error becomes more visible
and nonuniformly distributed in the reconstruction.

Due to the abovementioned error propagating property
of CS-SENSE, proper choice of the R1 and R2 pair is crucial
for high-quality reconstruction. Figure 10 compares the
reconstruction quality with different combinations of R1

and R2 for the same net reduction factors: R � 4 (2 � 2, 1
�4), R � 6 (3 � 2, 2 � 3), R � 8 (4 � 2, 2 � 4). This figure
suggests that a large R1 will result in more artifacts (e.g.,
R1 � 4) and a large R2 will result in large error/noise
amplification (R2 � 4). When the image is sparse, a large
factor of R1 is preferred; when the g-factor is small, a large
factor of R2 is preferred. This observation could be a guide-
line for selection of the reduction factors R1 andR2 in
practice, given the noise level and SENSE g-factor. The
reduction factors in SparseMRI and SENSE should be bal-
anced to minimize the final reconstruction error.

Computational Complexity

The current implementation of CS-SENSE and SparseMRI
followed by SoS needs longer execution time than Sparse-
SENSE due to more computations channel by channel. For
example, when reconstructing a brain image with a reduc-
tion factor 4, CS-SENSE, SparseSENSE, SparseMRI fol-
lowed by SoS, and VD-SENSE with �2 regularization took
183.6 sec, 111.9 sec, 240.4 sec, and 55.9 sec, respectively.
This drawback of CS-SENSE can be overcome by parallel
computing using a multiprocessor or dedicated hardware
systems. Because the k-space data are acquired from mul-
tiple channels simultaneously in pMRI and reconstruction
of the aliased images at each channel is independent, the
SparseMRI procedure in CS-SENSE can be performed si-
multaneously for all channels. Thus, the computational
time of CS-SENSE can be reduced to be approximately the
same as that of VD-SENSE with �2 regularization, and less
than that of SparseSENSE. The computational time of ad-
ditional Cartesian SENSE (3.9 sec) is negligible compared
to the iterative algorithms used for SparseMRI and can be
accelerated using commodity graphics hardware (29).

Extensions

In CS-SENSE, �1 minimization is used in the CS step.
Recently, �p minimization (0 � p � 1) and approximated
�0 minimization have been proposed for CS reconstruction
and shown to require less computation time (30-32). These
minimization methods may also be used in the CS step of
the proposed method to speed up reconstruction.

Another possible extension of CS-SENSE is to utilize the
correlations among aliased images. In CS-SENSE, the
aliased images of all channels are reconstructed indepen-

FIG. 8. CS-SENSE reconstructions of the sagittal image (R � 1.5 �
2) in Fig. 6 using sensitivity profiles estimated from 32 and 128
central encodings.

Table 2
NMSEs (�10�002) of Reconstructions Using In Vivo Data

R Factor, data
set sagittal

1.5 � 2,
Sagittal

2 � 2 3 � 2,
AxialSagittal Axial

CS-SENSE 0.62 0.62 0.91 0.25 0.83
SparseSENSE0.65 0.65 1.13 0.59 1.06
SparseMRI-SoS 1.22 1.89 1.81 2.91
VD-SENSE�l2 0.82 1.41 0.69 1.51
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dently without taking advantage of their correlations. Ac-
tually, the aliased images from all channels share the com-
mon sparse support in the sparsifying transform domain.
Distributed CS (DCS) is an extension of CS for simulta-
neous reconstruction of multiple signals with intra- and
intersignal correlations (33). With distributed CS algo-
rithms (34-36), all aliased images with common sparse
support may be simultaneously reconstructed using fewer
samples. Some preliminary work has been done (37,38).

The CS-SENSE results have shown that the reduction
factor for the SENSE step should be kept as low as R2 � 2
to avoid large noise amplification due to ill-conditioned
SENSE. To increase R2 for higher reduction, regularization
techniques suitable for Cartesian SENSE (39–42) may also
be incorporated into the SENSE step of CS-SENSE.

The current formulation of CS-SENSE can only be used
for Cartesian trajectories. Future work will also explore the
extension of CS-SENSE for non-Cartesian trajectories.
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