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ABSTRACT  

Dynamic contrast enhanced MRI requires high spatial resolution for morphological information and high temporal 
resolution for contrast pharmacokinetics. The current techniques usually have to compromise the spatial information for 
the required temporal resolution. This paper presents a novel method that effectively integrates sparse sampling, parallel 
imaging, partial separable (PS) model, and sparsity constraints for highly accelerated DCE-MRI. Phased array coils were 
used to continuously acquire data from a stack of variable-density spiral trajectory with a golden angle. In reconstruction, 
the sparsity constraints, the coil sensitivities, spatial and temporal bases of the PS model are jointly estimated through 
alternating optimization. Experimental results from in vivo DCE liver imaging data show that the proposed method is 
able to achieve high spatial and temporal resolutions at the same time. 

Keywords: dynamic contrast enhanced MRI, partial separable model, parallel imaging, coil sensitivity, JSENSE, 
sparsity. 

1. INTRODUCTION  

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has provided a collection of sequential sets of 
morphological images. These MRI “movies” represent a potentially major development in the management of a wide 
range of diseases and have particular applicability in oncology1. Variations in microvascular structure and 
pathophysiology give rise to spatiotemporal variation in enhancement patterns that can reveal valuable physiological 
properties such as capillary surface area, blood flow, endothelial permeability, and the size of the extravascular space in 
which contrast is distributed2. These properties can be used to identify ongoing biological processes required for non-
invasive diagnosis. 

Although DCE-MRI has already been used clinically, its practical impact is still limited by the relatively low 
spatiotemporal resolution3. DCE-MRI demands high spatial resolution to fully characterize the morphological 
information and high temporal resolution to fully characterize the contrast pharmacokinetics. In the existing DCE-MRI 
methods, the spatial resolution has to be compromised for the required temporal resolution4.  

A number of methods5-12 have been proposed to improve the spatiotemporal resolution of dynamic imaging by highly 
undersampling the MRI data in (k,t) space and reconstructing the image using spatial, temporal or both constraints. When 
combined with other fast imaging techniques, such as fast scanning and parallel imaging, these methods hold promise for 
even higher spatiotemporal resolution. Some recent works13-15 have investigated combination of non-Cartesian 
trajectories, parallel imaging, and compressed sensing for fast dynamic imaging.        
     In this paper, we propose a novel method to effectively integrate spiral acquisition, parallel imaging, partial separable 
(PS) model, and sparse constraints for highly accelerated dynamic contrast enhanced MRI. In data acquisition, the 
proposed method exploits 3D spiral trajectories with golden angle. In image reconstruction, the coil sensitivities, spatial 
and temporal bases of the PS model are jointly estimated through alternating optimization. Experimental results from in 
vivo DCE liver imaging data demonstrate the proposed method is able to achieve high spatiotemporal resolution. 
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2. PROPOSED METHOD 

2.1. Problem formulation 

The main goal of the proposed method is to recover the dynamic image sequence ( , )tγ x  from its under-sampled Fourier 
measurements acquired through multiple channels of a phased array coil, where x and t represent spatial location and 
time respectively. The sequence can be represented as the M×N Casorati matrix: 
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Here, M is the number of voxels in the image and N is the number of image frames in the dataset. The columns of Г 
correspond to the voxels of each time frame. Assuming that D samples are acquired in k-space from each channel at each 
time, the imaging equation can be written as: 
 

•( )= +l l ld F S Г e ,       (2) 
 

where D N×∈ld C  and D N×∈l Ce  are the measured data matrix in (k,t) space and noise matrix at the ℓ-th channel 
respectively; F is the 2D Fourier matrix which depends on the sampling trajectory; Sℓ is the sensitivity matrix of the ℓ-th 
channel in spatial and temporal domain which has the same form as Eq. (1); • denotes the element-wise product. The 
measured data from all channels can be combined together to form the complete imaging equation that represents the 
entire encoding process in space, sensitivity, and time. In highly accelerated dynamic imaging, Eq. (2) is highly 
underdetermined and thus solving Eq. (2) for Г is highly ill-posed. In order to address the issue of ill-posedness, we 
exploit the following model and constraints. 

A. PS model on dynamic image sequence 

The PS model assumes ( , )tγ x  to be spatial-temporal partially separable7, 16, 17. Then Г can be represented as the product 
of a spatial coefficient matrix Us and a temporal basis Vt: 
 

M N M R R N
s t

× × ×=Г U V ,      (3) 
 

where R is the order of the PS model, or rank of Г. The PS model is able to capture spatial-temporal correlation often 
observed in dynamic image sequences. The higher the order R is, the less the spatial-temporal correlation is present in 
the image sequence. 

B. Sparse constraint on temporal frequency 

We further assume the dynamic image sequences present slow variations in time10, 17. Therefore the signal in the spatial 
and temporal frequency domain is sparse. That is, ГFt has very few significant elements, where Ft represents the 
temporal Fourier transform. 

C. Polynomial model on coil sensitivities 

In parallel imaging, accurate coil sensitivities are usually needed implicitly or explicitly in reconstruction. To ensure 
accurate sensitivities are used in reconstruction, the sensitivity functions are regarded as unknowns to be estimated 
during the reconstruction process. We assume the coil sensitivity information is varying with the image sequence at 
different time instants. As a result, each time frame entails different sensitivity maps and thereby for the ℓ-th channel, we 
have 
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We further assume the coil sensitivities are smooth spatially and employ a polynomial parametric model for the coil 
sensitivity at each channel and each time18: 
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where ( , )x y denotes the location of a pixel, ( , )x y denotes the averaged location, and , ( , )l na p q is the coefficient of a 
polynomial for a specific channel and time. With the coefficient vector aℓ of the ℓ-th channel explicitly represented in the 
imaging equation, Eq. (2) can be rewritten as 

)= Γ +d E(a )(l l le       (6) 

Here, E: M N D N× ×→C C represents an operator which integrates both the Fourier transform with a specified 
undersampling trajectory in (k,t)-space and the coil sensitivity modulation.  

2.2. Image reconstruction algorithm 

Incorporating the above models, the image reconstruction problem is formulated as 
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where the L1 norm term enforces the sparsity constraint in spatial and temporal frequency domain. 

A. Initialization 

Initial estimation of Vt 

An initial temporal basis is first estimated from the central densely sampled spiral k-space data within a chosen radius. 
Although the (k,t) space data is highly undersampled, the center k-space is still sampled with Nyquist rate with variable-
density spiral trajectory. These data can be used to obtain a series of low spatial resolution but high temporal resolution 
images, represented in matrix ГLR. Then the temporal basis Vt can be obtained from the R dominant right singular 
vectors through the singular value decomposition (SVD)7. Selection of R often needs to balance the representation 
capability of the model and the numerical condition of the resulting model fitting problem. When R is too low, the model 
may fail to capture some temporal features, although the corresponding model fitting problem is often well-conditioned. 
When R is too high, the model fitting problem becomes under determined, which can amplify modeling errors and 
increase computation complexity. 

Initial estimation of sensitivity maps 

The same central k-space data with Nyquist sampling density is used to estimate the coil sensitivity maps initially. These 
central k-space data after Fourier transform produces low-resolution reference images. To derive the sensitivities, these 
low-resolution reference images are divided by their sum-of squares (SoS) combination19.  

B. Alternating optimization 

Updating the spatial basis Us 

When the temporal basis Vt and the sensitivity maps are estimated initially, we assume they are given and use the initial 
estimations to find Us. The problem is simplified to: 
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and is solved using the majorize-minimize algorithm17. 
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Updating aℓ 

Since the second part in Eq. (7) is not related to the sensitivity maps, the following form is used to update aℓ: 
      2

s t 2
ˆ ˆˆ min || ( )( ) || , all =

l
l l l l

a
a d - E a U V        (9) 

Since the polynomial model already incorporates the smoothness constraint, no regularization is needed on sensitivity 
functions. We choose the power of x and y to be the same (both equal to K, e.g. K=7) and define it as the order of the 
polynomial. A low-order of K is sufficient, due to the smooth nature of coil sensitivity in general. As long as the order of 
the polynomial is not too high when compared to the number of data samples, the above lease-squares problems is over 
determined and thus has a unique solution.  

Updating temporal basis Vt  

After the entire image sequence is recovered for the previous iteration, the high resolution images are used to perform 
SVD and update the temporal basis Vt .  

2
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3. RESULTS 
 

In this section, we show a set of representative results from in vivo real-time DCE liver MRI experiments to evaluate the 
performance of the proposed method. A 3D fast spoiled gradient echo stack of spirals sequence with partial Fourier slice 
encoding15 was used for data acquisition (TR/TE=7.2/0.6 ms, FOV=340mm, slice thickness=5mm, matrix size = 
256x256x36, 8 channel cardiac coil). Consecutive spiral leaves are rotated by the golden ratio angle of 220̊ such that 
each new spiral leaf is sampling a substantially different part of k-space compared to the immediately preceding leaf. For 
each spiral leaf, a full set of slice encodings (partially encoded) is acquired. A variable density spiral trajectory was used 
where 48 spirals fully sample the kx-ky plane.  
 

 
 

Figure 1. Sampling trajectory for each frame and schematic of sliding window. For example, A, B, C, and D represent the reference 
spiral leaves for Frame 8, 9, 10 and 11, respectively. 
 
Fig. 1 illustrates how the sliding window method and the proposed method combine different leaves to obtain the 
undersampled or full k-space data for reconstruction. In sliding window, combining 48 leaves would satisfy the Nyquist 
sampling criterion spatially, but compromise the temporal resolution. In Fig. 2, we compare the results of the proposed 
method which combines 15 leaves with the results of the sliding window method which combines 15 and 48 leaves.  
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Figure 2. Reconstructions of the proposed method (left), sliding window method with 15 (middle) and 48 leaves (right). 
 

From the results we can see that the proposed method is able to remove the aliasing artifacts in sliding window with 15 
leaves (SW 15), and improve the spatial resolution in sliding window with 48 leaves (SW 48). The edges are sharp in the 
reconstructions from the proposed method. 

 

 
 

Figure 3. The intensity vs. temporal frame curves of artery and IVC for three different reconstructions. 
 
The intensity curves of region of interest (ROI) for both methods are also compared. It is seen that the proposed method 
with 15 leaves is able to suppress the aliasing artifacts present in the sliding-window reconstruction with 15 leaves and 
achieve a better spatial resolution than the sliding-window reconstruction with 48 leaves. In addition, the small 
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respiratory motion causes artifacts in SW 48 but no artifacts in PS-JSENSE with 15 leaves. The intensity curves show 
that the proposed method is superior to the sliding-window method in preserving kinetic information. 

 
4. CONCLUSION 

 
We have proposed a novel method to integrate parallel imaging, the PS model, and the sparsity constraint in the same 
framework. Our results using a liver DCE-MRI dataset demonstrate that the proposed method is able to balance the 
tradeoff between the spatial image quality and temporal resolution in DCE-MRI. The proposed method shows significant 
improvement over the conventional sliding window method.  
 

 REFERENCES 
 
[1] Taylor, J. S., and Reddick, W. E., “Evolution from empirical dynamic contrast-enhanced magnetic resonance 
imaging to pharmacokinetic MRI,” Adv. Drug Deliv. Rev., 41(1), 91-110 (2000). 
[2] Hayes, C., Padhani, A. R., and Leach, M.O., “Assessing changes in tumor vascular function using dynamic contrast-
enhanced magnetic resonance imaging,” NMR Biomed., 15(2), 154-163 (2002). 
[3] Padhani, A. R., “Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions,” J. Magn. 
Reson. Imaging, 16(4), 407-422 (2002). 
[4] Krishnan, S., and Chenevert, T. L., “Spatio-temporal bandwidth-based acquisition for dynamic contrast-enhanced 
magnetic resonance imaging,” J. Magn. Reson. Imaging, 20(1), 129-137 (2004). 
[5] Liang, Z.-P., and Lauterbur, P. C., “An efficient method for dynamic magnetic resonance imaging,” IEEE Trans. 
Med. Imag., 13(4), 677-686 (1994). 
[6] Madore, B., Glover, G. H., and Pelc, N. J., “Unaliasing by Fourier-encoding the overlaps using the temporal 
dimension (UNFOLD), applied to cardiac imaging and fMRI,” Magn. Reson. Med., 42(5), 813-828 (1999). 
[7] Liang, Z.-P., “Spatiotemporal imaging with partially separable functions,” Proc. IEEE Int. Symp. Biomed. Imag. 
(ISBI), Arlington, USA, 988-991 (2007). 
[8] Tsao, J., Boesiger, P., and Pruessmann, K. P., “k-t BLAST and k-t SENSE: dynamic MRI with high frame rate 
exploiting spatiotemporal correlations,” Magn. Reson. Med., 50(5), 1031-1042 (2003). 
[9] Lustig, M., Santos, J. M., Donoho, D. L., and Pauly, J. M., “k-t SPARSE: high frame rate dynamic MRI exploiting 
spatiotemporal sparsity,” Proc. 14th Annual Meeting ISMRM, Seattle, USA, 2420 (2006).  
[10] Jung, H., Sung, K., Nayak, K. S., Kim, E. Y., and Ye, J. C., “k-t FOCUSS: A general compressed sensing 
framework for high resolution dynamic MRI,” Magn. Reson. Med., 61(1), 103-116 (2009). 
[11] Gamper, U., Boesiger, P., and Kozerke, S., “Compressed sensing in dynamic MRI,” Magn. Reson. Med., 59(2),  
365-373 (2008). 
[12] Chen, L., Schabel, M. C., and DiBella, E. V. R., “Reconstruction of dynamic contrast enhanced magnetic resonance 
imaging of the breast with temporal constraints,” Magn. Reson. Imag., 28(5), 637-645 (2010). 
[13] Uecker, M., Zhang, S., Voit, D., Karaus, A., Merboldt, K. D., and Frahm, J., “Realtime MRI at a resolution of 20 
ms,” NMR Biomed. 23(8), 986-994 (2010). 
[14] Otazo, R., Kim, D., Axel, L. and Sodickson, D. K., “Combination of compressed sensing and parallel imaging for 
highly accelerated first-pass cardiac perfusion MRI,” Magn. Reson. Med., 64(3), 767-776 (2010). 
[15] Xu, B., Spincemaille, P., Chen, G., Agrawal, M., Nguyen, T. D., Prince, M. R. and Wang, Y., “Fast 3D contrast 
enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction,” Magn. 
Reson. Med., 69(2), 370-381 (2013). 
[16] Haldar, J. P., and Liang, Z.-P., “Spatiotemporal imaging with partially separable functions: A matrix recovery 
approach,” Proc. IEEE Int.Symp. Biomed. Imag., 716-719 (2010). 
[17] Zhao, B., Haldar, J. P., Christodoulou, A. G., and Liang, Z.-P., “Image reconstruction from highly undersampled (k, 
t)-space data with joint partial separability and sparsity constraints,” IEEE Trans. Med. Imag., 31(9), 1809-1820 (2012). 
[18] Ying, L., and Sheng, J., “Joint image reconstruction and sensitivity estimation in SENSE (JSENSE),” Magn. Reson. 
Med., 57(6), 1196-1202 (2007). 
[19] Sheng, J., Liu, B., and Ying, L., “Improved self-calibrated spiral parallel imaging using JSENSE,” Medical 
Engineering and Physics, 31(5), 510-514 (2009). 
 

Proc. of SPIE Vol. 9109  91090N-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/19/2014 Terms of Use: http://spiedl.org/terms


