
Fig. 1 Schematic of the proposed method 

Fig. 2 Reconstruction comparison of proposed method and conventional CS-
PCA. Error is magnified 10x times 

Fig 3. Average Intensity of ROI 
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INTRODUCTION:  Dynamic MRI (dMRI) characterizes spatio-temporal structures of the subject under the consideration and exhibits high temporal correlation on 
top of the spatial correlation [1, 2].  A sub-Nyquist sampling paradigm, Compressed Sensing (CS) accelerates data acquisition process in MRI by exploiting such 
correlation and imposing sparsity constraint on certain transform domain [3-6]. Sparsity of the data in the transform domain is the key to the success of CS approaches. 
Most existing approaches use linear transformations such as Fourier [4-6], Wavelet [3], PCA [6] to sparsify 
the spatio-temporal signal, which often, might not be able to capture highly nonlinear characteristics in 
dMRI, As a result, the signal may not be as sparse, after such linear transformations. In this abstract, we 
introduce a nonlinear polynomial-kernel-based model to represent the signal sparsely. Based on the model, a 
novel compressed-sensing dMRI method with self-learned nonlinear dictionary (NL-D) is proposed. 
Simulation results show that the proposed method outperforms the conventional CS dMRI methods with 
linear transforms.   
METHODS: The key idea of the proposed method is to represent the dynamic images more sparsely using 
nonlinear dictionaries such that the sparsity-constrained reconstruction is more accurate. The reconstruction 
problem can be formulated as solving 	ܠܖܑܕ‖࢟ − ଶଶ‖ܠ࢛ࡲ +  is the undersampling Fourier operator, x the desired dynamic images and τ the sparse coefficients with࢛ࡲ ,ଵ‖࣎‖૚(1), where ࢟ is the acquired k-space dataߟ
nonlinear dictionary. The optimization problem in (1) is solved using PreImage formulation [13] with 
polynomial kernel and iterative soft thresholding method [14]. The schematic of the proposed method is 
illustrated in the Fig. 1. The dynamic images are initialized by zero-filled Fourier reconstruction. Step 1: 
Nonlinear dictionary learning. First, the nonlinear dictionaries are learned from the training data obtained 
from the low resolution dynamic images using kernel principal component analysis (kPCA). Specifically, 
low-resolution images are obtained from a few central k-space lines. A set of T training signals ࢚ࡼ	ݐ) =1,2,… ܶ),  each representing the temporal variation at a particular spatial location, are formed from these 
low-resolution images. The training signals are projected from the original space to a high-dimensional 

feature space to calculate a ܶ × 	ܶ	Kernel Matrix ࡼࡷ	,whose elements are given by ࢐,࢏ܭ	, = ,࢏ࡼ)݇  and , (࢐ࡼ
then centered to generate	ࡼࡷ		ࢉ  [8], where k(.) is a kernel function. Here we use a polynomial kernel, ݇൫࢞࢏, ࢞࢐൯ = ൫〈࢞࢏, ࢞࢐〉 + ܿ൯ௗ where, c is a constant and d is the order of polynomial. The linear PCA is performed in the feature space using ࡼࡷ		ࢉ ࢻ =  and thus PC in ,ࢻ	ߣ

feature space is represented as, V=∑ ௧߶௧்ୀଵࢻ :where, ߶ത ,(௧ࡼ)  ߯ →  is the nonlinear map from the low dimensional input space ߯ to a high dimensional feature ܪ
space	ܪ	with centering. Step 2: Enforcing sparsity constraint. The temporal signal of the dynamic images (from previous iteration) for each spatial location is 
regarded as test data. The test data is projected onto the PC in the feature space from Step 1. For a test signal ࢞, the projection of ߶	(࢞) on to the ݇௧௛ PC is computed 

using ߚ = ൫ࡷ௫௣௖ ൯்ࢻ௞, where, ࡷ௫௣௖  is the centered kernel vector,		࢑௫௣ = [݇( ଵܲ, )݇		(ݔ ଶܲ, )݇…(ݔ ்ܲ,  ܭ (࢞) can be sparsely represented using only	We assume ߶ .்[(ݔ

largest PCs in feature space as, ߶	(࢞) ≈ ∑ ௞ࢂ௞ߚ 	≈ 		∑ ௧்ୀଵ௄௞ୀଵࢽ ௧ ௧ߛ and (௧ࡼ)߶ = ∑ ௧௞.௄௞ୀଵࢻ௞ߚ   Therefore the ࣎	 in Eq. (1) is defined as the vectorized projection of all test 

data over K principal components. After obtaining the sparse representation in the feature space, ߶	(࢞) needs to be projected back onto the original space (known as the 
pre-image problem). With odd order polynomial kernel, the pre-image is obtained as: ࢠ = ∑ ௞݂ି ଵே௜ୀଵ ൫∑ ௧௧்ୀଵࢽ ,௧ࡼ)݇ ,(2)  where  ௞݂ି	௜)൯૆୧ࣈ ଵ  is inverse polynomial kernel 
function and 			ሼࣈଵ,  ே} is any orthonormal basis of the input space. Step 3: Enforcing data consistent constraint. To enforce the reconstruction to be consistentࣈ…,ଶࣈ
with measured k-space data, at the sampled k-space locations, the k-space data is updated using a weighted combination of the values from pre-image and measurement:  ෝ࢟ = ࢟ାఎమࢃଵାఎమ ,	(3), where W is the Fourier transform of the pre-image z, and ߟଶ is the weight. The updated dynamic images are then obtained by Fourier transform of the 

updated k-space data. Steps 2 and 3 are alternated iteratively until convergence.  
RESULTS:  We used ASL perfusion data 
on a calf muscle to evaluate the proposed 
method. Data acquisition parameters: 
TR/TE = 2.8/1.2ms, flip angle =	5௢, FOV= 
160 × 112 ݉݉ଶ and matrix size = 112 × 
100 × 20 (#FE × # PE × # frames). 1-D 
random under-sampling pattern along PE 

was used frame by frame with a net reduction factor of 3. Simulation 
Parameters:  Low-resolution images obtained from 5 central k space lines were 

used to create a training data set. Polynomial kernel with c=1 and ݀ = 3 was used. 
Number of training signals T = 1000, number of PCs (K) = 80. Soft thresholding 
values ߟଵ and ߟଶ were tuned appropriately. Fig. 2 shows the reconstruction and error patterns using the proposed method and conventional CS method. We can clearly 
see from the error pattern that the proposed method outperforms the conventional CS-PCA method. Aliasing artifacts are observed in the conventional CS-PCA 
reconstruction method. Fig. 3 compares the average temporal curves of a selected ROI (Fig.2). The proposed method follows the reference curve more precisely than 
the conventional approach. 
DISCUSSION AND CONCLUSION:  We have developed a novel CS method to accelerate dynamic MRI using self-learned nonlinear dictionary. Simulation results 
show that the proposed method outperforms the conventional CS methods. The proposed method maintains the spatial structural information as well as the kinetic 
information of dMRI. Selection of training signals and various simulation parameters are interesting challenges to be explored in future endeavors.  
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