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Lecture Notes

1. JANUARY 27-JANUARY 31

Smooth Manifolds

Definition. Let M be a topological manifold, i.e. a topological space that is Hausdorff,
second countable, and locally Euclidean. A smooth atlas on M is a family {(Ua, pa)} of

coordinate neighborhoods (or charts) on M where

(1) {U,} is an open cover of M, ¢, : Uy — R™ are homeomorphisms onto their images,
2) f U, NU, (), then the transition map o vl is a diffeomorphism.
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Two smooth atlases are said to be compatible if their union is also a smooth atlas. A
maximal smooth atlas, i.e. the union of all smooth atlases compatible with a given smooth
atlas, is called a smooth structure on M.

A topological manifold M together with a smooth structure on it is called a smooth

manifold. Note that an open subset of a smooth manifold is also a smooth manifold.

Definition. A smooth manifold M is orientable if it admits an atlas {(Ua, @)} with the
property that the Jacobian of ¢g o @ ! is positive whenever U, N Us # 0. An atlas with
this property is called (coherently) oriented, and the choice of a maximal atlas with this

property is called an orientation.

Definition. A function f : U4/ — R defined on an open subset U of a smooth manifold M is
called smooth if for any coordinate neighborhood (U, ¢) the function fop™! : pUNU) — R

is smooth.

Definition. Let M and N be two smooth manifolds. A map F' : M — N is called smooth
if for any point p € M, any coordinate neighborhood (U, ¢) around p, and any coordinate
neighborhood (V, ¢) around F(p) with F(U) C V, the map ¢o F o=t : oU) — ¢(V) is
smooth.

Definition. The rank of a smooth map F': M — N at p € M is the rank of the Jacobian
matrix of ¢ o F o~ ! at o(p) for any coordinate neighborhoods (U, ¢) around p and (V, ¢)
around F'(p) with F(U) C V.

Remark. Around any point p € M one can find a coordinate neighborhood (U, ¢) such
that ¢(U) is a ball centered at the origin, and ¢ maps p onto the origin. Furthermore,
if dim(M) = m, dim(N) = n, and rank(F) = k, then there exist such coordinate
neighborhoods (U, ¢) around p and (W, ¢) around F'(p) with F(U) C W satisfying

¢oFo<p_1(:L‘1,...,xk,xk+1,...,xm):(xl,...,xk,(),...,O).

See [2, III-Remark 4.2, II-Theorem 7.1] for a proof.
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Definition. A smooth map F' : M — N is called an immersion if rank(F) = dim(M) at
any point in M. Tt is called a submersion if rank(F) = dim(N) at any point in M.

Remark. Note that the image of an injective immersion £ : M — N admits two
topologies: one that is induced by the topology of M, making the map F' : M — F(M)
a homeomorphism, and the other is the subspace topology induced by N. These two

topologies on F'(M) need not be homeomorphic.

Example 1. Figure-eight: Let f : R — R be a smooth monotone increasing function with
the property that f(0) = m, lim;,_o f(t) = 0, and lim;_,o f(f) = 27. Then the map
F : R — R? defined by

P(t) == (2eos(f(t) - 5).sin2(f(t) - 5))

is an injective immersion, but it is not a homeomorphism onto its image since the pre-image

of any sufficiently small open neighborhood of the origin is disconnected.

Definition. A smoothmap F': M — N is called an embedding if it is an injective immersion
that induces a homeomorphism between M and F(M ) with the subspace topology inherited
from N. The image of an embedding F': M — N is called a (regular) submanifold of N.

Tangent and Cotangent Spaces

Let M be a smooth m-dimensional manifold, and p € M be a point. Then consider the
set of all smooth parametrized curves v : (—¢,€) — M such that «(0) = p. Two such curves
~v1 and 79, are deemed equivalent if for any coordinate neighborhood (U, ) around p the
derivatives of ¢ o~y; and ¢ o~ at 0 agree. The tangent space to M at p can be identified
with the set I'(p) of equivalence classes of smooth parametrized curves in M through p.

Alternatively, consider the set C°°(p) of smooth functions defined in some open
neighborhood of p. There is an equivalence relation on C°°(p) which declares two functions
f:U —= Rand g : V — R equivalent if they agree on a smaller open neighborhood
W Cc UNnV of p. An equivalence class of such functions is called a germ of smooth

functions at p, and these equivalence classes form an algebra

&(p) == C=(p)/ ~=A{lflIf € C= ()},

with addition, scalar multiplication, and multiplication operations inherited from C*(p).
With the preceding understood, the tangent space to M at p is defined as follows.

Definition. A derivation at p is a linear map X, : &(p) — R satisfying the Leibniz Rule:
Xp([f1- [9]) = (XplfDa(p) + () (Xplg])-

Derivations at p form a vector space: for any two derivations X, and Y}, at p, and c € R,

(1) (Xp + Yp)f] = Xp[f1 + Y[ S],
(2) (eXp)lf] = eXplf].



The tangent space to M at p, denoted T,,M, is the vector space of derivations at p.

Example 2. Consider the Euclidean space R” with the standard smooth structure. Let

z', ..., 2™ denote the Euclidean coordinates. Then the tangent space to R™ at any point
p=(p,...,p™) is the space of vectors based at p, i.e. T,R™ = {p | € R"}. Any tangent
vector pz = (a',...,a™), defines a unique derivation X, at p by
m
497
i=1

In fact, any derivation D,, at p is obtained this way. In order to see this, first note that any
smooth function defined in a neighborhood of p can be restricted to a ball centered at p so
that

1
fl) = +1;Zp+tx—mwt

= )+ zt — -(p+t(x —p))dt
; p/a (»

at any point x in the ball. Then, for any smooth function f defined in a neighborhood of p
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As a result, the tangent vector (Dy[z!],..., Dy[x™]), corresponds to the derivation D, via
the above association. In particular, the vector space of derivations at p has dimension m,

and a canonical basis is {8%1’ NN 8{%}.
Next, we have the following theorem:
Theorem 1.1. Let F: M — N be a smooth map. Then for any p € M the map
F*p: 6(F(p)) = &(p)

defined by F*p([f]) = [f o F] is an algebra homomorphism that induces a homomorphism
between the vector spaces

de : TpM — TF(p)N
defined by dF,(Xp)[f] = Xp[F*p([f])]. Furthermore,

(1) Both idy™), and d(idyr), are the identity homomorphisms,
(2) If F: M — N’ and G : N' — N are two smooth maps, and p € M, then,

(GOF)*p :F*pOG*F(p) and d(GOF)p :dGF(p) Ode.

Proof. We will prove that the map dF), is a homomorphism of vector spaces, and it behaves
well under compositions. The statements about F™*, are left as an exercise. First, for any
Xp € T,M, we prove that dFy,(Xp) € Tp(,)N. For this, we need to check that dFy,(X)) is a
derivation at F(p):



e Linearity: For any X, € T,M, f,g € C*(p), and a,b € R,

dFy(Xp)(a[f] +blg]) = dF,(Xp)([af +bg))
= Xp([(af +bg) o F])
= Xp([a(f o F)+b(go F)))
= aXp,[foF]+bXplgoF]
= adFp(Xp)[f] + bdF,(Xp) 9]
e Leibniz rule: For any X, € T,M, and f,g € C*(F(p)),
dFp(Xp)([f]-[9]) = dFp(Xp)[fgl = Xp[fgo F] = Xp([(fo F)- (g0 F)])

= Xp(] “[go FI)

= (Xl )9(F(p)) + f(F(p)) Xplg o F]

= dF,(Xp)[f19(F(p)) + f(F(p)) dFp(Xp)[g]-

Next, we show that the map dF), is linear. For X,,,Y, € T,M, a,b € R, and f € C>®(F(p)),

foF)
foF) -
+

dFy(aXp +0Yp)[f] = (aX,+bYp)[f o F]
= aXp[f o F]+0Yy[f o F]
= adFy(Xp)[f] + bdF,(Yp)[f].
Therefore, dFj, is a linear map between the tangent spaces T), M and Tp(,) N.
Finally, we show that if F: M — N’ and G : N — N are two smooth maps, and p € M,
then d(G o F'), = dGp(,) o dF},: For any X, € T,M, and f € C*(G(F(p))),
d(G o F)p(Xp)[f] = Xp[foGoF]
= dFp(Xp)[f oG]
= dGpp)(dFy(Xp))f]
= (dGp(p) o dFp)(Xp)[f].
O

Using Example 2 and applying Theorem 1.1 to a coordinate map, we deduce that the
dimension of the tangent space to a smooth manifold M at any point p € M is equal to
the topological dimension of M. Moreover, given a coordinate neighborhood (U, ¢) around
p with coordinate functions (x!,... 2™), denote, without ambiguity, the tangent vector
de™ ) (%) Y 3% |-

Let FF: M — N be a smooth function, and p € M. Choose coordinate neighborhoods
(U, ) around p with coordinate functions (z!,...,2™) and (V,¢) around F(p) with
coordinate functions (y!,...,y") so that F(U) C V. Then the map ¢ o F o o~ ! appears as
poFopl(zl,... 2m) = (F'(z,...,2™),...,F"(z!,...,2™)). Now, we claim that
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To prove this, it suffices to compute dF} (5~ 9 |,)[z"”]. In this regard, note that
a2 Tl = dE,(d(¢? 0 ))[a?
Do) a] = ARy (o) () la”]

= (B 0 d(p™ )y ()]

= o Fod(p™)]
= 2= 22 .

In particular, if (U, pa) and (Ug, ¢g) are two coordinate neighborhoods around p with

coordinate functions (zL,...,2™) and (x%, . ,mgl), respectively, then

o LAY 5 o
9l ]‘p—z 92, ](90a< p)) O -
=1 , B
Jacobian of <pﬁo<p;1
Returning to the first description of the tangent space via smooth parametrized curves,
note that an equivalence class [y] of smooth parametrized curves in a smooth manifold M

through a point p € M yields a unique tangent vector to M at p by
m .
d(z* o) 0
X, = ——(0)=—p-
p z_; dt ( )axz ’P

Conversely, any tangent tangent vector X, = > i*, a’ B 9|, € T,M defines a line L(t) :=

¢(p) +t(a',...,a™) where t € (—¢,€) for € > 0 sufficiently small. The image of L(t) under
d(.Z’ZO’y) (O)
dt

¢~ ! yields a smooth parametrized curve v in M through p for which = a' for

eachi=1,...,m.

Definition. Let X, € T,M and f € C*(p). Then X,[f] is called the directional derivative
of f at p. If v is a smooth parametrized curve in M through p that represents X, in the
above sense, then X,[f] = d(];i?)(O). Given a coordinate neighborhood (U, ¢) around p

with coordinate functions z!,..., 2™, in which X, = > ia?ci |p, we have
m
O(fop™)
Xplf] = ZGZT(W(P))-
i=1

An ordered basis of T, M defines an orientation on 7),M. Two ordered bases define the
same orientation if the change of basis matrix has positive determinant. Having said that,
M is orientable if and only if it is possible to choose an orientation at any point in M
so that every point p € M has a coordinate neighborhood (U, ¢) with dy, mapping the
orientation of T, M to the same orientation of R™.



The tangent bundle T'M of M is the disjoint union |_|pe u IpM. There exists a projection
map
m:TM — M

sending X, to p. The tangent bundle is endowed with a topology defined as follows: let
{(Ua, va)} be a smooth atlas for M. Then one can define U, = 7~ (U,) and

G Ua = @©(Uy) x R™

where Po(X,) = (pa(p), (Xp[zt], ..., Xp[z™])). The topology on T'M is generated by a
basis consisting of pre-images of all open subsets of p(U,) x R™ endowed with the product

topology.

Exercise. Show that the family {(Ua, ¢n)} is a smooth atlas for 7'M, and hence the tangent
bundle is a smooth manifold of dimension twice the dimension of M. Furthermore, 7 is a

smooth map.

The pairs (Uy, (o5 X id) 0 $o) are local trivializations for TM. The manifold M is called
parallelizable if there exists a global trivialization.

Example 3. The unit circle: Consider S as embedded in R?, and defined by the equation
22 + y? = 1. The embedding allows us to see the tangent space to S! at a point (x,y) as
a subspace of T(%y)RQ spanned by xa% — ya%. As a result, tangent bundle of S can be
identified with S' x R via the map sending )\(338% - ya%”(w,y) to ((z,y),\). Note that S!

is parallelizable.

2. FEBRUARY 3—-FEBRUARY 7

Definition. A section of the tangent bundle is a map s : M — T'M such that sow = idy,.
It is smooth if s is a smooth map.

A section of the tangent bundle T'M is called a wector field on M. Given a coordinate

neighborhood (U, ) on M with coordinate functions x!

by

, .-, x™ X can be locally described

Xipe (0, (X (p),-... X" (D)),
where X, = >, Xi(p)%b for any p € U. Alternatively, a vector field X on M can be
regarded as a linear operator from C°°(M) to itself satisfying the Leibniz rule. Then a
vector field X on M is smooth if and only if the function X f defined by

X f(p) = Xp[f]

is smooth for any f € C°°(M). The space of smooth vector fields on M, denoted X(M), is

a real vector space.
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The cotangent space of M at p is defined to be the vector space dual of the tangent space
to M at p. To be more explicit, let F(p) be the subspace of &(p) defined by

50) = (111 2 0) = 0 vy e vy,

Then the cotangent space T;M is defined to be &(p)/F(p). The cotangent vector
corresponding to the germ of a function f is denoted df, and called the differential of

f at p. Given a function f € C*(p), we can regard df), as a linear map dfy, : T,M — R
defined by

dfp(Xp) = Xp[f].
In particular, given a coordinate neighborhood (U, ¢) around p with coordinate functions
(x!,...,2™), the corresponding cotangent vectors are denoted {dm}o, .. .,da;;”}, and they
form a canonical basis for TyM dual to the canonical basis {%b, e M%b} for T,M.
More precisely, for any f € C*(p)

m o0l .
4 =3 WL (opp)a,

Theorem 2.1. Let F : M — N be a smooth map. Then for any p € M the map
F*p . T;;(p)N — T;M

defined by F*p(dfpp)) = d(f o F)p is a homomorphism.

Proof. This map is induced by the algebra homomorphism defined in Theorem 1.1. We only
need to show that F*, maps §(F(p)) into §F(p). In this regard, note that if f € C*(F(p))
such that [f] € §(F(p)), then [f o F] € §(p) since for any smooth parametrized curve «y in
M through p, F' o~ is a smooth parametrized curve in N through F(p), and
d((fOF)OV)(O) _d(fo(Foy))
dt dt
for all [y] € I'(p). This completes the proof. O

(0) =0

As a result, given two coordinate neighborhoods (U, a) and (Ug,¢g) around p with

respective coordinate functions (z}, ..., 27

,zn') and (xé,...,xg"‘), we have

;s O i
dxﬁp = Z axa (@a(p)) dxozp'

=1 )
Jacobian of wﬁogpgl

The cotangent bundle T* M of M is the disjoint union |—|pe a I, M. There exists a projection
map
m:T"M — M
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sending df, to p, and a natural bijection between the tangent and cotangent bundles of M

such that the following diagram commutes:

TM —== T*M

S

id

M ——

The cotangent bundle of M is endowed with a topology to make this bijection a
homeomorphism, and it admits a smooth structure when M is smooth: a smooth atlas
{(Uas pa)} for M yields a smooth atlas {(Un, $a)} for T*M where U, = n~(U,) and

Gt Ug = 0a(Us) x R™
9

is defined by @a(dfy) = (a (D), (dfp(32r), - - -, dfp(52)))-
Sections of the cotangent bundle are called covector fields on M. A covector field w is

smooth if w(X) € C*°(M) for any X € X(M).
Example 4. The differential of a function f € C°°(M) defined by

df (X)(p) == X[ f]
for any X € X(M), is a smooth covector field on M.

A smooth map F : M — N yields smooth maps dF : TM — TN and F*: T*N — T*M
defined pointwise as in Theorems 1.1 and 2.1, respectively. Although dF does not map

vector fields on M to vector fields on IV, F™* maps covector fields on IV to covector fields
on M.

Tensors and Tensor Fields

We begin with a review of some concepts from linear algebra.

Definition. Let V be an m-dimensional vector space over a field K. A tensor T of type

(r,s) on V is a multi-linear map

T: VXV =Vx...xVxV"x.---x V"= K.

s S

Here, r denotes the covariant order, and s denotes the contravariant order of the tensor.

Definition. Let W be an n-dimensional vector space over a field K. The tensor product
V ®x W is defined to be the vector space over K that is the quotient of the vector space
freely generated over K by V x W by the subspace spanned by

o (v, w) + (vo,w) — (v1 + V2, w),
o (v,wy)+ (v,wz) — (v, w1 + wa),
o c(v,w) — (cv,w),

e c(v,w) — ( )

v, cw),
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where v,v1,v2 € V, w,wi,ws € W, and ¢ € K. For any v € V and w € W, the equivalence
class of the pair (v, w) is denoted by v ® w.

Given bases {v1,...,v,} and {w1,...,wp} for V.and W, respectively, the set {v; ® w;}
yields a basis for V ®x W. To see this, it suffices to show that for any v € V and w € W,
v ® w can be uniquely written as a linear combination of vectors from this set. In this

regard, first note that the set {v; ® w;} is linearly independent. Then write

m n
V= g a;v;, w = g bjw;
i=1 j=1

where a;,b; € K to see that

m n
v®w:ZZaiiji®wj.

i=1 j=1

In particular, the dimension of V ®x W is equal to m - n.

Note also that V ®x W has the property that any bilinear map o : V x W — Z into a
vector space Z factors through V ®x W. More precisely, there exists a unique linear map
B :V ®c W — Z such that the diagram

VXW—oVeorWw

S P

Z

commutes, where h: VX W — V®x W is defined by h(v,w) = v®w. This is the universal
property that defines the tensor product up to isomorphism.

Theorem 2.2. Let V be an n-dimensional vector space over a field K. The space T" (V)
of type (1, s)-tensors on V is a vector space equipped with addition and scalar multiplication
operations defined by

o (T+S)(v1,... v,V o V) =T (v1, ..., 00,0, .o 00) + S(v1, ..o, 0, L 0,

o (cT)(v1y...,vp, 0. 00) =T (v1, .. o, O, . ULF).

Furthermore, T" (V) is isomorphic to the tensor product

VE @i VO i= VF @ - @k VI @ V@K - @k V.

T S

In particular, it has dimension m" 5.

Proof. The fact that T"5(V) is a vector space is easy to check, and it is left as an exercise.
In order to prove the latter claim, fix a basis {eq,..., e} for V and consider the dual basis
{el,...,e™} for V* defined by €’(e;) = §%;. Then define a homomorphism

B : T (V) = V& @ VO,



OT)= > Tlei, ... e, €, ..., )" ® Qe ®ej @ Dey,.
i, gk €{l,...,m}
Note that the map ® is injective since ®(7") = 0 implies that T'(e;,, ..., e;. e, ..., el) =0
forany iy, ...,ir,J1,.-.,7s € {1,...,m}, which in turn implies that 7' = 0 by multi-linearity.
Meanwhile, by a generalization of the above discussion for tensor products, the set

{"®- - ®e"Re @ Rej,}

is a basis for V*®" @, V®% and for each basis element €' ® -+ ® e @ ej, ® -+ - @ ¢;, there
exists a canonically defined multi-linear map sending a vector (vy, ..., v, v{, ..., v2) to

e (vr) e (vr) 07 (e5,) - v (eg)-

The map ® sends the latter to the basis element e @ - -+ ® e'r ® €;, @ - -+ @ e;,. Therefore,
d is surjective. U

In light of Theorem 2.2, we shall regard tensors as both multi-linear functionals on
VX" x V¥*5 and elements of V*®" @y VO3,

Let {e1,...,em} be a basis for V. Pick another basis {e},...,e),}, and let BY; be the
change of base matrix, that is, e = >7i", Bije;. Let A%; be the inverse of the matrix B;.
Then

11 lir ! !
e R --ReTRe; ®- Qe

k kr l ls k ks
= Z Alil...A ir.Bljl.”B jq€1®...®6 ®el1®...®els
kiyekrsliyls€{1,..n}

Definition. The product of two tensors one of type (71, s1) and the other of type (rq, s2)
is a tensor of type (r1 + 72,81 + s2). More precisely, if T € T" 4, (V) and S € T2, (V),
then T® S € T 12, . (V) is defined by

/% /% /% /%
(T @ 8) (V15 Vs Upy s ooy Uy s V1 s o v Uy s Ui i1+ -+ 5 Ugy 485)
L 1% 1% 1% 1%
= T(Ul, ey Upgy U e .,’Usl) . S(UT‘l-‘rlu e 7UT1+T27051+17 e 7v31+52)'

Exercise. Show that the tensor product operation is bilinear, associative, and it is

distributive over addition.

Denote by T'(V) the direct sum
P 17.(v).
rs>0
An element of T'(V) is a finite formal sum. The infinite dimensional vector space T'(V)

together with tensor product is an associative algebra, called the tensor algebra.
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Definition. The symmetrizing and alternating maps on T7¢(V) are defined respectively

as follows:
1
(ST)(vr,-.svr) = — D T(Wo(1ys - -5 Vo))
oES,
1
(‘AT)(Ula s 7v7"> = ﬁ Z Sgn(U)T(va(l)a s 7va(r))a
TES,

where S, is the symmetric group on a r element set, and sgn(o) is the sign of o € S,.
Definition. A covariant tensor 1" € T (V) is called symmetric if

T(v1,...,0) = T(Vp(1)s -+ Vo(r))-

for any v1,...,v, € V and o € S,.. It is called alternating if

T(vi,...,vr) = 8gn(0)T(Vo(1), - - 5 Vo (r))-

for any v1,...,v, € V and o € S,.

Remark. It follows from the definitions that 7' € T7((V) is symmetric (resp. alternating)
if and only if ST =T (resp. AT =T).

The set A"(V) of alternating tensors form a subspace of 7" (V)

Definition. Given two alternating tensors 7' € A" (V) and S € A™(V), we define the
exterior (or wedge) product of T and S by

)!
=—"AT®YS).
7'1! : 7‘2! A< ® )
Together with the exterior product, the direct sum
A(V) =P A"(V)
r>0

is an associative algebra, called the exterior algebra.

Exercise. To show associativity, note that if 7' € A™(V), S € A™(V), and R € A™3(V),

then
(11472 +73)!

TANSANR=
7“1!-7’2!-7'3!

AT ®S®R).

Theorem 2.3. Given two alternating tensors T € A" (V) and S € A™2(V), we have
TAS=(-1)""SAT.

Proof. Consider the permutation 7 sending k € {1,...,r;+72} to k+ry (mod 71 +r3). This
permutation can be written as ro power of the r1 + ro-cycles sending k € {1,...,r; + 72}
to k+ 1 (mod 7y + r9). Therefore, sgn(c) = (—1)"172+72°~"2 By definition,

T NS,y Upygry) = (—1)2T A S(UT(l), R U’T(T1+T‘2))'
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Meanwhile,

TA S(UT(1)7 ey UT(T1+T2)>

1
= W Z Sgn(U)T(UUT(1)7 s 7UO'T(T1)) ’ S(UO'T(T1+1)7 s 7v07(rl+r2))
’ ’ UEST‘1+’I‘2
1
- W Z SQH(O')T(UU(T1+1), ) UU’(T‘l—‘rT‘Q)) ! S(va(l)a ) Ug(m))

OESr +rq

= S/\T(Ul,. . 'aUT1+T2)'

This completes the proof. [l

One immediate outcome of this is that for 7" € A"(V) where r is odd, T AT = 0. As a
result, A"(V) is empty for r > m.

Theorem 2.4. Given a basis {e1,...,en} for the vector space V, the set {e* A --- Ae'r}
where {i1,...,i,} C{1,...,m} such that iy < --- < i, is a basis for A"(V). In particular,

A" (V) has dimension
m!

Proof. Since the set {¢"* ®---®e'r} where i1,...,4, € {1,...,m} is a basis for T"(V), and
A(T™(V)) = A"(V), we conclude that {A(e"t @ --- ® e'") = et A--- Aelr} spans A7(V).
Next, we show that the set {e’* A --- A e} is linearly independent. In order to see this,
first note that e! A--- A e™ # 0. The latter follows from

EIA"‘/\em(Eh...,em) = m!A(el®"'®€m)(617'~7€m)
= Z sgn(a)el®~--®6m(€g(1)7--~7€a(m))
oESH
= 1.

Now, we show that the set {e’* A--- A e’} is linearly dependent. Let
Z cil...ireil Ao Aefm =0
1<iy <--<ip<m

but not all coefficients ¢;,...;, € K are zero. Let {j1,...,j-} C {1,...,m} such that c¢j,..;, #
0, and {k1,...,km—r} ={1,...,m} ~{j1,...,jr}. Then

¢y = | g Ciyoip€ N oo N e ] ANeFLA NPT (e, em) = 0,
1<iy <---<ir<m

which is a contradiction. Hence, there is no such linear combination. O

Exercise. Show that a collection of vectors {v1,...,v,} C V is linearly dependent if and
only if v7 A--- Awvy = 0.
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Corollary 2.5. For any r > n, the vector space A"(V) is trivial. Hence,

m
-G
r=0
and it has dimension 2™.
Proof. This follows from Theorems 2.3 and 2.4. U

Let H : V — W be a linear map. Then for any » > 0, H induces a linear map
H*: A"(W) — A"(V) defined by

(H*T)(Ula s 77]7“) = T(H(Ul)v s 7H(U7"))7
where vy,...,v, € V.

Theorem 2.6. Given a linear map H : V. — W, H* : A(W) — A(V) commutes with the
exterior product, i.e. for any T € A" (W) and S € A™(W)

H*(T'ANS)=H"TNH*S.
Proof. Let vi,...,0r,Vp 41, ,Ur,4r, € V. Then

H*(T ANS)(V1, -y Upyy Ury 41y s Urytry)
—(TAS)( (v1), -+ H(vry ), H(vpy 1), -5 H(Ury4r,))

Z T 0’(1) H(Ua(n))) ’ S(H(UU(T1+1))7 ERR H(”a(n—&-rz)))

7”1 —l— 7“2 €S iry
1 " *
= m Z (H T)(Ua(l)v s 7’00(7“1)) ’ (H S)(UU(T1+1)7 <o Uo(m—‘rm))
’ O'GST1+T2

=(H*"TNH*S) (01, Uy, Ur 4153 Upitry)-
]

Definition. Given v € V and T' € A"(V), we define the contraction of T by v as the tensor
1, T € A" 1(V) by

wT(v1, ... 1) =T (v,01,...,0.—1).
Definition. For any r, s > 0, the contraction operator

¢ T (V) = T 1_1(V)

is defined by
i@ @U@ @uy) =i (VU @ @5 ®- U QU ®- - ;R @),
where v],...,v. € Vand vj,...,v} € V* arbitrary.

Lemma 2.7. Letve V, T € A" (V), and S € A">(V). Then
w(TANS)=(LT)NS+ (=1)"'T A (1,5).



14

Homework-1
Due 2/20/14

Please work these problems out on your own, and if you consult a book or any other

reference, please include it in your solution. Feel free to email me or visit me in my office

if you need clarification.

(1)
(2)

(5)

Show that the tangent bundle of a smooth manifold M is a smooth orientable
manifold.

Similar to Example 2, give a description of the tangent bundle of the 3-sphere
explicit enough to deduce that S is parallelizable. (Hint: Consider S® as embedded

1

in R* with coordinates z!,...,z*, and note that the restriction of the vector field

to S is nowhere vanishing.)

In fact, all closed orientable 3-manifolds are parallelizable. Specific to the case
of spheres, both S' and S® admit the structure of a Lie group; therefore, they
are parallelizable. Although these are the only spheres with a Lie group structure,
there is another sphere, namely S”, which is also parallelizable. Bott and Milnor,
and independently Kervaire, proved that S*, S®, and S7 are the only parallelizable
spheres, a result which requires sophisticated tools from algebraic topology.

Let M be a smooth m-dimensional manifold, p € M, and fi,..., fr € C*°(p) where
k < m. Show that one can find a coordinate neighborhood (U, ¢) around p for
which f1,..., fi are some of the coordinate functions if and only if dfip, ..., dfy, are
linearly independent in T, (M).

Let V be a 2n-dimensional vector space over R, and € A?(V) be such that

QA AQ 0.
—_—

n—times

(a) Show that for any non-zero v € V there exists w € V such that Q(v,w) = 1.
(b) Show that V* admits a basis {e!,...,e", f!,..., f*} such that

Q= Z el A fl
i=1
(Hint: Use part (a), and the definition that for a subspace W C V
W= {veV|Quuw) =0vYwe W}.)

An alternating tensor such as Q is called a symplectic form on V.

Prove Lemma 2.7.



15

3. FEBRUARY 10-FEBRUARY 14

Tensor Bundles and Tensor Fields
Let M be smooth m-dimensional manifold, and p € M. Denote by T"4(p) the vector space
of type (r, s) tensors on T, M. Then,

T"s(M) = |_| T"s(p)
peEM
is called the (r,s)-tensor bundle on M. The topology on 1" s(M) is described similarly to the
topology on the tangent/cotangent bundle of M. To be more precise, let 7 : T" (M) — M
be the projection map, and {(Ua,pa)} be a smooth atlas on M. For each coordinate

1

neighborhood (Uy, ) with coordinate functions x', define local trivializations

Uy =71 YU,),
Uo7 (Ua) = Ua x [(R™)* @ (R™)®7],
%R;,r-‘—s
by
‘1"'js i1 28 8 8
Wo( > P iy d@)p © - @ A@T)p © Sy @ © )

ilv---7i7”7j17---7j56{17"'7m} o Ta
=@ > I e @ @ @, @ ey,),

7;17~~~7iTaj17"'7j8€{1"“7m}

where {e1,...,en,} is the standard basis for R™ and {e!,...,e™} is its dual. Then the
r+s

topology of T"4 (M) is generated by pre-images under $a of open subsets of U, x R™°,

endowed with the product topology. With this topology and the atlas {(Uy, (¢a X id)oV¥s)},

"5 and 7 is a

the tensor bundle 7%;(M) becomes a smooth manifold of dimension m 4 m
smooth map. In particular, the (0,1)-tensor bundle is the tangent bundle of M, while the

(1,0)-tensor bundle is the cotangent bundle of M. Similarly, we define the degree-k exterior
bundle of M as
AR = | | AR M),
peEM
endowed with the topology induced from T%y(M), and the projection 7 : A¥(M) — M.
Note that whenever U, NUg # 0, we have

Voo U3t (p, T) = (P, 9as()T),

where gog : Uy NUg — GL(m" %, R) is smooth such that

® gaa(p) =id for any p € U,,
® B © gpy © gya(p) =id for any p € U, NUg N U, # 0.

The smooth maps gnp are called the transition functions for the tensor bundle T4 (M).
The data provided by the transition functions is enough to construct the tensor bundle.
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Definition. A smooth (r,s)-tensor field on M is a smooth section of 7 : T"s(M) — M.
A smooth section of the exterior bundle 7 : A¥(M) — M is called a degree-k differential
form, or simply a k-form. Tensor product, exterior product, and contraction operations
can be carried over to smooth tensor fields via pointwise definitions.

1

In a given coordinate neighborhood (U,,ps) with coordinate functions xg,...,z5

a (r,s)-tensor field T can be written as

0

j M
ozl

Tlu, = Z lemjsilu.irdl‘il R QR dq:f; ®
U1yeesbr, 1,1 €{1,..om}

where T717Js; ... € C®(U,). If (Ug,p) is another coordinate neighborhood with
coordinate functions xé, ..., such that Uy N Up # 0, and

for

0

Ls
83@6

)

0
Ty, = 3 T, Ay ®--~®dmlz{®ﬂ®~--®
Kook O sl €{1,00m} L

where T4 . € O%(Upg), then
Ozl Oxlr ' 83721 &Uf;

l1-L . i1 -1

T ki-ky = E (le J i1-ir © P © (pﬁ) . P - —.

oxy  Oxfr Ozl Oxk
D1 yeenyirsJyeesfs €{1,00ym} B B a a

Given a smooth vector field X on M, we can differentiate smooth tensor fields along X,
generalizing the notion of directional derivative of a smooth function along a smooth vector
field:

Theorem 3.1. Let X € X(M), and p € M. There exists an open neighborhood U of p,

€ > 0, and a unique smooth map
p:U X (—€€) = M,

such that for any q € U, and t € (—e¢,€),
d
dp(%kq,t)) = Xp(q,t)a
with p(q,0) = q.

Proof. This is a local statement, and the proof is an application of the standard existence
and uniqueness result on initial value problems for ordinary differential equations. For more
details, see [2, IV-Theorem 4.2]. O

Definition. Given a smooth vector field X on M and a point p € M, the smooth
parametrized curve p(p,-) : (—e€,€) — M is called an integral curve of X through p. The
collection of smooth maps {p(-,¢)} form a local one-parameter group of diffeomorphisms.

(In particular, p(-, —t) = p(-,t)~1.)

Now let X and Y be smooth vector fields on M, and w be a k-form on M.
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Definition. The Lie derivatives of f, Y, and w along X are respectively defined by

@xV) = G| =D
(Lxw)p = % tzo(p(-,t)*w)p.
Note that if f € C*°(M), and X € X(M), then
ExHE) = G| bt D) = 5| (7o nt.0]| = X5@)

More generally, we can define the Lie derivative of a smooth tensor field along a smooth
vector field on M in such a way that it is linear, and it satisfies the Leibniz rule with respect
to tensor product, i.e. if T" and S are smooth tensor fields on M, then

Lx(T®S)=(LxT)®S+T®& (LxS).

For this, define the Lie derivative of a smooth tensor field T by a smooth vector field X by

(@xThpi= | (00T,

*
’

where it is understood that p(-,¢)* acts on the covariant part of the tensor field as p(-, )

and it acts on the contravariant part of the tensor field as p(-, —t),.

Theorem 3.2. The contraction operator commutes with the Lie derivative, i.e. if T is a
smooth tensor field on M, and X € X(M), then

ﬁx(CijT) = Cij(ﬁXT).
Proof. Let p € M. Then

(Lx(ciT))p =

Lemma 3.3. Let X,Y € X(M), and w be a differential form. Then
Lx(tyw) —tyLxw =t yw.
Proof. Consider the tensor w ® Y. Note that tyw = ¢'1[w ® Y], and hence

Lx(yw)=Lx(chw®Y])=ciLx(w®Y),
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by Lemma 3.2. Meanwhile, by Leibniz rule,
Cllﬁx(w &® Y) = Cll[ﬁx(a)) RY +w® [,XY} =wlxw+ LY W.
This completes the proof. [l

Lemma 3.4. Let T be a smooth (r,s)-tensor field on M, and X € X(M). Then for any
X1,..., Xy € X(M) and any 1-forms wy,...,ws on M

,CX[T(Xl, . .,XT,wl,. . ,UJS)] = (,CxT)(Xl, e ,Xr,wl, e ,ws)

r
+ZT(X17-~-7£XX2' ...,Xr,wl,...,ws)
i=1

s
+ZT(X17~~7X7",W17-~,»CXWj;~-;Ws)~
7j=1

Proof. This follows by applying Theorem 3.2, together with the Leibniz rule, to

i I TRW R Qw, X1 @ ® X,
———
(r+s)—times

O

Definition. Let X and Y be smooth vector fields on M. Define their Lie bracket [X,Y]
pointwise by
(X, Y]p[f] = Xp[Y f] = Y[ X f],

for any f € C*(p).
Theorem 3.5. For any X,Y € X(M), we have
LyY = [X,Y].

Proof. Let p € M and f € C*®(p). Then

(LxY)plfl = ﬁtio(dp(w—t)(Y))f(p)

= —| ()Y (fop(,—t)))(p)

t=0

) d
- tzo(p(-,t) YI)p) + Yol .

_ % VSl 0) + Y-

= X[V =Y[X[].

O

Next, we show that the space of smooth vector fields on M together with the Lie bracket

has the structure of a Lie algebra:
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Theorem 3.6. Let X,Y,Z € X(M) and f,g € C°(M). Then
(1) [X’Y} = _[Y7X]7
(2) [X+Y,Z]=[X,Z]+ Y, 7],
(3) [fX,gY] = f(Xg)Y —g(Y [)X + fg[X,Y],
(4) (Jacobi’s identity) [X,[Y,Z]| +[Y,[Z, X]| + [Z,[X,Y]] = 0.

Proof. The proof simply uses the definition of Lie bracket. To prove (4), let f € C>*(M)
and write

(X, Y20 f = XY(2f) = XZ(Y ) =Y Z(X[) + Z2Y (X ).
After cyclically permuting, we get similar equations for Y, [Z, X]||f and [Z,[X,Y]]f. Add

the three equations side-by-side and observe the cancellations. ([
Proposition 3.7. Let X,Y € X(M), and w be a k-form on M. Then
Lx(Lyw) — Ly (Lxw) = Lix yw-

Proof. The proof is by induction on k. In this regard, note first that the above equation is
satisfied for any f € C°°(M), namely,

Lx(Lyf) = Ly(Lxf) = XYV [) =Y (X[) = [X,Y]f = Lix yw.

Suppose that the equation holds for all n-forms where n < k. Let w € QF(M), and
Z € X(M) be arbitrary. Then, by assumption,

Lixyi(tzw) = Lx(Lytzw) — Ly (Lxtzw).
Meanwhile,
Lixy)(tzw) = tzLx y1w + Xy, 2195
and
Lx(Lyizw) = Lx(tzLyw+ Ly zw)
= 17Lx(Lyw) + tx,71Lyw + 1y, 71LxW + (X [y, 2] @,
by Lemma 3.3. Similarly,
Ly(Lxizw) = Ly(zLxw+ tx zw)
= 1z7Ly (Lxw) + 1y, 71£xw + tx, 21 Lyw + Ly, [x, 2@
Therefore,
Lx(Lytzw) — Ly (Lxtzw) = 1z[Lx(Lyw) — Ly (Lxw)] + vx [y, 21w + Ly, [z, x]@-
Since by Jacobi’s identity,
X Y],Z)W = Xy Z)) @ Yy (2 X)W

we have

wz[Lx (Lyw) = Ly (Lxw)] = t2L1x,y|w
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for any Z € X(M). This completes the proof. O
Proposition 3.8. Let X,Y1,...,Y, € X(M), and w be a k-form on M. Then
(Lxw)(Y1,...,Yr) = Lx|w(Yy,...,Y)]—w([X, V1], Yo, ..., Yi)— - —w(Y1, ..., Y1, [X, Yi]).
Proof. This follows from Lemma 3.4. O

Next we focus on the exterior bundle. Denote by Q¥ (M) the vector space of all k-forms
on M. Then the exterior product endows

with the structure of an algebra, called the exterior algebra. In fact, Q(M) is a graded
algebra where the grading is the degree of differential forms. Furthermore, if wy and wy are
differential forms on M, and X € X(M), then

Lx (w1 Awe) = (Lxwi) Awa + w1 A Lxws.

Hence, Lie derivative along a smooth vector field on M is a derivation on Q(M). This
follows from the fact that Lie derivative satisfies the Leibniz rule with respect to tensor

product, and it commutes with the alternating operator.

Theorem 3.9. Let M be a smooth m-dimensional manifold. Then there erists a unique
real linear map d : Q(M) — Q(M) such that

(1) If f € C°(M) = QO(M), then df is the differential of f.
(2) If wy € Q¥(M) and wy € QY(M), then

d(wy Aws) = dwy Awy + (—1)Fwy A dws.

(3) dod=0.

This linear operator is called the exterior derivative.

Proof. We prove the theorem by showing that exterior derivative is a local operator. In
other words, for any k-form w, dw is uniquely defined by its restriction on coordinate
neighborhoods.

Step 1: Let {(Us,¢a)} be a maximal smooth atlas on M, and fix a coordinate

neighborhood (U, ¢,,) with coordinate functions z!. ..., 2. The restriction of any k-form
g , P Y y

(age

w on M to U, can be written as
wlp, = Z fiyipdt A - oo A dale,
1<) << <m
where fj,..;, € C°(Uy,). Define
du, wly, == Y dfiyeiy Adall Ao Adall,

1<i1 < <ip<m
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where .
Ofiy iy ,
dfiy-iy = Y ﬁd%-
j=1 OFa
From this, properties (1) and (3) follow immediately. In order to prove property (2), let
wily, = Z Firoigdalh N A dal,
1<i1 << <m
waly, = Z 31 Jldle o Adalt,
1<ji<-<jis<m
Then

dy,, (w1 Awa)ly.

_ 1 oA L. ik Jl . Ju
= du, [ > Lo da A NdZEY AN (Y dadl A Adad)
1<i1 <-+<ip<m 1<ii<<ji<m
= dy, > b in f g AT A N dalE A dall A A dal!
1<i1 << <m

1<j1<+<Gi<m

_ 1 i1 iy J1 oA L. Ji
= E d(fi;..q, Jl g)dxg A Ndag Adxlt A A da)
1<ip<-<ipg<m
1<ii<-<gii<m

, . . ) . . . .
= S (Bt L, dfh AT A Adals Adadt A A da)
1<iy < <ip <m
1<jii<--<ji<m

- Z f]l ]ldl /\dxfxl/\'--/\dxiof/\dacgl/\.../\dlez

i1l
1<t << <m
1<Gi<<i<m

) ) , . . .
+ Y R Adalt A Adal Adall A A dad!

1<i1 << <m
12/1<<j1<m

= S (dfl g Adal A Adall) A AdzIl A - A dadt)

111k (.71 Ji

1< <--<ip<m
1<j1 < <gi<m

+ Y (DRl A A dal) A (dfF g, Adadt A A dadl)
1<i1 << <m
1<1<<j<m

= du,(wily,) A waly, + (=1)F wily, Ady, (waly,)-

Step 2: Now, if dys : QM) — Q(M) is a linear operator with the properties listed in
the theorem, then we want to show that (dyw)|y, = dy,w|y, for any U,. Having fixed
p € U,, there exists a compact subset K C U, and an open subset V C K containing p,
and smooth functions h,g € C*(M) such that h(¢) = 1 at any ¢ € K and h(q) = 0 for
any q ¢ Uy, while g(p) = 1 and g(q) = 0 for any ¢ ¢ V. Denote by @ the k-form hw on M.
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Note that @|, = wl|,,. Write

'L
wly, = g fiy i d A dx
1<iy < <ip<m

and then
o= Y hfi.d - A dah,

1<ig <<, <m
Since g(w — @) = 0 and dyy is a linear operator, dys(gw — g) = 0. But then

dg N\ (w—@)+gdy(w— o),

by properties of the operator djs. Since dg can only be non-zero in V', where @ = w, we

have
gdyw = gdyQ.
Meanwhile,
(gdy@), = S dfiyeigp Adall, A Adalh,
1<ip << <m
= (du,wlv,)p-

Since the above equality is true for any p € U,, we have the desired result.

Finally, the uniqueness assertion follows from repeating the above argument to deduce
that for two coordinate neighborhoods (Ua, ¢a) and (Ug, ¢g) such that U = U, N Ug # 0,
we have

(du,wlua)|lv = dvwlv = (du,wlu,)lu

4. FEBRUARY 17-FEBRUARY 21

Proposition 4.1. For w € Q¥"Y(M), and X1,..., Xy € X(M), we have

k
(dw)(X1,...,Xp) = Z(— VX (W(X1, . Xy, XR)

+Z D Mo([Xs, X5), X1y, Xy Xy, Xp).

1<j

Proof. Tt suffices to check this formula locally. In this regard, let (U, ¢) be a coordinate

neighborhood with coordinate functions z!,...,2™. Then any X € %(Ua) can be written
as a C°°(U)-linear combination of the smooth vector fields %, cee Bmm‘ Meanwhile,
w]Ua = Z fil...ik_ldxil VANV dxik*l,

1<iy < <ig_1<m
where fi,...,_, € C®°(U). Since differential forms are multi-linear on X(M) regarded as

a COO(M)—module it is enough to consider the case where Xi,..., X} € X(U) are chosen

o .
93]1 e GTh Then consider

0
among Wv“waxm' Fix
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0

0 0 71 Th—1
(dwly (=—,...,——) = S dfiyeiy, Ada A A da (5o i

1<y < <ip<m

)

_ E _1\stlge R T 3 R X It U L LI Ll il
- ( 1) dfll"'lkfl(axjs) 5_]1 5_]'3,1 6j3+1 5.]19
1< < <ip—1<m
k

— Z(_1)3+1 8fj1"'jsfljs+1"'jk
s ’
s=1
Meanwhile, the right-hand side of the formula is equal to
k k
0 0 0 0 0 Of iy oietdansi
_1\s+1 _ _1\s+1 J1)s—1)s+1"""Jk
sz_:l( 1) 8xjsw(8$j1 T Qs Ogpdstr T 8xjk) N sz_:l( 1 s ’
since [%, %} =0 for all 4,5 € {1,...,m}. This completes the proof. O

Corollary 4.2. For any w € QY (M) and X,Y € X(M),
dw(X,Y) = Xw(Y) - Yw(X) —w([X,Y]).
Theorem 4.3. Let F : M — N be a smooth map, and w € Q*(N). Then
Frdyw = dy Frw.

Proof. Tt suffices to check this property locally. In this regard, let (U, ) and (V,¢)

1 m 1 n
s x™and ¥y, ..y,

be coordinate neighborhoods on M with coordinate functions x
respectively, such that F(U) C V. Now consider a k-form w on N whose restriction to V'
can be written as
wv=" Y fueidy A Ady™,
1<iy<-<ip<n
where f;,..;, € C*°(V). Then

dNW‘V = Z dlezk VAN dyil VANEEIAN dyi’“,

1<i1 << <n

and

F*(de‘v)

S (Frdfiyi) AFrdy™) A A (Frdy™)

1<i1 << <n

- Z d(fil'--ikoF)/\d(yilOF)/\.../\d(yikoF)

1<ii << <n

= dy >, (faigoF)Ad(y" oF) A--- Nd(y™ o F)

1<i1 < <ip<n

= dyF* > fieadyt A Ady™ = dy(Fw)|u.

1<i1 <<, <n
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Theorem 4.4 (Cartan Formula). Let w € Q¥(M), and X € X(M). Then
Lxw=dixw + txdw.

Proof. To prove the claim, let Xi,..., X € X(M). Then by Proposition 4.1

k
(dexw)(X1,...,Xp) = Z(— VX (w(X, X1, Xy X))

+Z DX, (X X5, X1, Xy Xy, Xg).

1<J

Meanwhile,

(Lxdw)(Xl, ce ,Xk) = dw(X,Xl, e ,Xk)

k

= Xw(X1,..., Xp) + > (~1w(X, X;), X1,..., X, ..., Xp)
j=1

+Z (WX, X1,..., X4, ..., Xp)

+Z Zﬂw Xz,X]X .,Xi,...,Xj,...,Xk).
1<j

Adding the right-hand sides of the equations for dixw and ¢xdw, we see that
(dexw + exdw)(Xq, ..., Xp) = Xw(X1,..., X +Z Dw(X, X,], X1, .., X, Xg),

which is precisely (Lxw)(X1,..., X)) by Lemma 3.4. O
Corollary 4.5. Lie derivative commutes with the exterior derivative.
Proof. This follows at once from Theorem 4.4. O

Definition. A smooth k-dimensional distribution A on M is a smooth assignment of a
k-dimensional subspace A, C T,,M to every point p € M such that it is locally spanned by k
linearly independent smooth vector fields X7, ..., Xi. A smooth k-dimensional distribution
A on M is called involutive if it is closed under Lie bracket. It is called completely integrable
if every point p € M has a coordinate neighborhood (U, ) with coordinate functions
x',..., 2™ such that {6%1’ ceey a%k} is a local basis for A. Given a smooth k-dimensional
distribution A on M, an integral submanifold N, through a point p € M is a smooth
manifold such that T, NV, = A, at every point g € N,.

Remark. Given a completely integrable smooth k-dimensional distribution on M, integral
submanifolds through every point in M exist.

Theorem 4.6 (Frobenius Theorem). A smooth k-dimensional distribution A on M is

completely integrable if and only if it is involutive.



25

Proof. See [2, IV-Theorem 8.3] or [4, Theorem 4.4] for a proof. O

Alternatively, we may regard a smooth k-dimensional distribution locally as the kernel
of m — k linearly independent 1-forms on M. Then we can rephrase the condition for a

smooth k-dimensional distribution to be involutive as follows:

Theorem 4.7. Let A be a smooth k-dimensional distribution on M. Then A is involutive
if and only if every point p € M has an open neighborhood U on which there exist m — k

linearly independent 1-forms n**1, ... 0™ wvanishing on A and satisfying
m .
df = > 00 A0,
i=k+1

for some 1-forms Hg on U.

Proof. Given p € M, there exists an open neighborhood U of p such that a local basis
X1,..., X} for A can be completed to a local basis X1,...,Xg,..., X, of TM over U. Let
n',...,n" ...,n™ be the dual basis of covector field on U, and write

m
[Xi, X;] = Z c®ij Xs,
s=1

where ¢*;; € C°°(U). Then A is involutive if and only if ¢*;; = 0 for 1 < i < j < k and
k < s <m. By Corollary 4.2

m
dn" (X, Xj) = =" (X5, Xj]) = =ne (D 3 X) = =",

s=1

forany 1 <i< j<mand1l<r<m. Meanwhile,
dp" = Y Kan’ A,
1<s<t<m
for any 1 < r < m. Hence
r _ r S t _r
dy" (X, Xj) = Y wan’ An'(Xi, X;) = K"y,
1<s<t<m
forany 1 <i < j <mand 1 <r <m, and hence, k";; = —c";j. Therefore, A is involutive
if and only if for any k < r < m,
dy" = > Kan®An.

k<t
1<s<t

9: = Z ’%TStnsa

1<s<t
for each k < r,t < m completes the proof. ([

Taking
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Integration on Smooth Manifolds
Recall that every topological manifold is paracompact, namely, every open cover of the
manifold admits a locally finite refinement. This is used to prove that every smooth manifold

admits a smooth partition of unity:

Definition. A smooth partition of unity on a smooth manifold M is a collection {fy} of
smooth functions on M such that

(1) fx=0on M,

(2) {supp(fr) :=={p € M| fr(p) # 0}} is a locally finite cover of M,

(3) 22a falp) =1 for any p € M.

Given an open cover {U,} of M, a smooth partition of unity {f)} is said to be subordinate

to this cover if for every fy there exists U, such that supp(fy) C U,.
Theorem 4.8. Fvery open cover of M admits a smooth partition of unity subordinate to it.

Proof. We can find a countable basis {Uy} for the topology of M consisting of relatively
compact coordinate neighborhoods. We may further assume that this basis is a locally
finite cover of M, by paracompactness, and that every Uy contains an open set V) such that
V\ C U, and {V,} is an open cover of M. Now there exist smooth functions hy € C°°(M)
such that 0 < hy <1 and

1 ifpeVy
ha(p) =
0 ifp¢ U,

Z ha(p)
By

is a finite sum, and hence defines a smooth function A on M. Moreover, h > 1 since for

By local finiteness,

every point p € M there exists Uy such that p € Uy and hy(p) = 1. Then the functions

form a partition of unity subordinate to {U,}, and therefore to any open cover of M. [

With the help of the above theorem, we give a new and more practical criteria for a

smooth manifold to be orientable.

Theorem 4.9. Let M be a smooth m-dimensional manifold. Then M is orientable if and

only if M admits a nowhere vanishing m-form.

Proof. Suppose that M admits a nowhere vanishing m-form 2. Given a smooth maximal
atlas on M, and a coordinate neighborhood (U, ) with coordinate functions z},..., 2™,

suppose that the coordinate functions are ordered in such a way that

Qly = fdz* A~ A dz™.



27

Then for any two coordinate neighborhoods (U, ¢«) and (Ug, pg) with coordinate functions

1
Loy -

., xpt and :z:é, .. ,a;gb, respectively, such that U, N Ug # ()
Qlu, = fadzy A+ Adal,

for some positive function f, € C*°(U,), and

Qlu, = fadxg A+ Adx}f,

for some positive function fg € C°°(Ug). By coordinate transformation rule for differential

forms 9l 5 54
x xht x!
fs=1 sgn(o)— o5 - ooy = Jadet(—5)
« UEZSm 81‘2(1) axg(m) axjﬁ
on U, NUg. Since f, >0 and fg > 0, we have
det(2%2) > o,
31‘%

and hence M is orientable. Conversely, if M is orientable with an oriented smooth maximal
atlas {(Ua, ¢a)}, choose a partition of unity {f)} subordinate to the cover {U,}, and for
each fy, Uy such that supp(fy) C Ux. In particular, {U,} is an open cover of M. Define
an m-form €2 on M by

0= Zf)\dw}\/\'--de.
A
This form is nowhere vanishing. At any point p € M

Q, = Zj}\(p)dx}\p A« drly,
A

where f\(p) > 0, and fy(p) # 0 for all but finitely many A. Furthermore, f\(p) # 0 for at
least one A since ), fa(p) = 1. Meanwhile, for any two connected coordinate neighborhoods
(Ua, ¢a) and (Ug, s) with coordinate functions xl,...,z™ and xé, ..., 2y, respectively,

such that U, N Ug # (), we have

da:(lxp A Ndrg, = det(a 2 )(ps(Pp)) dxép A Ndag,
B
where det(gx—%‘)(cpg(p)) > 0. This completes the proof. O
s

Next, we define the integral of an m-form on M. In this regard, let {(Ua,¥a)} be an

oriented smooth maximal atlas on M. Then consider an m-form w on M with compact

support, namely, supp(w) := {p € M | w, # 0} is compact. Fix a partition of unity {fy}
subordinate to the cover {U,} and for each f\, Uy such that supp(fy) C Uy. Since supp(w)
is compact and {supp(fi)} is a locally finite cover of M, supp(w) N supp(fr) = O for all but

finitely many A. Therefore, we can define
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M U

where fU)\ frw is the Riemann integral

/ (Hropyt) - (haopyhday ... day,
oA (Ux)

and w|y, = hy dx}\ A -+ Adz'. Next, we show that the integral wa is independent of
the choice of the cover {Uy} and the choice of the partition of unity {f\}. Suppose {U}}
is another cover of M such that supp(fy) C Uj. In particular, supp(fy) C Uy NUj. Then
wlyy = hly dzl A+ Adz", and on Uy N U}

i
ox’

/ f— .
Ry = hy det(ax,)\j),
where det(z;g,%-) > 0 by virtue of the fact that the atlas {(Ua, ¢a)} is coherently oriented.
By change ofAvariables formula for Riemann integrals
[ (heerh) tnogr e doy
e (UxNUY)
-1 -1 Oz n m
- (o @) - (a0 @) - |det (S )| day ... dayr.
4 (UANUY) Oxy
Since det(gi,%-) > 0, the right-hand side is equal to
A
—1 1—1 0z} m
(f)\OSOA )(hAOSO)\ )d@t( ,])dﬂ?)\dl‘)\
4 (UANUY) oz,
= / (f)\oqp/;l) . (hg\ogo’;l)dx;l...dﬂs/)fn,
P\ (UANUY)
and hence

;/Uxfwz;/UmU;fW:;/U;f/\w

On the other hand, if {g,} is another partition of unity subordinate to {U,}, and {U}.} is
an open cover of M such that supp(g.) C U}, then

E)\: U f)\w N E/\:/U/\ Zﬁ:gﬂ(f/\W):%:;/{{mU/\ gﬁf}\w

- XH:/U;ZA:%M B zﬁj/%%jh(gnw)
_ zﬁ:/égnw.
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Homework-2
Due 3/6/14
Let M be a compact smooth m-dimensional manifold. Then every smooth vector
field X on M generates a smooth action of R on M by diffeomorphisms, i.e. there
exists p : M x R — M smooth in the sense of Theorem 3.1 (see [2, IV-Section 5]).
Such vector fields are called complete, and the corresponding smooth map p is called
the flow of X. Prove that for X € X(M) and w € Q¥(M),
d
ap
and that for a smooth 1-parameter family of k-forms {w;}ier,

d dwy

Pt = p(, )" (L + ).

More generally, a smooth time-dependent vector field X' on a compact smooth

('7 t)*w = p(7 t)*'ch7

m-dimensional manifold M generates an isotopy of M, i.e. a smooth 1-parameter
family of diffeomorphisms {pi}ter of M such that py = idpr and dpéigp) = X;t(p).
The second formula holds when p(-,t) is replaced by p; and X is replaced by X°.
Let M be a smooth 3-dimensional manifold, and A be a smooth 2-dimensional
distribution on M defined as the kernel of some 1-form A. Prove that A is completely
non-integrable, i.e. there is no point p € M where [X,Y], € A, for any smooth
vector fields X, Y tangent to A in a neighborhood of p, if and only if A A dX is a
volume form on M. (Hint: Use Corollary 4.2.)

A smooth distribution such as A is called a contact structure on M, and a 1-form
such as X\ is called a contact form.
Given a contact form A on a smooth 3-dimensional manifold M, show that there
exists a unique smooth vector field R on M, called the Reeb vector field, such that
tpA =1 and trdX = 0. Then use the time-dependent version of the second formula
in Question (1) and the Cartan formula to show that if {\},c[0,1) is a smooth path
of contact forms on a closed smooth 3-dimensional manifold M, then there exists
an isotopy {pt}se(0,1] such that p;A\; = fi Ao where f; € C°°(M).
Prove the following theorem:

Theorem 4.10. Let M be a smooth oriented m-dimensional manifold.

(a) Let —M denote the smooth manifold M with reverse orientation. Then
[ oyw=— [y w for any w € Q"(M) with compact support.

(b) Let F : My — My be a diffeomorphism, and w € Q"™ (Msz) be compactly

supported. Then
F*w = :l:/ w
M, M,

where the sign on the right-hand side depends on whether the Jacobian of F

has positive or negative determinant.
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5. FEBRUARY 24-FEBRUARY 28

Definition. An m-dimensional manifold with boundary is smooth if it admits a maximal
atlas {(Uq, va)} where U, are open subsets of M and ¢, are homeomorphisms of U, onto

open subsets of the upper half space H™ such that:

(1) {U4} is an open cover of M,
(2) If Uy N Ug # 0, then the transition map ¢g o ¢y is a diffeomorphism.

Note that if M is a smooth m-dimensional manifold with boundary, then 0M is a smooth
(m—1)-dimensional manifold without boundary. Given a maximal smooth atlas {(Ua, ¢a)}
as in the above definition, a smooth atlas on OM is defined by {(Uy, N OM, @ulv,non)}-

If M is a smooth oriented m-dimensional manifold with boundary, then OM admits
a natural orientation induced by the orientation on M, called the boundary orientation.
Locally, in a coordinate neighborhood (U, ¢) of a boundary point with coordinate functions
x', ..., 2™ such that U N M is diffeomorphic to the locus ™ = 0, if the orientation of
the manifold is determined by the form dz' A --- A dz™, then the boundary orientation is
determined by the form (—1)™dz! A --- A da™ 1.

Theorem 5.1 (Stokes’s Theorem). Let M be a smooth oriented m-dimensional manifold

with boundary, and w € Q™1 (M) with compact support. Then

/dw:/ 7w,
M oM

where i : OM — M is the inclusion map, and it is understood that OM is endowed with the

boundary orientation.

Proof. See [2, VI-Theorem 5.1] or [4, Theorem 4.2] for a proof. O

We can also define integrals of differential forms over images of smooth maps from

simplices or polyhedra into the manifold. For example, given a k-form w and a smooth

/w:—/ ocrw.
o AF

Stokes’s Theorem can be generalized to integration over smooth simplices. With the

k-simplex o : A* — M, we define

preceding understood, an interesting application of Stokes’s Theorem is the following:

Theorem 5.2. Let w € QY(M) such that dw = 0, p,q € M be two points, and 1,2 be two

homotopic piecewise smooth paths in M joining p to q. Then

[o=]w
7 2

Proof. If the homotopy between the two paths is smooth, then the theorem follows from an
application of Theorem 5.1. If not, we break the homotopy into smooth pieces and apply
Theorem 5.1 to each piece (see [2, VI-Theorem 6.6] for details). O
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Corollary 5.3. Let M be a smooth simply connected manifold, and w € QY (M) such that
dw =0. Then w = df for some f € C*(M).

Proof. Fix a basepoint point p € M and define

fa) = L v,

where 7 is a piecewise smooth path from p to q. By Theorem 5.2, f is a well-defined smooth
function. Moreover, changing the basepoint changes the function by an additive constant.
Let (U, ) be a coordinate neighborhood around p with coordinate functions z?,...,z™

such that ¢(p) = (0,...,0), and write

m .
w= Zwidatl,
i=1
where w; € C*°(U). Then

0 d t
o) = koo [ i = (7wl = o)

where ~; : (—€,€) — U such that p ov;(¢t) = (0,...,0, _t ,0,...,0). Hence df, = wp.

~—~

ith place
Since changing the base only changes the function by an additive constant, df, = w, at any
qe M. [l

Property (3) in Theorem 3.9 indicates that we can define a chain complex with Q(M)
being the underlying vector space and the exterior derivative being the boundary operator.
Since the exterior derivative increases the grading by 1, the result is a cohomology theory,

called de Rham cohomology. The de Rham cohomology groups of M are defined as follows:

ZEo(M) = {we QF(M)|dw=0}
Bro(M) = {we QF(M) | w=dnfor some n € Q*"1(M)}.
Then 75 ()
k ._ ZdR '
HdR(M) : BsR(M>

A differential form in Z¥, (M) is called closed, while a differential form in BX, (M) is called
exact. Note that, by Property (2) in Theorem 3.9,

Hijpr(M) = @ngR(M)a

is an R-algebra, and by Theorem 4.3, a smooth map F' : M — N induces an algebra
homomorphism F* : Hjp(N) — Hjp(M) that maps each H5,(N) linearly into HX,(M).
Moreover, given two smooth maps F : M — N’ and G : N’ — N, we have (GoF)* = F*oG*
as a result of Theorem 1.1. In particular, the algebra homomorphism induced by the
identity diffeomorhism of M is the identity map. Therefore, if M; and Ms are diffeomorphic
manifolds, then Hj,(M;) and H}j,(Ms) are isomorphic.
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To sum up, de Rham cohomology is a contravariant functor from the category Diff
of smooth manifolds with morphisms as smooth maps between smooth manifolds to the
category of R-algebras.

Theorem 5.4 (de Rham Theorem). Let M be a smooth m-dimensional manifold. Then
HEL (M) = HF(M;R).

Rough idea. Define a map from Q(M) to the space of smooth singular cochains by sending
w € QF(M) to the map that sends a smooth singular k-simplex o to fa w. This map induces

an isomorphism between the respective homology groups. See [7] for details. U

Remark. In fact, the isomorphism between de Rham and singular cohomology theories is

natural, i.e. it respects homomorphisms induced by smooth maps.
One can still prove key results about de Rham cohomology without using Theorem 5.4:

Proposition 5.5. Let M be a smooth m-dimensional manifold with b connected
components. Then HOp(M) = R,

Proof. A smooth function whose exterior derivative is zero has to be constant on each
connected component of M. Therefore, H)p(M) = Zk, (M) = RP. O

Corollary 5.6. Let M be a smooth simply connected m-dimensional manifold. Then
HY(M) = R and Hp(M) = {0}.

Proof. This follows from Proposition 5.5, and Corollary 5.3. O

Now, let U be an open subset of R™ with coordinates z',...,z™. Then

Definition. The homotopy operator H : QFF1(U x R) — QF(U x R) is a real linear map
defined by

¢
Hw= (/ f(x,s)ds)dm“ A« datt,
0
if w= f(x,t)dt Adx* A ---dz', and Hw =0 if 1o w = 0.
ot
Proposition 5.7. The homotopy operator induces a chain homotopy between the chain

maps induced by the identity map and the map igom on U X R where w is the projection
onto the first factor and ig : U — U x R is the inclusion sending x to (x,0).

Proof. We need to show that

dHw+ Hdw = w — (ig o m)*w,
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for any w € Q1 (U x R). If w = f(x,t)da™ A --- A dx®+1, then

dHw = 0
- t) 4 , ¢ 4 ‘
Hdw = H[Y_ af(,gx; )d;c’Adx“A.--Adx%H+8“fg;’)thdx“A---Adx%+1]
A
=1
t
= (/ Mdt)dl‘il Ao A dptett
0 83

= (f(z,t) — f(z,0))dz™ A--- Adzte+
and hence
dHw + Hdw = w — (ig o m)*w.
On the other hand, if w = f(x,t)dt A dz't A ---dz®, then

t . . . .
dHw = d(/ f(z,s)ds)dz" A---da's = f(x,t)dt Ada™ A - dz'
0

m t
+ Z (/0 aigigs)ds)dxi Adz™ A - dt
i=1

Hdw = H[- E afa(mgt)dt/\d:ni/\dxil/\---da:i’“]
x
=1

m t
= - Z (/ 8f(x; 5) ds)dxi Adzt A - datr
im1 0 8$

and
dHw + Hdw = w.

Meanwhile, (g o 7)*w = 0 since ifw = 0. This completes the proof. O

Corollary 5.8 (Poincaré Lemma). For any m > 0 we have

R ifk=0

Hijp(R™) ! ,
0 otherwise.

Proof. It suffices to show that this holds for m = 0, the case of a point. The rest follows by

induction on m using Proposition 5.7. In this regard, the only non-trivial differential forms

on a point are the 0-forms, or smooth functions on a point. These are simply identified

with constants in R, which are clearly closed and non-exact. Hence

R if k=0,

Hgp(pt) = )
0 otherwise.

More generally:
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Theorem 5.9. Let {Pt}te[o,l] be a smooth 1-parameter family of diffeomorphisms of M.
Then pf : Hjp(M) — Hjp(M) is the same map for every t € [0,1].

Proof. Let X; be the time-dependent vector field corresponding to the isotopy {p: o py 1},
and w € QF(M). Then

%pfw = pj (dex,w + tx,dw).

If dw = 0, the above equation says that %pfw = pfdix,w = d(p}ix,w) is exact. Then

td
fw— *w:/ —piw ds
pt IOO 0 ds pS
is also exact. This completes the proof. O

Theorem 5.10. Let {p; : M — N}te[O,l] be a smooth 1-parameter family of smooth maps.
Then pf : Hjp(N) — Hjp(M) is independent of t € [0,1]. In other words, if F,G : M — N

are smooth maps that are smoothly homotopic, then F* = G*.

Proof. Extend {p}cp0,1] to {pt}ter. Regard {p;}icr as a smooth map ¢ : M x R — N,
and denote by 7 the inclusion of M into M x R as the t-slice. Then p; = 1 04;. Meanwhile,
consider the diffeomorphism ¥, : M x R — M x R defined by sending (p, s) to (p,s + t).
Then i; = U 04, and hence p; = 1) o Uy 0 4y. Since, by Theorem 5.9, Uy is independent of
t, so is p; = 1ip o Wy o ™. g

Corollary 5.11. If M is a smooth m-dimensional manifold that is smoothly contractible,
then

R k=0

Hjp (M) = o
0 otherwise.

Proof. This follows from Theorem 5.10, and that the de Rham cohomology of a point is as
in Corollary 5.8. O

Smooth Vector Bundles

We start with some definitions.

Definition. Let M be a smooth m-dimensional manifold. A smooth manifold E together
with a smooth map 7 : E — M is called a smooth real vector bundle of rank n if
(1) The map 7 is onto, and 7~ !(p) is isomorphic to R" for each p € M,
(2) Every point p € M has an open neighborhood U such that there exists a
diffeomorphism @y : 771 (U) — U x R, called a local trivialization of E over U,

that fits into the following commutative diagram:

I U) 2% U x RY

|
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where 77 is the projection onto the first factor, and <I>U|7T71(p) is an isomorphism of
real vector spaces for each p € U.

The manifold E is called the total space, M is called the base space, and E, = 7 1(p) for
each p € M is called a fiber of the vector bundle. The map 7 is called the bundle projection.

Note that if (U, ®y,) are local trivializations of E such that {U,} covers M, then
whenever U, N Ug # 0, we have

Qu, 0 O (p,vp) = (P, 9as(P) (vp)),

where gog : Uo NUg — GL(n,R), called a transition function, is smooth such that

® gaa(p) = id for any p € U,,
® 9a3(p) © 98+(P) © gya(p) = id for any p € U, N Uz N U, # 0.

The above two conditions are called the cocycle conditions, and the group GL(n,R) is
called the structure group of the vector bundle. Conversely, if {U,} is an open cover of M
and {gag : Uo NUg — GL(n,R)} is a collection of smooth maps that satisfy the cocycle
conditions, then there exists a smooth real vector bundle of rank n with {g.g} as its
transition functions. To construct such a vector bundle, patch {U, x R"} together using

the maps {gag}. To be more explicit, define
E = Us x R" [(0,0) ~ (1, 905 (0) (v))

where p € U, NUg, (p,v) € Ug xR™, and (p, gap(p)(v))) € Uy x R™. The bundle projection
is defined in the obvious way.

A smooth complex vector bundle of rank n is defined in exactly the same way as above
but replacing R by C.

Example 5. The tangent and cotangent bundles of M are both smooth real vector bundles
of rank m with transition functions as the Jacobians of the coordinate transition maps.

Definition. A smooth section of a smooth real (complex) vector bundle 7 : E — M is
a smooth map s : M — E such that m o s = idy;. A rank k subbundle ' : E' — M of
7 : E — M is a smooth real (complex) vector bundle of rank k such that E’ is a submanifold
of E and 7' = 7|p.

Let 7 : E — M and 7’ : E/ — N be two smooth real (complex) vector bundles. Then
a bundle homomorphism F : E — E' is a smooth map that descends to a smooth map
F : M — N which fit in the following commutative diagram:

E E’
M

N

|

F
—
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such that F| E, : Ep — E}:(p) is a homomorphism of real (complex) vector spaces for each
p € M. In particular, a bundle isomorphism between two smooth real (complex) vector
bundles 7 : £ — M and 7’ : B/ — M is a bundle homomorphism F : F — E’ that is a

diffeomorphism which fits in the following commutative diagram:
E

HE
idpg
My

A smooth real (complex) vector bundle 7 : E — M of rank n is trivial if it is isomorphic
to the trivial vector bundle w3 : M X R™ — M (mp : M x C* — M). Note that a
smooth real (complex) vector bundle 7 : E — M of rank n is trivial if and only if it admits
n linearly independent nowhere vanishing sections. To be more explicit, if {e1,...,en}
denote the standard basis for R™ (C"), then s; : M — M x R" (s; : M — M x C")
defined by sending p to (p,e;) yield n linearly independent nowhere vanishing sections of
the trivial vector bundle, and we can carry these sections onto any other smooth vector
bundle 7 : £ — M isomorphic to the trivial vector bundle via a bundle isomorphism
F:MxR"— E (F: M xC"— E), namely, take F o s;.

Example 6. A smooth vector field on M is a smooth section of the tangent bundle of M.
More generally, a smooth tensor field on M is a smooth section of the tensor bundle on M.
The tangent bundle of the spheres S', §3, and S7 are trivial.

Definition. A smooth real vector bundle 7 : E — M of rank n is orientable if there exist
transition functions {gns : Uo N Uz — GL(n,R)} where {U,} is an an open cover of M
such that g,g(p) has positive determinant for each p € U, N Uz. When such a collection
of transition functions exist, we say that the structure group of the bundle can be reduced
to GLT(n,R). A choice of transition functions {gag} with go3 € GLT(n,R) is called an
orientation of the vector bundle. In general, if there exist a collection of transition functions
into a subgroup H of GL(n,R), then we say that the structure group of the bundle can be
reduced to H.

Example 7. The tangent bundle of an orientable manifold M is orientable.

Operations on Vector Bundles

Let M be a smooth m-dimensional manifold and 7 : E — M be a smooth real (complex)
vector bundle of rank n. Given a submanifold N of M, we can restrict the vector bundle
7w : E — M to a vector bundle 7 : E|y — N where E|y := 7 1(N) is a submanifold
of E and  is the original bundle projection. To be more explicit, if {g,3} are transition
functions for the vector bundle 7 : £ — M, then {gag|v,nu;nn} are transition functions
for the vector bundle 7 : E|xy — N.
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More generally, if FF : N — M is a smooth map, then the pull-back vector bundle

7 F*E — N is defined so as to result in the following commutative diagram:

FE 2. F

N m

where F*E := N xp E = {(p,e) | F(p) = m(e)} C N x E and 9 is the projection onto
the second factor. To be more explicit, if {gos : Uo NUg = GL(n,R)} ({gag : Ua N Uz —
GL(n,C)}) are transition functions for the vector bundle 7 : E — M where {U,} is an
an open cover of M, then {gos : F~(Us NUp) — GL(n,R)} ({gap : F~1(Us NUs) —
GL(n,C)}) are transition functions for the vector bundle 7* : F*E — N where {F~1(U,)}
is an an open cover of N.

The dual of a smooth real (complex) vector bundle 7 : E — M of rank n is a smooth
real (complex) vector bundle 7* : E* — M of rank n obtained by replacing the fibers of
the former bundle by their real (complex) duals. Given a collection of transition functions
{9ap} for the vector bundle 7 : E — M, a collection of transition functions for the dual
vector bundle is {ggﬁ_l}.

Let 7 : E — M and 7’ : E/ — M be two smooth real (complex) vector bundles of
respective ranks n and k. Then their direct sum 7 ® 7' : E® E' — M and tensor product
77 : E® E — M are smooth real (complex) vector bundle of rank n + k and n - k,
respectively, defined by taking fiberwise direct sum and tensor product. More precisely, if
{9ap} and {g,,5} are transition functions for the vector bundles 7 : E — M and 7" : E' — M
respectively, then {gas ® g5} and {gap ® g,,5} are transition functions for the direct sum
bundle 7 ® 7’ : E ® E' — M and the tensor product bundle 7 ® ©’ : E ® E' — M,
respectively. Here,
9ap 0 ]

0 g, s ’
and go.g ® ggﬁ is the matrix with n x n blocks of k x k matrices with the (u, v)-entry of the
(4, j)-block being (gap); - (gop)y- The smooth vector bundle 7* @ m : E* ® E' — M is the
endomorphism bundle of m : E — M, whose fibers are the vector spaces of real (complex)
endomorphisms of the fibers of 7 : £ — M.

9ap B Gop = [

The kth exterior power A7 : AFE — M is a smooth real (complex) vector bundle of rank
ﬁlk), obtained by taking fiberwise kth exterior power. Given a collection of transition
functions {gag} for the vector bundle 7 : E — M, a collection of transition functions for
the vector bundle A*r : A¥E — M is defined by k x k minors of g,5. More precisely, let
S={I=(i1,...,i) | 1 <11 <--- <i <n} and put the lexicographic order on it. Then
the (I, J) entry of the transition maps is the k& x k minor of g,g obtained by taking the

elements at the intersections of the i1,...,7; rows and the ji,...,ji columns.
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6. MARCH 3—MARCH 7

Given two smooth real vector bundles 7 : £ — M and 7’ : E/ — M of rank n, a bundle
isomorphism between them is a smooth section of the homomorphism bundle Hom(E, E") &
E* ® E'. A bundle isomorphism is a section of the homomorphism bundle consisting of

isomorphisms of fibers.

Theorem 6.1. Let Fy, Fy : M — N be two smoothly homotopic maps and 7 : E — N
be a smooth vector bundle. Then Fim : FfE — M and Fim : F{E — M are isomorphic
bundles.

Proof. We will sketch the argument in the case M is compact, and the general case follows
from using the fact that a topological manifold is paracompact. (See [3, Theorem 6.8] for
more details.) Let F': M x[0,1] — N be a smooth homotopy between Fj and F;. Consider
the pull-back bundles F*E and 7},(FjE) where mys : M x [0,1] — M is the projection
map. Then Hom(F*E,m;(F;E)) has a smooth section over M x {0} restricting to the
identity isomorphism of F{y i, for each p € M. Since any linear map near an isomorphism
is also an isomorphism, and M is compact, we can extend this section to over M x [0, ¢€).
Finally, by compactness of the interval [0, 1], we can extend the section to the whole of
M x [0,1]. But then, the restriction of this section to M x {1} is a bundle isomorphism
between Fjj E and F}'E. O

An immediate corollary of the above theorem is the following:
Corollary 6.2. Any smooth vector bundle over a (smoothly) contractible manifold is trivial.

Metrics on Vector Bundles

A smooth metric on a smooth real vector bundle 7 : £ — M of rank n is a smooth
section (+,-) of (E' ® E)* that defines a positive-definite inner product on every fiber. A
smooth Hermitian metric on a smooth complex vector bundle 7w : E — M of rank n is a
bundle homomorphism (-,-) of (EF ®g E)* that defines a non-degenerate Hermitian inner
product on every fiber. Every smooth real vector bundle admits a smooth metric, and
every smooth complex vector bundle admits a smooth Hermitian metric. In order to see
this, take a collection {(Uy,, ®4)} of local trivializations of the vector bundle 7 : E — M,
and use a partition of unity subordinate to the open cover {U,} to construct a metric or
a Hermitian metric on the vector bundle using the standard inner product on R™ or the
standard Hermitian inner product on C”.

Example 8. A Riemannian metric on M is a smooth metric on the tangent bundle of M.

Proposition 6.3. The structure group of a smooth real vector bundle w : E — M of rank
n can be reduced to O(n), and it can be further reduced to SO(n) if the vector bundle is

orientable.
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Proof. Having fixed a smooth metric on the vector bundle, we can find transition functions
into the group O(n) by the Gram-Schmidt process. g

Proposition 6.4. A smooth real vector bundle w : E — M of rank n is orientable if and
only if A"E = R.

Proof. For the only if direction, it follows from Proposition 6.3 that we can find a smooth
metric on and a collection of transition functions {g,s} for the vector bundle 7 : E — M
with gos € SO(n). Then the transition functions for the vector bundle A"7 : A"E — M
become {det(gns) = 1}. As a result, we can define a unit length section of the bundle
A" . AME — M which yields a trivialization of that bundle. As for the if direction, start
with a collection of local trivializations {(Uy, ®,)} for the vector bundle = : E'— M such
that the transition functions g,s € O(n). Since A"E = R, it is orientable. Therefore, we
can modify each local trivialization by an element of O(n) so as to make every transition
function g,g € SO(n). This completes the proof. O

Remark. If 7 : F — M is a smooth complex vector bundle of rank n, then it is orientable
when regarded as a smooth real vector bundle of rank 2n. This is because the group
GL(n,C) is a subgroup of GL™(2n,R). To see this, identify X +iY € GL(n,C) with the
real matrix

X -Y
Yy X

)

and note that the determinant of the latter is det(X + 1Y) - det(X +¢Y).

Example 9. Let (z : y : z) denote the homogeneous coordinates on RP?, and E =
RP?~ {(0:0:1)}. The coordinate neighborhoods (U, ¢,) and (U, ¢,) defined by

Uy = {(z:y:2)|x#0}

Uy = {(z:y:2)[y#0}
or(r:y:z) = (%,%)
oylr:y:z) = (575)

cover E, and are also local trivializations of E over RP! := {(z:y:2) | 2=0} C RP? as a
smooth real vector bundle of rank 1, called the Mobius bundle. Here the bundle projection
7 : E — RP! is defined by m(z : y : 2) := (x : y), and the transition function on 7(U, NUy)
is defined by g(z : y)(v) := %v, which is orientation preserving if £ > 0, and is orientation
reversing otherwise. This indicates that the Mobius bundle is not orientable. We can
prove this by showing that the Md6bius bundle is not trivial. This is clear since a bundle
isomorphism would map E ~ RP! to (RP! x R) ~\ RP! x {0}, which is a contradiction since
the former is connected, while the latter is not.

Similarly, CP? . {(0: 0: 1)} admits the structure of a smooth complex vector bundle of

rank 1 over CPL. The latter is orientable but not trivial.
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The Thom Isomorphism

Definition. Let 7 : E — M be a smooth real oriented vector bundle of rank n, and Q.,(E)
denote the space of differential forms on F with compact support in the vertical direction.
Since Q. (F) is closed under exterior differentiation, it is a subcomplex of Q(F). The
cohomology groups arising from this complex are denoted by H} (F), called the compact
vertical cohomology.

Let U be an open subset of R™. We define a real linear map 7, : QF (U xR") — QF"(U),
called the push-forward map. Denote by 2!, ..., 2™ the coordinates on U and by u', ..., u"
the coordinates on R™. Then a differential form w € ., (U xR™) is a real linear combination
of two types of forms:

(1) (7*n) A f(z,u)du’ A--- Adu® where 1 <i; <--- <iy<nand ¥ <n,
(2) (7*n) A f(z,u)dul A -+ A du™,

where 7 is a differential form on U and f(z,-) is a smooth compactly supported function
on R™ at each x € U. Define m,w to be zero if w is of type (1), or else

W = ( f(z,u)dut - - -du”)n.
R’Il
If 7 : E — M is a smooth real oriented vector bundle of rank n, then define the push-forward
map 7, : QF (B) — QF (M) so as to agree with the above definition given on local
trivializations.
Exercise. Check that the map m, is well-defined globally.

Proposition 6.5. The map m, commutes with the exterior derivative.

Proof. Tt suffices to prove the proposition in a local trivialization. Let w € Q.,(U x R™) be
of type (1). Then w = (7*n) A f(z,u)du’* A --- A du®, and

dmyw = 0
medw = T (dﬁ*n A f(:z:,u)dui1 A A du
Of (x,u) ;
1)des( Adazi A LD i p A due
+(—1 ;ﬂ' nAdz B u

deg Zﬂ' 3f (@ u)d AU A A duie>

= (—=1)%s() Zm(Mdui Adu™ A Adu')n
; u
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The last equality follows immediately if du’ A du® A --- A du®® # +du® A --- A du™, and it
follows from

7r>k(%m?u)dui/\dui1 /\---/\du”) ==+ Mdul“'dun:oy
ou' rn  OU'

if du® A du' A -+ A dutt = +du A --- A du”, since f(z,-) is compactly supported.
On the other hand, if w € Q.,(U x R™) is of type (2), then

w = (m*n) A f(z,u)du* A - A du",
and

dr.w = d( f(x,u)dul-'-du")n

RTL
S af(xau) 1 i 1
= ————du" - --du” )dz' A+ flz,uw)du - -du™)d
([ 2o ot (| o )i
Tedw = m((ﬂ'*dn) A f(z,w)dut A - A du™
+(—1)deg(m Zﬂ'*n A dz' A 8fém;)alui1 JARRRWA duié)
x
i=1
“ Of (z,u) :
= Lo duy™ _1)deg(n) I\ 1 gn i
( o f(z,u)du du )dn—i—( 1) Zzl (/n D du du )77/\d£l?
"9, ) ~
= Lo du™ I ) gl dy™ g
= ( - f(x,u)du du )dn—l—;(/n P du du )dx A.
This completes the proof. ([l

Proposition 6.6. Let m : £ — M be a smooth real oriented vector bundle of rank n,
weQM), andw € Qey(E). Then

() ma((n*) Aw) = o A s,
(b) If M 1is oriented, p is compactly supported, and 7 pu A w € Q™ "(E), then

/W*,u/\w:/ A Taw.
E M

Proof. For suffices to prove claim (a) in a local trivialization. Let w € Q¢,(U x R™) be of
type (1). Then w = (7*n) A f(x,u)du® A --- A du®, and
(T p) Aw) = () A () A f(@,w)du™ A A du')
= 7r>,<(7r*(,u/\77)/\f(:L',u)dui1 /\'--/\dui")
= 0.

Meanwhile, u A mow = 0 since m.w = 0. Next, suppose that w is of type (2). Then
w=(7*n) A f(z,u)du A--- A du™, and
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(T ) Aw) = m () A () A f(z,u)du' A A du™)
= m(m*(uAn) A fz,u)dut A - A du™)

- ( . f(x,u)du1~--dun>u/\77

= uA ((/]R" f(x,u)dul'--du")n)

= UATw.

In order to prove claim (b), choose an oriented collection of local trivializations {(Uy, o)}
of E, and choose a partition of unity {p} subordinate to the cover {U,}. Then

/W*HAW = Z/ (paom)T* A w
E o YElu,
= Z/ T A (pa 0 T)w
@ o XR™

Direct computation proves that

/ w*u/\(paow)w:/ ,u/\pamw:/ Pa b N\ Txw,
Uqg XR™ a Uq

and hence

Z/ Tr*,u/\(pQOTr)w:Z/ pau/\ﬂ'*w:/u/\mw.
— JUu,xrr —~ Ju. M

O

Theorem 6.7 (Thom Isomorphism). Let 7 : E — M be a smooth real oriented vector
bundle of rank n. Then

He,(B) 2 Hap" (M),
for each k > 0.

Proof. We start by proving the isomorphism in the case of the trivial vector bundle. In this

regard, define a linear map
Pe: QF (M x R™) = QF (M x R*1)
as follows:
(T A fla,u)du™ A - Adu't) = T A (/Rf(x, u)du”) du™ A - A dut
if i; = n, and p.(w) = 0, otherwise.

It is easy to check that the map p, commutes with the exterior derivative, and hence it is

a chain map. Now let e := e(u”)du” be a compactly supported 1-form on R with [pe = 1.
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Then define e, : QX1 (M x R*1) — QF (M x R™) by

ex(n) =nANe.
Note that p, o e, = id. We claim that e, o p, is chain homotopic to id. Define a homotopy
operator H : QF+H1(M x R") — QF (M x R™) by

H(m*n A f(x,u)du A--- Adu) = (=1)F [ﬂ*n A (/ flo,al, .ot dt)du™ A A dutt

—T A (/ e(t)dt) (/Rf(x,u)du”)duil A Aduttr],

—
if iy = n, and H,(w) = 0, otherwise. Direct computation verifies that dHw + Hdw =
w — (ex 0 py)w for any w € QEFL(M x R™). Hence

pet HE (M x R™) 2= HEH(M x R,
and by induction on n, we get
T s HE (M x R™) = H*™(M),

For the general case, let {U,} be an open cover of M by local trivializations. Fix U, and Ug
from this open cover, and consider the Mayer—Vietoris exact sequence

0 = Q5 (Elu,uu,) = QU (Elu,) ® Qe (Elu,) = iy (Eluanu,) = 0,

where 7 has coordinates the restrictions of a differential form to E|y, and E|UB’ respectively,
while s is the difference of the restrictions of differential forms in Q7 (E|y,,) and Q,(E|v,)

to El|y,nu,- This induces a long-exact sequence

d*
- HY (Ely,0v,) — HE(E|y,) ® HE(Ely,) —— HE(Ely.nu,) —— HEP (Elu,ou,) -

where the map d* can be described via the help of a partition of unity { fa, fg} subordinate
to {Ua,Ug}. Given w € Qe (E|y,nu,), note that s(1* fow, —7* fpw) = w. If dw = 0, then
d*[w] is represented by d(7* faw) on Ely,, and by —d(7* fsw) on E|y,. Now consider the
following diagram:

d*
- HE(Ely,uu,) —= HE(E|v,) ® HE(E|v,) —= HE(BElv.qu,) — HE Y (Elu,ou,) -
_ _ _ _ d* _
-~ HY2(Uy UUg) —= HEZ™(U,) @ HYZ"(Ug) —> H2"(U, NUg) = HET™(U, U Up) - -

The commutativity of the two left-most rectangles is easy to check. As for the right-most

rectangle, commutativity follows from Proposition 6.6:

Tad (7" faw) = T (d(7" fo) A w) = T (T df o A\ w) = dfo A Taw = d( famaw).
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Since 74 has been proved to be an isomorphism for trivial bundles over Uy, Ug, and U, NUg,
it follows from the five-lemma that

™t HE (Elu,uu,) = HiZ"(Ua U Ug)

is also an isomorphism. Using the partial ordering by inclusions of open subsets of M and
applying Zorn’s Lemma, the statement of the theorem then follows from induction on the

cardinality of open covers by local trivializations. O

Let Q.(M) denote the subalgebra of compactly supported differential forms on M. This
is a subcomplex of the de Rham complex. The resulting cohomology groups are denoted

by H}(M). Theorem 6.7 implies the compactly supported version of the Poincaré Lemma:

Corollary 6.8. For any m > 0 we have

R if k=n,
LT S
0  otherwise.
Proof. This follows from applying Theorem 6.7 to a vector bundle over a point. (]

Definition. Denote the inverse of the isomorphisms 7, by ¥, called the Thom isomorphism.
Then the image of 1 € H(M) under the isomorphism ¥ is called the Thom class.

By Proposition 6.6, for any pu € HC’l“R(M) we have
Tu(T =~ T) = o — 7T = L.
Hence, T(p) = 7*p — 7.

Proposition 6.9. The Thom class of a smooth real oriented vector bundle m : E — M
of rank n is characterized as the unique cohomology class in H. (E) that restricts to the
oriented generator of H]'(E,) on each fiber E, of m: E — M.

Proof. Since m,7 = 1, the pull-back of 7 to any fiber of the vector bundle is represented by
a compactly supported n-form whose integral over the fiber is 1. Conversely, if 7/ € H'. (F)
is such that it restricts to the oriented generator of H'(E,) on each fiber E, of 7 : E — M,
then for any pu € HY,(M) we have m(n*pu — ') = p — w7’ = pu. Therefore, T(u) =
™ — 1" and T(1) = 7. O

We denote the Thom class of the vector bundle 7w : E— M by 7(F). We define the Euler
class of a smooth real oriented vector bundle 7 : & — M of rank n as follows:

Definition. Let so : M — E be the zero section. Then, there exists a homomorphism
sg: Ho(E) — Hlp(M).

The Euler class e(E) is the cohomology class s§7(E) € H"(M;Z).
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Homework-3
Due 3/25/14

(1) Let M be a smooth closed oriented m-dimensional manifold. Prove that H}} (M)
is non-trivial. (Hint: Construct a homomorphism from Q™ (M) to R that induces
a surjective homomorphism from H}J;, (M) onto R.)
(2) Prove the following:
(a) Let F: N — M be a smooth covering map, and €2 be a volume form on M.
Then F*Q is a volume form on N. In particular, N is also orientable.
(b) RP™ admits a volume form if and only if n is odd. (Hint: Observe the effect
of the antipodal map on the volume form

n+1
Q= Z(—l)i_lxi dzt Ao Adxi A A da™ T
i=1

on S™.)

(3) Let M be a smooth m-dimensional manifold. Prove that if M is connected and
non-compact, then H2(M) = {0}.

(4) Use the notation of Example 9, but for CP?. Let (ry,60;) and (ry,6,) denote
the polar coordinates on fibers of E over n(U,) and w(U,), respectively. Fix a
partition of unity {fs, f,} subordinate to the cover {m(U,),n(U,)} of CP. With
the preceding understood, note that we have a transition function g, : 7(U,NU,) —
U(1) defined by ggy(z : y) = % = ei%ov where 0 < ¢y < 27 and 0 = O, + Buy-
Define n, = —g—frahbzy and n, = %d@vy on Ey, the complement of the zero section
of E. First, show that there exists a 1-form ) on Fy which restricts to
%d@m —n, on U, N Ey and to ide —1ny on Uy N Ey. Next, consider a smooth

non-decreasing function p : [0,00) — R such that p(r) = —1 near r = 0, p(r) =0

for r > 2, hence f[(],oo) dp = 1. Now show that d(p - () represents the Thom
class of the Hopf bundle. Finally, verify that the Euler class of the Hopf

bundle is represented on 7(U,) by the differential form

)
ﬂd(fm . dlngmy).

(5) Prove the following properties of the Euler class:
eIfn:E — M and 7' : E — M are two smooth real oriented vector bundles, then
e(E®E") =e(E)—e(E).
o If the orientation of the vector bundle 7 : E — M is reversed, then e(E) changes

sign.
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7. MARCH 10-MARCH 14

Connections on Vector Bundles

Definition. Let M be a smooth m-dimensional manifold, and w : £ — M be a smooth
real vector bundle of rank n. Denote by V the kernel of dr : TE — T'M, which is a smooth
vector bundle isomorphic to 7*E. A linear Ehresmann connection on FE is a subbundle H of
TFE such that TE = V@& H and H varies linearly in the fiber direction. With the direct sum
decomposition TE =V @& H in mind, there exists a bundle homomorphism 7% : TE — V
obtained by projecting onto the kernel of dr.

To be more precise, let (U, ®) be a local trivialization of E. Denote by x!,--- 2™ the
coordinates on U and by u!, ..., u"™ the coordinates on fibers of E over U. Then, H|7T_1(U)
can be described as the kernel of linearly independent 1-forms 6!,... 0" on 7=1(U) that

have the form .
0" = du’ + Z 0% (z,u)dz"
k=1
for some smooth functions 0;. on m~}(U) which are linear in the fiber coordinates. Therefore,

O (v, u) = > Ty (a),
j=1

where Fé‘k are smooth functions on U, called the connection coefficients. The matrix
of 1-forms A on U with entries A; = > F;kda:k is called the connection matrix.
Consequently,
n
0 = du S A
j=1
In what follows, we use the Finstein summation convention, where super and sub indices
with the same label indicate summing over the corresponding range of positive integers.
Having said that, take two local trivializations (U, ®,) and (Ug, ®g) of E where U, and

Us are two coordinate neighborhoods with U, N Ug # (). Denote by R LU TS S 11
and ac/lg, TR ué, ..., uj the coordinates on 7Y (U,) and w~1(Up), respectively. Suppose

H|-1(y,) can be described as the kernel of 1-forms 0L, ...,0" where

0!, = dul, + I‘ékuéd:p’;

Then

k
oz,

(")93%

b = d((9ap)up) + Di(gas)iuf 7o de

k

. O
+ F}k(gaﬁ)i—axg ) updry

a(gaﬁ)i
(%UZ,

= (gap)idus + (
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and

tpi O

a(gaﬁ)fa o i\, " 7.8
: + (98a); ]ka%(gaﬂ)f») updzp

i 8&0%

(90)i8h = (950} (g0s)dss + ((g50)

k
ti 8'7"04
j s

L3

8(gaﬁ)i
n _ t t T

(9a)?) i

It

s

Since gag = gﬁa_l, we can write

(g0 ).

Fis = (gﬁa)i !

- Oxk
t —1
+ (gﬁa)iF;leg(gﬂa )7«5

8:1:%
and '
8(950‘_1):‘ s i —1\J
AL = (gﬁa)ﬁaiw%dl"ﬁ + (gﬂa)zAj(g,Boz 1)17

or shortly, Ag = ggaAagpa * + 9saddse "t = 9saAagsa ' — (dgsa)gsa . Hence, a linear
Ehresmann connection on E is uniquely described by a collection of n x n-matrix of 1-forms
on its local trivializations which transform according to the former formula.

Next, let s : M — E be a smooth section. Then 7% ods: TM — V|, = sV =Eisa
bundle homomorphism, called the covariant derivative associated to the linear Ehresmann
connection on E. Note that m¥ods is a section of the homomorphism bundle Hom (T M, E) =
T*M ® E. Let (U, ®) be a local trivialization of E as before. Then s € C*°(M; E) can be
locally written as s(z) = (s'(x),...,s"(x)) where s¢(z) € C®(U), and 7¥ o ds over U can

be written as

8Si F g k 8
More generally:

Definition. A covariant derivative operator on E is an R-linear map
V:C®M;E) = C®(M;T*M ® E)

such that

(1) For any s1,s2 € C°(M; E),

V(s1 + s2) = Vs1 + Vsa.
(2) (Leibniz rule) For any f € C*(M) and s € C*(M; E),
V(fs)=df @ s+ fVs.
If X € X(M) and s € C°°(M; E), then the covariant derivative of s along X is given by
Vxs:=(Vs, X).

Note that we also have
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e For any X, Y € X(M) and s € C*(M; E),
Vx4ys=Vxs+ Vys.
e For any f e C®(M), X € X(M), and s € C*°(M; E),

Vixs = fVxs.

Using the trivialization (U, ®), we can write

- 0
VS’U = V(Slaui)
0 0
_ I ) v A
ds' ® B + s vauﬂ
Hence, writing
0
— I“Z
V@u ou’

where Fék € C*(U), we get

0 i 0
VS’U = dS & 67 +8]F kdx X 8UZ
B ds’ ® 0 0
W out
ds’ 0
- il
<8k+st)da: ®8ui'

Moreover, the functions I’E-k transform in exactly the same way as the connection
coefficients.

Exercise. Prove the last claim.

This proves that every covariant derivative on a smooth real vector bundle 7 : £ — M
is induced by a linear connection on E. Therefore, the notions of linear connection and
covariant derivative are equivalent. It remains to show that covariant derivatives always

exist:
Theorem 7.1. Every smooth real vector bundle admits a covariant derivative.

Proof. Let (Uy, ®4) be an open cover of M by local trivializations of E. Fix a partition of
unity {fa} subordinate to {Uy}. On each E|y,, define a covariant derivative V¢ by

vOé

out’

Vs =Y V(fas) Zfa (slv.);

where the last equality follows from the Leibniz rule and the fact that ) fo = 1. It is
easy to check that V is a covariant derivative on E. O

Then,
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If V and V’ are two covariant derivatives on E described by connection 1-forms A and
A’ over local trivializations, then

Ag — Al = gpa(Aa — A3) 950

Therefore, V — V' € C®°(M;T*M ® End(FE)), and the space of covariant derivatives on FE
is an affine space over the vector space C*°(M;T*M @ End(E)).

Proposition 7.2. Let V be a covariant derivative on E, and p € M. Then there exists
a coordinate neighborhood (U, ) of p and a local trivialization of E over U such that the

corresponding connection matriz is trivial at p.

Proof. Fix a coordinate neighborhood (U, ¢) around p with coordinate functions x!,..., 2™

such that z’(p) = 0 for all i = 1,...,m, and a local trivialization of E over U with

1

coordinates u",...,u". Then write the connection matrix in this local trivialization as

, N
and consider the linear transformation g € GL(n,R) defined by
g5 = 05 + Iy (p)a”,

in a possibly smaller neighborhood of p. Note that g;- (p) = 5; Furthermore, A, = dg,.

Therefore,
A’ =gAg~' — (dg)g "
satisfies A;D =0. O

Given a linear connection with associated covariant derivative V on a smooth real vector
bundle 7 : F — M, we can uniquely extend the covariant derivative operator to an R-linear

operator
dy : C®°(M; A*(M) ® E) = C®(AM (M) @ E)

such that

dy(pu A s) :=duAs+ (=1 puAdys,
for any p € QF (M) and s € C®°(M;A* (M) ® E). Locally, we can write

dyvs=ds+ ANs,
for any s € C°(M; A¥(M) ® E). Then, over a local trivialization (U, ®)
dyVs = dy(ds+ As)
= (dds+ ANds)+ ((dA)s — AAVs)

.
= A/\ds—|—(dA)s—A/\ds—A}/\sjAfW)

)
= (dA)s+ AF NAGs! oo = (dA+ AN A)s
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where Q = dA + A A A is called the curvature matriz of the connection. Note that the
transformation rule for the connection matrix yields
Qﬂ = gﬁaQagEO{-

Therefore, € is a globally defined 2-form with values in C*°(M; End(E)). More precisely, if
X,Y € X(M), the curvature matrix defines a linear map R(X,Y) from C*(M; E) to itself
by

R(X,Y)(s)lv = (X, Y)|s?

where s = (s!,...,5") over a local trivialization (U, ®). Note that

e R(X,Y)=—-R(X,Y),

e R(fX,Y)=fR(X,Y),and R(X,Y)(fs) = fR(X,Y)(s).
Furthermore,
Theorem 7.3. Let X,Y € X(M). Then

R(X,Y)=VxVy - VyVx —Vixy]
Proof. Exercise. U
Theorem 7.4 (Bianchi identity). The curvature matriz Q0 satisfies
dY=QNA—-ANQ,

over any local trivialization.
Proof. Over a local trivialization:

dQ = d(dA+ AN A)
= dANA—-ANdA
= QQ-—ANANA-ANQ—-ANA)
= QNA-ANQ.

Definition. A connection whose curvature matrix vanishes is called flat.
A smooth section s of the vector bundle 7 : £ — M is called parallel if
Vs =0.
More specifically,

Definition. Let v be a smooth parametrized curve in M, and X denote the tangent vector
field to . Then a smooth section s of the vector bundle 7 : E — M is called parallel along
~ if

Vxs=0.
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Note that the above condition amounts to solving a system of ordinary differential
equations on the pull-back vector bundle v*E. Since the latter is the trivial vector bundle,

these equations read:

dSi i vk 0
Vs = (Vs, X) = (ﬁ + TSI X (t)> s =0,
where s(t) = (s(t),...,s"(t)) and u',...,u" are the fiber coordinates. Given a smooth

parametrized curve v : (¢,€) — M through a point p € M, a point e € E such that 7(e) = p,
and a vector v € I, we can parallel transport v along v by solving the initial value problem
for the above system of equations. Having fixed a point p € M and a loop ~ starting and
ending at p, we can parallel transport all vectors in the fiber E, to obtain a linear map
from E, to itself. Moreover, this linear map is invertible. Identifying F, with R", we can
regard this automorphism of E, as an element of GL(n,R), called the holonomy of the
connection around . Holonomy around the composition of two loops is the composition of
the automorphisms around the individual loops. Therefore, holonomies around loops based
at p form a subgroup Hol,(A) of GL(n,R), called the the holonomy group, and we have an
epimorphism
m1(M,p) — Holy(A)/Hol,(A),

where Hol,(A) is the subgroup of Holy(A) consisting of holonomies around contractible
loops. A linear connection is flat if and only if Hol;(A) is trivial.

Given a linear connection with covariant derivative V on a smooth real vector bundle
m: E — M, we can construct a linear connection on E* with covariant derivative V*
satisfying

d(s*,s) = (V*s*, s) + (s*, Vs).
If F: N - M is a smooth map, the covariant derivative associated to the induced
connection on the pullback bundle F*FE satisfies

(F*V)XF*S == VdF(X)s.

If 7y : By — M and my : By — M are two smooth real vector bundles with linear connections
with covariant derivatives V! and V2, respectively, the vector bundles E; @ Es and E; ® E»
have induced covariant derivatives V® and V® defined by

V@(sl b 82) = Vlsl &) V2$2
V(51 ® 82) 1= Visy ® 59+ 51 @ V3ss.

Recall that given a (Hermitian) metric on the smooth real (complex) vector bundle 7 :
E — M, we can find an open cover of M by orthogonal (unitary) trivializations. With this
understood, an orthogonal (unitary/Hermitian) connection on F is one whose associated
covariant derivative V satisfies

V(Sl, 82) = (Vsl, 52) + (Sl, VSQ).
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(V(s1,82) = (Vs1,82)+(s1, Vsa).) The connection and curvature matrices of an orthogonal
(unitary) connection are skew-symmetric (skew-Hermitian).

Exercise. Prove the last claim.

8. MARCH 24-MARCH 28

Lie Groups and Lie Algebras

Definition. A Lie group G is a smooth manifold without boundary that has the structure
of a group such that the group operation and inversion are both smooth maps.

Note that the maps

o L,:G— G,

e Ry:G— G,

o 9 :G — G,
defined by L,(h) = gh, Ry(h) = hg, and 19(h) = ghg™!, respectively, are diffeomorphisms.

Example 10. Examples of multiplication Lie groups include matrix groups such as:
GL(n,R) = {A € M,(R) | det(A) # 0},

GL(n,C) ={A € M,(C) | det(A) # 0},

O(n) ={A € GL(n,R) | AAT =T = AT A},

SO(n) ={A € O(n) | det(A) =1},

Un)={A € GL(n,C) | AA* =1 = A*A},

SU(n)={AecU(n)|det(A) =1}.

In particular, SU(2) is the Lie group diffeomorphic to S3. In order to see this, note that

P!

where z,w € C such that |22 + |w|? = 1. Meanwhile, C?> has a multiplicative group

an element of SU(2) is written as

structure H defined by quaternion multiplication: (z = z1 4 iz, w = wy + twy) is identified
with the quaternion z; + ize 4+ jw; — kwe. Inside H, the 3-sphere sits as the subgroup of
unit quaternions. With respect to these identifications the matrix multiplication in SU(2)

and quaternion multiplication in S coincide.

Definition. A Lie group homomorphism F : H — G between two Lie groups is a
smooth map that is also a group homomorphism. A Lie group isomorphism is a Lie group
homomorphism that is a diffeomorphism. A Lie subgroup H of a Lie group G is a subgroup
that is also a submanifold.

Lemma 8.1. Let G be a Lie group, and H C G be an open subgroup. Then H is a Lie

subgroup consisting of connected components of G.
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Proof. The assertion that H is a Lie subgroup is immediate from the definition. As for
the assertion that H is a union of connected components of G, we show that H is a closed
subset of G. To see this, note that G~ H is a union of cosets of H not equal to itself. Since
H is an open subset of GG, each of these cosets are also open. Hence G . H is open, and H

is closed. This completes the proof. O

Proposition 8.2. Let G be a Lie group and U be an open neighborhood of the identity
in G. Then U generates an open Lie subgroup of G. Furthermore, if U is connected, it

generates an open connected Lie subgroup of G.

Proof. Denote by Uy the collection of elements of G that can be written as a product of
k elements from U or U~!'. Then U; = U U U is open and each U, = U;Uj;_; can be
written as a union of diffeomorphic copies of Uy_1. Therefore, each Uy, is open by induction,
and their union H := |J, Uy is also open. It follows from Lemma 8.1 that H is an open
subgroup of G that is a union of connected components of G. If U is connected, then so are
U=tand UNU™, since UNU™! # (). Meanwhile, the map - : U; x Up_; — G is smooth
with image Uy. Hence by induction each Uy, is connected, and their union is also connected

since the identity element of GG is contained in each Uy. O

Definition. The connected component of a Lie group GG containing the identity is called

the identity component of G. We denote the identity component of G by G,.

Proposition 8.3. Let G be a Lie group. Then G, is a normal Lie subgroup of Go, and it is
the only open connected Lie subgroup of G. Any connected component of G is diffeomorphic

to Gs.

Proof. Let h € G and consider the subgroup hG.h~!, which is a connected Lie subgroup
of G isomorphic to Go. Then hGoh™t C hGoh™ ' UG, = G,. Since the latter holds for any
h € G, G, is a normal subgroup of G.

Next, let H C G be an open connected Lie subgroup. Then by Lemma 8.1, H is a
connected component of G. Since H N G, # 0, we conclude H = G,. Finally, cosets of G,

constitute all connected components of GG since they are all connected and disjoint. [l

Definition. A smooth vector field X € X(G) is called left-invariant if Ly, X = X for any
g € G. The space of all left-invariant vector fields on G is called the Lie algebra of G and
is denoted by g. The Lie algebra of G is equipped with the usual Lie bracket of smooth

vector fields on G.

Theorem 8.4. Let G be a Lie group and g denote its Lie algebra. Then g is isomorphic
to T.G where e denotes the identity element of G.

Proof. We will show that the map ® : g — T.G defined by ®(X) := X, is an isomorphism.
To see this, first check that this is a linear map. Then note that a left-invariant vector field
X on G is uniquely characterized by its value at the identity element since Xy = Ly, X,.
This completes the proof. O
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Corollary 8.5. Any Lie group is parallelizable.

Example 11. Consider the Lie group GL(n,R). The Lie algebra of GL(n,R) can be
determined as follows: note that GL(n,R) is an open subset of M, (R). Then T;GL(n,R) =
M, (R). Given A € M,(R), a smooth parametrized curve through the identity matrix I

where its tangent is the matrix A is defined by the matrix exponential

1
tA | k 1k
e .—E —k!tA,
k=0

and the corresponding left-invariant vector field X4 € gl(n,R) is defined by Xa(g) =
Ly, A = gA for any g € GL(n,R). Meanwhile, the 1-parameter group of diffeomorphisms
{pXA(-,t)} generated by X4 is defined by pX4(g,t) = get4. Therefore, for any A, B €
M, (R) we have

XA, Xg|(1) = a e Be 4 = AB — BA = [A, B).
dt

Analogous statements hold for the Lie group GL(n,C) as well. Next we describe the Lie
algebra of SU(2). By definition, U(2) is the pre-image of the identity under the map from
GL(n,C) to M,(C) sending A to AA*. This map is smooth and its differential at the
identity is

tA tA* _ I
lim ———— = A+ A"

t—0
Setting the differential equal to zero gives T7U(2) which is the space of skew-Hermitian

matrices. Meanwhile, the identity det(e!t) = e!"(t4) implies that T7SU(2) is the space of
traceless skew-Hermitian matrices. Then the Lie algebra su(2) is a real vector space of

dimension 3 generated by the Pauli spin matrices:

I B e e

equipped with the commutator bracket.

Theorem 8.6. A Lie group homomorphism F : H — G induces a Lie algebra
homomorphism Fy : h — g.

Proof. Let Y be left-invariant vector field on H. Then denote by X, € TG the tangent
vector dF,,, (Y., ). This tangent vector corresponds to a left-invariant vector field X on G
by Xy = Ly, X. First, we claim that for any h € H

dFp Yy = Xp@m)-
To see this, note that F' o Ly, = Lp) o F' and hence Fy o Ly, = Ly, © Fi. As a result,

dEpYn = Fu(LpaYey) = Lpgy, (FYey) = Lem), Xeq = Xp(n)-
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To finish the proof, we need to show that the map F} respects the Lie brackets. Let Y7 and
Y5 be left-invariant vector fields on H, then

FY1,Ys] = [F.Y:, F.Y).
This is because for any f € C*°(G), we have

(Fu[Y1, Ya]) f = df (Fi[Y1, Ya]) = (F7df )([Y1, Ya]) = d(f o F)([Y1,Y2]) = [Y1,Y2](f o F').

and
Y1, Y2](fo F) = YiYao(foF)—YaYi(foF)
— Yi(F.Yaf) o F) = Va((FYif) o F)
= (FY1WFEYs)f)oF — (FW\YaFY1)f)o F
= ([FY1, E.Ys|f) o F
as is easily verified by a computation using local coordinates. ([

Next, we generalize the above example to more general Lie groups and their Lie algebras.
In this regard, remember that a smooth vector field is complete if the maximal integral curve
through any point is defined for all time.

Lemma 8.7. Every left-invariant vector field on a Lie group is complete.

Proof. Let X be a left-invariant vector field on GG, and p denote the local 1-parameter family
of diffeomorphisms as provided by Theorem 3.1. Then

Lg © p(at) = p(vt) © Lg;

for any g € G. To see this, let h € G and v = p(h, ) be the maximal integral curve of X
through h. Then 4 = L4 o 7 is an integral curve of X through gh since

d R d
£|t=57(t) = ahzngop(h»t)

d
= Lo (L _p(ht
e osplh, 1)

= Lo, (Xp(n5) = Xgop(n,s)
and by uniqueness of p the desired equality follows. Now suppose 7(t) is defined for t € (a, b)
where b < oo, and p(e, t) is defined for ¢t € (—¢,€). Then choose ¢, € (b — ¢€,b) and define
. Y(t) if t € (a,b),
y(t) = ,

Lp(h,to)(p(e,t —to)) ift € (to — € to +€).

It is easy to check using L, o p(-,t) = p(-,t) o Ly that the two lines of the definition of the
curve 4 agree on (t, — €,b). Furthermore, by virtue of the fact that X is a left-invariant
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vector field, we have
d -
%‘t:S’Y(t) = X’~y(s)7
for s € (to —¢€,to +€), hence the 7 is an integral curve of X through h. But this contradicts

the maximality of 7y since t,+€ > b. Similar arguments can be used to derive a contradiction

assuming a > —oo. O

Definition. Let G be a Lie group. A 1l-parameter subgroup of G is a Lie group

homomorphism from R into G.

Lemma 8.8. Let G be a Lie group and X be a left-invariant vector field on G. Then the
integral curve of X through the identity element is a 1-parameter subgroup of G.

Proof. Let p denote the l-parameter group of diffeomorphisms (or flow) of X, which is
complete by Lemma 8.7. Then p(e,-) : R — G is the integral curve of X through the
identity element. It follows from Lg(p(e, s)) = p(g,s) and p(p(e,t),s) = p(e,t + s) that

p(67t) ’ p(e, S) = p(eut + S)'
This proves the claim. U

Theorem 8.9. Given a 1-parameter subgroup of a Lie group G, there exists a unique
left-invariant vector field on G generating it.  Consequently, there is a one-to-one

correspondence between 1-parameter subgroups of G and left-invariant vector fields on G.

Proof. Let v : R — G be a 1-parameter subgroup of G. The vector field % is the
left-invariant vector field on R. Meanwhile, dyy(%|i—9) = X, € T.G yields a left invariant
vector field X on G by Theorem 8.4. It suffices to prove that v is an integral curve of X
through e. This follows from

d d d
v (s) = dyo(Fli=s) = dvs(Low 2 lt=0) = Ly(s), (d70(F le=0)) = Los), Xe = Xy()-
O

Definition. Let G be a Lie group and g denote its Lie algebra. The exponential map
exp : g — G is defined by sending a left-invariant vector field X to «(1) where 7 is the
1-parameter subgroup of G generated by X.

Theorem 8.10. Let G be Lie group and g denote its Lie algebra. Then

(1) The exponential map is smooth.

(2) Given a left-invariant vector field X on G, ~(t) = exp(tX) is the I-parameter
subgroup generated by X. Consequently, exp((t + s)X) = exp(tX) - exp(sX).

(3) The differential at the identity dexpy : Tog — T.G is the identity map under the
canonical identifications of Tog and T.G with g. Moreover, the restriction of the
exponential map to some open neighborhood of 0 in g is a diffeomorphism onto its

1mage.
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(4) Given a Lie group homomorphism F : H — G, we have a commutative diagram

F
 ——

b g
expl lexp
H-"¢
(5) The flow p generated by a left-invariant vector field X is given wvia right
multiplication by exp(tX).

Proof. We prove the first three items and leave the last two as homework. First of all,
(1) follows from an application of Theorem 3.1 to the vector field X defined on G x g by
X(g,x) = (Xy,0), since Note that p*((g,X),-) = (pX(g,-), X). To prove (2), let p* denote
the flow generated by tX. To prove the first part of the claim, we need to show that
pt(e,1) = p'(e,t). In this regard, fix t € R and let v : R — G be defined by v(s) = p'(e, st).
Then
7(s) =tX

by the chain rule, which shows that v(s) = p'(e,s). The second part of the claim follows
immediately from the first part.

To prove (3), let X € Tyg = g. Consider the line ¢ : R — g defined by £(t) = tX. Then
by (2), we have

d d
dexpyX = £|tzoexp ol = %\tzoexp(tX) =X.
This proves the first part of the claim. As for the second part, use the Inverse Function

Theorem to find an open neighborhood of 0 € g with the desired property. O

The exponential map is used to prove the following theorem due to Cartan:
Theorem 8.11 (Cartan’s Theorem). A closed subgroup of a Lie group is a Lie subgroup.
Cartan’s Theorem then implies:

Proposition 8.12. An embedded subgroup of a Lie group is closed if and only if it is a Lie

subgroup.

Homework-4
Due 4/10/14

(1) Prove Theorem 7.3.

(2) Prove that the the connection and curvature matrices of an orthogonal and unitary
connection are skew-symmetric and skew-Hermitian, respectively.

(3) Find the Lie algebra of SO(n).

(4) Prove (4) and (5) in Theorem 8.10. (Hint: Use (2) in Theorem 8.10)
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9. MARCH 31-APRIL 4
A good reference for the following discussion is the book [6] by John M. Lee.

Proposition 9.1. Let G be a Lie group and g denote its Lie algebra. Then there exists a

one-to-one correspondence between connected Lie subgroups of G and Lie subalgebras of g.

Proof. Connected Lie subgroups of G define Lie subalgebras of g by Theorem 8.6. To prove
the converse, let h be a Lie subalgebra of g, and define a distribution A on G by Ay, = Lg_b.
Then A is closed under Lie bracket since [Ly, X, Ly, Y] = Ly [X,Y]. Therefore, it follows
from the Frobenius Theorem (Theorem 4.6) that A is completely integrable, and there
exists a maximal connected integral submanifold H of A through the identity element e in
G. For any h € H, h~'H is also an integral submanifold of A through e. By the maximality
of H, we have h~'H C H, and hence h~' € H. Now the same argument also proves that
H is closed under the group operation. Therefore, H is a subgroup of G, and as is easily
verified, the group operation and inversion on H are smooth maps. Finally, the claim that
H is the unique connected Lie subgroup with Lie algebra h follows from Lemma 8.1 and
Proposition 8.2 since any two connected Lie subgroups H and H’ of G with the same Lie
algebra would agree on an open neighborhood of the identity in H by item (3) in Theorem
8.10. [l

Definition. A Lie group covering is a Lie group homomorphism F : H — G that is also a
covering map. Note that F' is surjective with discrete kernel. In fact, the converse is also
true (See [6, Proposition 9.30]).

Exercise. The universal cover of a connected Lie group is also a Lie group. To show this,
lift the smooth structure and the group structure by the covering map having fixed an

element in the pre-image of the identity element.

Theorem 9.2 (Corollary 20.16 in [6]). Let H and G be simply connected Lie groups with

isomorphic Lie algebras. Then H and G are isomorphic as Lie groups.

Theorem 9.3 (Ado’s Theorem). FEvery finite dimensional Lie algebra admits a faithful

finite dimensional representation.

Theorem 9.4. There exists a one-to-one correspondence between isomorphism classes of
finite dimensional Lie algebras and isomorphism classes of simply connected Lie groups.

Proof. Given a finite dimensional Lie algebra g, Ado’s Theorem (Theorem 9.3) implies that
¢ is isomorphic to a Lie subalgebra of gl(n, R) with the commutator bracket. Then it follows
from Proposition 9.1 that there exists a unique connected Lie subgroup G of GL(n,R) with
Lie algebra isomorphic to g. The universal cover GofGisa simply connected Lie group with
Lie algebra isomorphic to g. Hence, by Theorem 9.2, G is the unique, up to isomorphism,

Lie group with Lie algebra isomorphic to g. U
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Theorem 9.5 (Theorem 20.21 in [6]). Given a finite dimensional Lie algebra g,
isomorphism classes of Lie groups whose Lie algebras are isomorphic to g are in one-to-one
correspondence with G /T" where G is the simply connected Lie group with Lie algebra g, and
I" is a discrete central subgroup of G.

Maurer—Cartan Form
Definition. Let G be a Lie group and g denote its Lie algebra. Then the adjoint
representation of G by T.G = g is
Ad: G — GL(g)
defined by Ad(g) := di9, : T.G — T.G. Note that since )9 = LyoR,-1, dip9, = Ly, oRy 1 .

The adjoint representation of g is
ad : g — gl(g)
defined by ad(X.) := d(Ad).(Xe).

Example 12. If G is a Lie subgroup of GL(n,R) or GL(n,C), then

d _ _
Ad(9)(B) = ~li=oge'’g™" = gBg ™,
for any g € G and B € g, and
d
ad(A)(B)ahzoAdemB = [A, B,
for any A, B € g.
Definition. Let G be a Lie group and g denote its Lie algebra. A 1-form w on G is called

left-invariant if for any g € G, Ly*w = w. The Maurer—Cartan form on G is the canonical
left invariant 1-form with values in T,G =2 g defined by

wy(v) :== Ly v,

for any v € T,G. It follows from the definition that if X is a left invariant vector field on
G,ie X;=L, X., then

wy(Xg) = Lyg-1, Xy = Xe,
for all g € G. Moreover,

(1) we : T.G — T.G is the identity map,
(2) Ry*w, = Ad(g~)w, for any g € G.

The above properties uniquely characterize the Maurer—Cartan form.

Now, let X,Y be left-invariant vector fields on G, then by Corollary 4.2 we have
dw(X,Y) = Xw(Y) = Yw(X) = w([X, Y]) = —w([X, Y]).
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Meanwhile, w([X,Y]) = [w(X),w(Y)] since
wy([X,Y](9)) = wylLy,[X,Y](e))
= (L wg)([X, Y](e))
= we([X,Y](e))
= {Xea Y;]
= [wy(Xy), wy(Yy)]-
Hence )
(dw + §[waw])(X7Y) =0,
where [w,w](X,Y) := [w(X),w(Y)]—[w(Y),w(X)]. In fact, the above equation holds for any
pair of smooth vector fields X, Y € X(G). Hence, we obtain the Maurer—Cartan equation:
dw + %[w,w] =0.

Let Xi,...,X, be a basis for g = T,G, and 6',...,0" be the dual basis of left-invariant

1-forms. Then .

(X5, Xi] = Zcé’th
i=1
where c;'. i are called the structure constants, and with

do* (X, X)) = —0"(X;, Xi) = =y,
the Maurer—Cartan equation reads:

i 1 i nj
do'+ 5> 0 n0E =0
5.k

The latter are called the structure equations for the Lie algebra g. By exterior differentiating

the top equation, we find that the structure constants satisfy the Jacobi identity:

n
i .S i .S i S _
> (chjche + clyc; + chcsy) = 0.
=1
As we will see soon, the Maurer—Cartan form is the connection 1-form for the canonical

principal connection on G regarded as the trivial principal G-bundle over a point.

Principal Bundles
A good reference for this subject is [5] by Dale Husemoller.

Definition. Let G be a Lie group and M be a smooth manifold. A principal G-bundle
over M is a smooth manifold P with a smooth and free right G-action such that P/G
is diffeomorphic to M, and a projection map 7 : P — M such that every point p € M
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admits an open neighborhood U and a diffeomorphism ®;; : 7~1(U) — U x G, called a local

trivialization, with the property that the following diagram commutes:

U) 2 U x @

where 77 is the projection onto the first factor.

Example 13. The product principal G-bundle is
mMxG—M

where 71 is the projection onto the first factor. Here the right G action on M x G is defined
in the obvious way: (z,g) - h := (z,gh) for any x € M and g,h € G.

Definition. A principal G-bundle 7 : P — M is said to be trivial if there exists a
G-equivariant diffeomorphism ¢ : P — M x G, called a trivialization, such that the following

diagram commutes:

PJ>M><G

1
My
A homomorphism of principal bundles from a principal G-bundle 7’ : P’ — N to a principal

G-bundle 7 : P — M is a smooth G-equivariant map F:P P lifting a smooth map
F: N — M in the sense that the following diagram commutes:

p-f.op

A

N -ty

An isomorphism of principal bundles between principal G-bundles «’ : P’ — M and 7 :
P — M is a G-equivariant diffeomorphism ¢ : P’ — P such that the following diagram

comimutes:

P2 p

i T
M P
Remark. Any homomorphism of principal G-bundles over the same base manifold lifting

the identity map on the base is an isomorphism of principal G-bundles.

A smooth section of a principal G-bundle 7 : P — M is a smooth map s : M — P
such that m o s = idys. Unlike the case of vector bundles, existence of a smooth section is

sufficient to say that a principal G-bundle is trivial.
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Proposition 9.6. A principal G-bundle m : P — M s trivial if and only if it admits a
smooth section.

Proof. If m : P — M is a trivial principal G-bundle, then there exists a G-equivariant
diffeomorphism ¢ : P — M x G as in the above definition. Therefore, it suffices to find a
section s of 1 : M X G — M. A section can be defined by s(z) := (z,e). Composing the
latter with ¢~! gives a smooth section of 7 : P — M. Conversely, if there exists a smooth
section s of 7 : P — M, we can define a smooth map ¢ : P — M x G by ¢(s(x)-g) = (z,9).
It is easy to check that this is a principal bundle isomorphism between 7 : P — M and the
product principal G-bundle. O

Given a principal G-bundle 7 : P — M, one can find a cover of M by G-equivariant
local trivializations. To see this, start by taking a cover of M by local trivializations and
fix a smooth section of each local trivialization. Then define a cover of M by G-equivariant
local trivializations defined by these sections as in the proof of Proposition 9.6.

Note that a G-equivariant local trivialization (U, ®7) has the form ®¢(p) = (7(p), gu(p))
where gy : m1(U) — G is a smooth G-equivariant map. If (U,, ®,) and (Ug, @3) are two
G-equivariant local trivializations with U, N Upg # 0, then

D 0@y :UsNUg x G = UaNUp x G

has the form @, 0@, (z, 9) = (2, gap(p)-g) where p = &5 (z, ) and gas(p) = ga(p)-g5' (p)-
The G-equivariant condition proves

905(P-9) = 9alp-9)-95'(p-9)
= 9a(p)-9-97" 95" (p)
= gaﬁ(p),

and hence g, reduces to a smooth function g,z : Uy NUg — G. Now, if we choose a cover
{(Uq, ®a)} of M by G-equivariant local trivializations, then the functions {g,g} satisfy the
cocycle conditions:

® gaa(x) = e for any x € U,,

® 903(%) - gy (T) - gyalx) =€ for any z € U, NUg N U, # 0.
The functions {gng} are called the transition functions, and the Lie group becomes the
structure group of the principal bundle. As in the case of vector bundles, a principal
G-bundle can be recovered from the data of its transition functions. In this regard, two
sets of transition functions {g,3} and {g(’w} define isomorphic principal G-bundles if and
only if there exist smooth maps {hq : Uy — G} such that

o = ha' - Gap - hg.

Exercise. Prove the last claim. To do this, note that an isomorphism of the local
trivialization (Uy,, ®4) is uniquely determined by a smooth map h, : Uy, — G.
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Similar to vector bundles, we can pull-back principal G-bundles via smooth maps. Let
w: P — M be a principal G-bundle and F' : N — M be a smooth map. Then

F*P:=N xp P={(z,p) | F(z) = n(p)}

admits a smooth right G-action defined by (z,p) - g := (x,p - g). This action is free since
the G-action on P is free. Meanwhile, the map F*r : F*P — N defined by F*7n(z,p) = x

fits into the following commutative diagram:

2
rp——P

NI

where 7 is the projection onto the second factor. With the preceding understood, it is
easily verified that F*m : F*P — N is a principal G-bundle.

Definition. Let G be a Lie group and p : G — GL(n,R) be a real finite dimensional
representation. Then given a principal G-bundle m : P — M, there exists an associated
smooth real vector bundle of rank n with total space

Px,R":= P xR"/(p,v) =~ (p-g,p(g~")(v)),

base M, and bundle projection 7” : Px,R™ — M defined by 7”[p, v] := 7(p). Moreover, the
transition functions of this vector bundle are the images under p of the transition functions
for m : P — M. Similarly, a complex finite dimensional representation leads to a smooth
complex vector bundle.

Suppose H is another Lie group and p : G — Aut(H) is a group homomorphism, then

the above recipe produces a principal H-bundle.

Example 14. Let G be a Lie group, g denote its Lie algebra, and m : P — M be a
principal G-bundle. Recall that the adjoint representation Ad : G — GL(g) is defined
by Ad(g) = dy9,. We denote the associated smooth vector bundle P x 44 g by Ad(P),
called the adjoint bundle. Now consider the homomorphism ¥ : G — Aut(G) defined by
U(g) = v¢9. Without ambiguity, we also call the associated principal G-bundle P xg G the
adjoint bundle.

Definition. Let G be a Lie group and M be a smooth manifold. A gauge transformation
of a principal G-bundle 7 : P — M is an automorphism of it. In other words, a gauge
transformation is a G-equivariant diffeomorphism w : P — P which fits into the following

commutative diagram:
u

p_“.p
M
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Clearly, gauge transformations form a group G, called the gauge group. Given an element
u € G, there exists a smooth map g, : P — G defined by u(p) = p - gu(p). The fact that u
is G-equivariant implies that

P gu(p)-g=up)-g=ulp-9)=p-9-9ulp-9),

1

and hence, g,(p-g9) = ¢ - gu(p) - g. Therefore, we can regard u as a smooth section of the

adjoint bundle P xy G.

Theorem 9.7. Let G be a Lie group and P be a principal G-bundle over a smooth manifold
M. Suppose that either P is trivial or that G is Abelian. Then the gauge group is isomorphic
to the group C*°(M,G).

Proof. The case when P is the trivial principal G-bundle, i.e. P = M x G, follows from
the observation that any smooth G-equivariant map from P to itself is determined by
its restriction to M x {e}, and hence is induced by a smooth map from M to G. To
be more explicit, a gauge transformation u of M x G is determined by a smooth map
¢u : M — G such that g, : M x G — G is given by gu(z,9) = ¢! - ¢u() - g, and
u(z,9) = (z,9-9u(x, 9)) = (x, pu(x)-g). As for the case when G is Abelian, the result follows
Ygulp) - g
is invariant under the right G-action on P. O

from the observation that any smooth map g, : P — G satisfying g,(p-g) =g~

10. APRIL 7-APRIL 11

Connections on Principal Bundles

Definition. Let G be a Lie group of dimension n, M be a smooth manifold of dimension
m, and 7w : P — M be a principal G-bundle. Denote by V the real vector bundle of rank n
that is the kernel of dm : TP — T M. The fibers of V' are tangent spaces to the fibers of P.
A principal Ehresmann connection on P is a subbundle H of TP such that TP = H ®V
and Ry H, = Hy.4 for g € G and p € P, i.e. H is G-invariant.

Denote by g the Lie algebra of G, i.e. T.G. For any p € P consider the smooth
G-equivariant map i, : G — P defined by iy(g) = p-g. Then i, :g — V, C T,P is an
isomorphism since G acts freely on P. We can describe Hy, as the kernel of a linear surjective
map wy, : TP — g that is the composition of the projection map from T,P = H, ® V), to V,,
and z'p;1 : Vp — g. Because H is a smooth vector bundle over P, it is then described by a

1-form w on P with values in g. This 1-form satisfies

(1) wp(ip,Xe) = X, for any p € P and X, € g,
(2) Ry*wp.g = Ad(g~')w, for any p € P and g € G.
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Having written any v € T, P uniquely as v = oh ip,Xe where v e H, and X, € g, the
first property follows immediately from the definition. As for the second property:

Ry wpg(v) = Wpy(Rg*(Uh + ip*Xe)) = Wpy(Rg*ip*Xe) = Wpy(ipy*(Ad(g_l)Xe)
= Ad(gil)Xe = Ad(gil)wp(ip*Xe) = Ad(gil)wp(v)a

since Ry 0i,(h) = ip.4(g~thg). These properties imply that i,*w is the Maurer—Cartan form
on G for any p € P.

Notation. Given a Lie group G with Lie algebra g, and a smooth manifold M, we shall
denote the space of k-forms on a principal G-bundle 7 : P — M by Q¥(P;g). To be more

specific, these are smooth sections of the vector bundle A*(P) @ g.

Conversely, a Lie algebra valued 1-form w € Q!(P;g) satisfying the above properties
defines a principal Ehresmann connection on P by its kernel. To see this, note that the
kernel of A is a subbundle H C TP of rank m, and for any v" € H,, wp.g(Rg*Uh) =
Ad(g )w,(v) = 0 by the second property above. Hence, H is G-invariant. A 1-form
w € QY(P;g) with the above properties is called a connection form on P.

Let (Uy, ®4) be a G-equivariant local trivialization of P such that ®,(p) = (7(p), 9a(p))
where g, : 7 1(U,) — G is G-equivariant, and s, : U, — 7 }(U,) be the local section
canonically associated to this trivialization, i.e. ®,(sq(x)) = (z,€). Then A, := sy*w €
O (Uy; g) satisfies

W10, = Ad(ga )T Aa + ga*wMC.
To see this, first note that since for any p € 7~ 'U, we have g, 0 i, = Ly, (p), the first
property above is satisfied by the right-hand side of the equation:

Ad(ga(p) ) (T Aa)p(ip, Xe) + (90" @M )p(ip, Xe) = Ad(ga(p) ™) (Aa)r(p) (M (ip, X))
tw ()(ga*(zp*Xe))

ﬁf@)(Xga@))

= Xe.

= W

As for the second property above, note that s,omo Ry = s, o7, and since g, is G-equivariant
we have Ad((go o Ry)™') = Ad(g7!) o Ad(g;') and R,*ga*wMC = g,*R,*wMC =
Ad(gfl)ga*ch. Therefore, it suffices to prove the above equality at p € 7 1(U,)
where p = s4(x) for some z € U,. In this regard, any v € T,P is uniquely written as

v = (8q 07)(v) +ip, Xe. Having said that, since go 0 5o =€

Ad(9a(p) ") (T Aa)p(v) + (92" WM Np(v) = (T s5w)p(v) + Wi (ga*( )
)(0)) + w (ganip, Xe)
= wp((8a 0 m)«(v)) +wp(2p*(ga*2p*X)
)« (V) +w

p(ip,Xe) = wp(v)

= wp((8a 0 m)«(v)

= wy((sa 0 m)u(v)
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If (Ug, ®p) is another G-equivariant local trivialization of P such that U,NUg # 0, ®5(p) =
(m(p), gs(p)) where gg : 7= 1(Ug) — G is G-equivariant, and sg : U, — 71 (Up) is the local
section canonically associated to this trivialization, then g, o sg = gog and

Ag =sg*w = 35*w|7rf1(Ua)
= sg" (Ad(ga_l)Tr*Aa + ga*wMC)
= Ad(g4)Aa + gop ™.

Conversely, given a cover {U,} of M by G-equivariant local trivializations {(Uy, ®4)} of P,
a collection {A, € QY(Ua;g)} obeying the above transformation rule defines a connection
1-form w € QY(P; g).

Exercise. Let P be a smooth manifold, G be a Lie group, and g : P — G be a smooth
map. Note that g*chp = Ly(p), ©dgp. Next, let G be the Lie group GL(n,R). Show that
g*wM¢ = g~ 1dg, and the connection form of a principal connection on a principal G-bundle

transform according to the rule:
Aﬂ = g,BaAagg_i + gﬁadgﬁ_i'

Existence of principal connections on principal G-bundles is proved in a similar fashion
to the existence of connections on a vector bundle using a partition of unity and patching
pull-backs of Maurer—Cartan forms over G-equivariant local trivializations. Given a pair of
connection forms wg and wy on a principal G-bundle 7 : P — M with G-equivariant local
trivializations { (U, ®4)}, if (Ua, ®4) has canonically associated section s, : Uy — 7 1(U,),
then

(W1 = wo)lr=1(va) = Ad(g5 )T (Ara — Aoa),

where Agy = so wo and A, = s5*w1. Moreover
Alﬁ — Aoﬁ = Ad(g;g)(Ala — AOQ).

Hence, the collection { A1, — Agn } defines a 1-form on M with values in Ad(P). Conversely,
having fixed a principal connection on P, any 1-form on M with values in Ad(P) can be used
to define a new principal connection. Therefore, the space A(P) of principal connections
on P is an affine space modeled on Q' (M; Ad(P)).

The gauge group acts on the space of principal connections as follows: let w be a
connection form on P and uw € G be a gauge transformation such that u(p) = p - gu(p)
for some smooth map g, : P — G. The action of u on w is defined as follows:
ok

u-w=(u")w.

Given a G-equivariant local trivialization (U,,®n = (7,9o)) of P with canonically

associated section s, : Uy — 7~ (U, ), we have

W10y = Ad(ga ) Ag + ga W™,
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where A, = s,*w as before. Then
(u w1, = Ad )7)
G © u_l)_l)(ﬂ' o u_l)*Aa + (ga ° u—l)*wMC

uw )Tt Ag + (65" 0 7) - ga)*W™MC
= Ad(((¢5" 0m)  ga) )T Aa + g™ WM = Ad(g;" - (65" 0 1)) (e 0 m) WM
= Ad gil : (Qsa © W))<7T*Ao¢ - (¢a © W)*WMC) + ga*cha

NS
Q
e}

where @, ouo®_1(x,g) = (z,da(x) - g). Consequently, on any local trivialization (U, ®,)
where w is represented by A, € QY(U,, g),

U Aq = Ad(¢a)(Aa — 5w™MO).

Example 15. The Lie algebra of U(1) is identified with ¢R. The adjoint representation of
u()

Ad:U(1) - GL(iR)
is given by Ad(e”) = 1. Therefore, if 7 : P — M is a principal U(1)-bundle, then
Ad(P) = M x iR, and principal connections on P are in one-to-one correspondence with
Q' (M;iR). Meanwhile, since U(1) is Abelian, the gauge group of P is C°°(M,U(1)), and
the action of C*°(M,U(1)) on A(P) is given by

u-A=A—uldu.

Definition. Let 7 : P — M be a principal G-bundle with Lie algebra g, and w € Q' (P, g)
be a connection form. Then the curvature form of the connection defined by the kernel of
w is given by
1
F, :=dw+ §[w,w].
and F,, € Q*(P,g).

Before we proceed, note that any Z € T,P can be written as Z = Zh + Z¥ where
Z" € H, = ker(w,) and Z¥ € V,,. Then F,, satisfies:
(1) Ry*F, = Ad(g~1)F, for any g € G,
(2) F,(Z1,Z) = —w([Z}, Z])) for any Z1,Z5 € P .
We see the first property as follows:

1
RS F, = Ry (dw+ §[w,w])
1
= dR;w + i[Rg*w, R, w]
1
= dAd(g)w + S[Ad(g™")w, Ad(g™")w]

= Ad(g™)(dw + 5[w,))
= Ad(g YHE,.
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To see the second property, note that F,(Z7, Z3) = 0 since the restriction of w to any fiber
is the Maurer-Cartan form w™¢, and dw™® + %[wMC, wMC = 0. Therefore,

Fo(Z1,2) = Fu(Z!Z}) + Fu(Z}, 23) + Fu(23, Z5)
= dw(Z},Z3) + dw(Z7, Z5) + dw(ZY, Z3).

Now by Corollary 4.2,

dw(Z{‘,Zg) = _w([Z{lvzél])
dw(Z,Z3) = —w([Z},Z3])) =0
dw(Zy,2}) = —w([Z],Z3]) =0,

where the last two are due to the fact that the Lie bracket of a horizontal vector field and
a vertical vector field is zero (Exercise). As a result, the curvature form detects whether

the horizontal distribution defining the principal connection is integrable.
Theorem 10.1 (Bianchi identity). The curvature form F,, satisfies

dF, = [F,,w].
Proof. Simply take the exterior derivative of the curvature form:

iF, - d(dw+%[w,w])

1
= 5([dw,w} — [w, dw])
= [dw,w]
= [Fw_i[w?w]’w]
= [Fw>w]7
since i[lw,w],w] = 0 by the Jacobi identity via I[w,w],w](Z1,20,%3) =
[[w(21), w(Z2)],w(Z3)] + [[w(Z2), w(Z3)], w(Z1)] + [[w(Z3), w(Z1)], w(Z2)]. 0

Next, let {(Uy, ®4)} be a cover of M by G-equivariant local trivializations of P with
canonical local sections s, : Uy, — 7 1(U,). Define, as before, A, = so*w, and Fa, :=
s F,. Then,

Fy, =dA, + %[Aa, Adl,
and it follows from the transformation rule for A,, together with the Maurer—Cartan
equation, that
FAB = Ad(g(;ﬁl)FAa.
Hence, {Fa,} defines a 1-form on M with values in Ad(P), i.e. Fa € QY(M; Ad(P)).

Definition. Let 7 : P — M be a principal G-bundle with Lie algebra g, and w € Q'(P; g)

be a connection form. The connection defined by the kernel of w is called flat if F,, = 0.



69

Definition. Let 7 : P — M be a principal G-bundle with Lie algebra g, w € Q'(P, g) be
a connection form, and H := ker(w). Fix z,z¢9 € M. Suppose v : [0,1] — M is a smooth
parametrized curve from xq to x in M. Denote by Z, the tangent vector field to this curve.
We can lift Z, to a unique horizontal vector field Zh on v*P, i.e. ZJZL € H), for any p € v*P.
Having fixed a point p € v*P, we can parallel transport along ~ by integrating the vector
field Z" to get a smooth horizontal parametrized curve 4 in P starting from the point p.

Since H is G-invariant, this results in a G-equivariant diffeomorphism
by o Hwg) — 7 ().

defined by h,(p-g) = 4(1) - g. In particular, if x = xg, then parallel transport yields a
G-equivariant diffeomorphism

by i (o) = 7 (),
called the holonomy of w around . The holonomy group of w at p is defined as
Holy(w) :={h € G | by(p) = p- h for some ~}.

Note that the latter is a subgroup of G and Holy.4(w) = g~' Holy(w)g. Denote by Hols(w)
the subgroup of Holp(w) consisting of holonomies around contractible loops based at zg. It
is easy to see that the latter is a normal subgroup of Hol,(w). Therefore, we have a group
homomorphism:
h:m(M,z0) — Holp(w)/Hol,(w).

Moreover, Holy(w) is path-connected as a subspace of G. Note that hol := {X, | X, =
41, _ox(t) wherex : [0,1] — Holy(w) withz(0) = e} is a vector subspace. Moreover,
hol is a subalgebra of g since for any X, Y, € hol with corresponding paths z(t),y(t) in
Holy(w) we have [Xe,Ye] = 41 or(VHy(VHz(vt)“ly(vt)~l. Now, by Theorem 9.1, the
Lie subalgebra hol corresponds to a connected Lie subgroup H of G. Meanwhile, it follows
from Theorem 8.10 that H and Hol) (w) agree on an open neighborhood of the identity, and
hence, H C Holy(w). On the other hand, Holy(w) C H since for any path z(t) C Hol,(w)
and ty € [0,1], %\t:tox(t) € Ly (1), bol. Therefore, Holp(w) is a Lie subgroup of G. The
proof that Holy(w) is a Lie subgroup of G then follows from the fact that Hol,(w) is a Lie
subgroup of G and Holy,(w) is a union of disjoint cosets of Holy(w). In fact, Holj(w) is the
identity component of Holp(w).

Theorem 10.2 (Ambrose-Singer [1]). Let m : P — M be a principal G-bundle with Lie
algebra g, and w € QY(P;g) be a connection form. Then the Lie algebra of Holy(w) is
generated by F,,,(Z1, Z2) for any Z1, Zy € T,P.

Theorem 10.2 implies that if w is a connection form with F,, = 0, then we have a group

homomorphism, called the holonomy representation:

h:m (M, z9) = Holp(w) C G.
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(1)

Homework-5
Due 4/28/14

Recall the complex vector bundle from Example 9: 7 : CP2~ {(0:0: 1)} — CP!
defined by 7(z : y : z) = (x : y). Another way to describe the dual/conjugate of this
vector bundle geometrically is as follows. Consider all complex lines through the
origin in C2. These are parametrized by points in CP!. Then consider the complex
line bundle with total space the set

O(—1) == {((z : y), Mz, \y)) € CP* x C? | A € C}.

The projection map 7 : O(—1) — CP! is defined by 7((x : y), (Az,\y)) = (= : y).
The latter is also called the tautological line bundle over the complex projective
line. There is a natural complex vector bundle isomorphism between the two
descriptions:F' : O(—1) — TP’ < {(0 : 0 : 1)} defined by F((z : y),(a,b)) :=
(x : y : ax + by) lifts the identity map on CP!. The standard Hermitian inner
product on C? is used to define a Hermitian metric on O(—1). With this metric,
consider in each fiber the subset of unit length vectors. Show that the resulting
space is diffeomorphic to S, and the restriction of the bundle projection
to this subset is a principal U(1)-bundle. The latter is nothing but the Hopf
fibration from S to S?2. When blow-up a point in C2, one replaces the point with
the total space of the tautological bundle. With the above understood, one can think
of this operation in the case of smooth oriented 4-manifolds as taking connected sum
with the oriented 4-manifold cP".

Let 7 : P — M be a principal G-bundle, and p : G — GL(V') be a smooth finite
dimensional representation where V is either a real or complex vector space of
dimension n. Denote by £ the associated vector bundle P x, V. Then a principal
connection H on P defines a linear connection H” on E as follows: given v € V'
let i, : P — E be defined by i,(p) := [p,v]. Then Hé’v] = iy, Hp. First show
that the principal connection is well-defined, i.e. it does not depend on
a representative of the equivalence class [p, v].

Next, let z € M and (Uy, o = (7, 9a)) be a G-equivariant local trivialization
of P with canonical section s,. Let H = ker(w), and sy*w = A, € QY(U,, g).
Show that H; ) = {(®a);'(w,—Aaz(w)) | w € T,M}, and that H['Zw] =
[(®8) 1w, —pu (Aax(@))v) | w € T,M} where @4[p,v] = ((p), p(ga(p))0)-
Finally, verify that the latter implies

(szs)(x) = dsy(Zz) + pe(Aaz(Z2))s(x),

where Z € X(U,) and s € C®(U,;V), defines the covariant derivative
corresponding to the linear connection H”.
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