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Abstract

A new method for star identification based on using planar triangles is developed and

compared to a standard angle method approach. The angle method creates angles between

stars within the field of view of a star tracker and matches them to angles in a catalog to

determine which stars make them up. The new method creates triangles from the stars

within the field of view of a star tracker, determines their area and polar moment, then

matches the triangles to a catalog of triangles in a way that is faster and more successful

than the angle method. Simulation results are provided that show the performance of the

new method as well as its robustness with respect to including false stars.

Introduction

Star Identification Methods

A very important device on any spacecraft is the one that determines the attitude of a

spacecraft. There are many different methods by which attitude can be determined, but one

of the mostly widely used is the star tracker. Other methods for determining attitude exist,

including sun sensors and magnetometers, but cannot report attitude with the precision a

star tracker can. Oftentimes, on high-budget missions, these other sensors will complement or

back-up a star tracker. On missions with tight attitude knowledge requirements, the primary

means to determine attitude is the star tracker. Before an attitude can be determined, the
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stars within the field of view (FOV) of a star tracker must be identified. If it can identify at

least two stars, then the attitude of the spacecraft can be determined.

The technology behind star trackers has changed much over the years. Evolving from

gimballed to direct-head, the latest star trackers now use charge-coupled devices (CCD) for

imaging, which offer high accuracy.1 Still, they are not perfect devices since measurement

errors will always exist. Even the smallest amount of error that exists in the image measure-

ment of the stars makes identifying the stars a very challenging problem. As a result, there

are many different methods for identifying the stars within the FOV. One well known method

involves measuring the angular separation between stars in the FOV and then matching them

to angles within a catalog of angles between stars.2 This is called the “angle method” and

has been the basis for many star recognition algorithms. It does not rely on other sensors

for assistance and can be used in a “lost-in-space” condition. Star magnitude can also be

used to help in identification, but this is not simple when CCD’s are used. For instance the

sensitivity of a CCD to different spectra of light must be understood and accounted for.3

Other methods use “a priori” information to help the star tracker to determine the

stars within its FOV.2,4–9 Methods based on knowing the attitude of the spacecraft at an

earlier point in time would not be suitable for lost-in-space conditions. Other methods are

completely attitude independent. For example, Ref. 10 matches star quadruples by ordering

angular observations to form an index. The method works well, but no statistical analysis is

given on the errors in the quadruple measurements. Even neural networks are being tested

for their potential to recognize stars.11 Another approach uses a grid over an image, and

centers and aligns a grid according to two stars in the FOV.12 A binary grid is created by

marking each grid bin as either containing a star or not containing a star. A probabilistic

model is used to adapt the matching function according to the density of stars in the FOV.

The approach is conceptually quite simple, which provides very accurate star identification to

both positional and magnitude noise. However, at least 10 stars are required in the FOV and

a minimum of 7 stars need to be matched for proper identification. The approach presented

2 of 38



in this paper can work using a much smaller number of stars and, unlike the methods of

Refs. 2 and 4–9, requires no a priori information. Furthermore, unlike Ref. 10, a rigorous

probabilistic analysis is shown on the new observations derived herein.

The method presented here is called the “planar triangle method.” It creates planar

triangles from the stars in the FOV and compares them to a catalog of triangles to find a

match. It too has its roots in the angle method, which will be used as a basis for comparative

studies to the planar triangle method. To make the testing of both methods realistic, a typical

star tracker has been chosen as a model. The Ball CT-601 star tracker has an 8 × 8 degree

FOV and can see down to magnitude 6.0 stars.4,13 The testing model created here assumes

an 8 degree circular FOV for simplicity, but the star pattern recognition algorithms tested

can be applied to square FOVs.

Design Theory

The importance of star trackers on spacecraft is difficult to overestimate. Errors in

attitude knowledge can result in damage to or the complete loss of a spacecraft. An ideal

star tracker would be able to report attitude instantly without chance of error in lost-in-

space conditions and without aid from other sensors. In addition, it would require little

in the way of computer resources such as storage and CPU speed. These are certainly

conflicting constraints and decisions have to be made when designing the star tracker as to

what is most important.

For the methods presented here, rate of success and speed are given the highest priorities

in the design of the algorithms. The ability of a star tracker to report attitude quickly is

desirable in many situations, e.g., to point towards the oncoming Sun for power requirements

before the Sun is even available. The idea behind the planar triangle method is that by using

more than one property to recognize a pattern of stars, area and polar moment, it is more

likely to reach the correct solution and do it using fewer stars. By comparison, the angle

method can only use one property, the angle itself, for pattern matching and as a result will

not approach a solution as quickly.
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The penalty for success and speed is storage. It will be seen that the database used

with the planar triangle method is quite large when compared to that required for the angle

method. It is only large by spacecraft standards, however; the database would easily fit

onto a keychain-sized flash drive. The computer hardware used in spacecraft is designed to

withstand the harsh environment of space and as a result lags years behind the current state

of the art in processor speed and storage. The technology continues to evolve, however, and

tasks that are too demanding of spacecraft hardware today will likely be practical in the not

too distant future.

Angle Method

A well-known identification method involves matching the angle of separation between

pairs of stars within the FOV to a catalog containing all of the angles between stars in

the celestial sphere which can fit within the FOV of a star tracker.2 To create the catalog

of angles, a data structure called a spherical quad-tree is used.14 A quad-tree structure is

typically used to store objects located in 2-D space in such a way that objects can be found

within a certain area without examining each and every object. The spherical quad-tree used

here to catalog the angles enables cataloging angles in such a way that only each neighboring

star within a certain distance has to be examined to see if the angle between them is small

enough to fit within the star tracker FOV. It greatly reduces the total number of pairs that

needs to be examined and greatly reduces the time required to create the catalog. For the

star tracker modeled here, the catalog created contains 106,308 angles and occupies 12 MB

of memory.

Once the angles are cataloged, they are sorted by angle. To make finding all the angles

that lie within a given range fast, a technique called the “k-vector” approach is used.15 If the

angle of each pair of stars is plotted against its location in the catalog, a line can be drawn

connecting the first and last pair of stars. The equation of this line can be used in association

with the generated k-vector to locate where in the catalog a particular pair of stars with a

given angle is located. This greatly reduces the computational burden since the star pattern
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search algorithm requires a search of the pairs of stars only within a measurement uncertainty

region, not a search of the entire catalog.

Angle Between Two Stars

The angle between the vectors pointing to the stars is given by θ = cos−1(r1 · r2), where

r1 and r2 are unit vectors pointing to each star. The vectors r1 and r2 are given in inertial

space. However, only body measurements are known. The angle θ is the same whether

inertial vectors or body vectors are used. The problem is that the angle measured between

the stars within the FOV of the star tracker will contain a certain amount of measurement

error, which cannot be ignored. If the measurement follows a Gaussian distribution, standard

deviation can be determined and used to establish a range within which the true measurement

is likely to lie. For instance, if the range is chosen to be the measurement angle ±3 times the

standard deviation of the measurement noise, 3σ, then the true measurement is expected to

be within this range 99.7% of the time.

Standard Deviation of Angle Measurement

The measurement error made by a typical modern-day star tracker follows a nearly zero-

mean Gaussian white-noise process.16 What will be needed for the angle method is the

standard deviation of the angle between two stars when each star measurement possesses the

error described. The standard deviation of the attitude-independent measurement, involving

the dot product of two star vectors, can be used to provide a bound on the expected errors.

We begin with the standard coordinate transformation equation: bi = Ari, where ri is

the direction of the star in the Earth-Centered Inertial (ECI) coordinate system, A is the

direction cosine matrix, which is orthogonal and proper, and bi is the direction of the star

in the star tracker body coordinate system. When measurement errors exist, Shuster17 has

shown that nearly all of the probability of the errors is concentrated on a very small area

about the direction of Ari, so that the sphere containing that point can be approximated by
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a tangent plane, characterized by

b̃i = Ari + vi, vT
i Ari = 0 (1)

where b̃i denotes the ith measurement and the sensor error vi is approximately Gaussian,

which satisfies

E {vi} = 0 (2a)

Ri ≡ E
{
viv

T
i

}
= σ2

i

[
I − (Ari)(Ari)

T
]

(2b)

where σ2
i is the variance and E denotes expectation. Further details on this model are given

in Ref. 18.

Taking the dot product of two body observations gives bT
1 b2 = rT

1 AT Ar2 = rT
1 r2. This

shows that the dot product is an attitude-invariant measurement. Consider two body mea-

surements, denoted by b̃1 and b̃2, with noise:

b̃i = Ari + vi, i = 1, 2 (3)

where v1 and v2 are assumed uncorrelated. Define the following effective measurement:

y ≡ b̃T
1 b̃2

= rT
1 r2 + rT

1 ATv2 + rT
2 ATv1 + vT

1 v2

(4)

Since v1 and v2 are uncorrelated, then E{y} = rT
1 r2. Define the following variable:

p ≡ y − E{y}

= rT
1 ATv2 + rT

2 ATv1 + vT
1 v2

(5)
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Then taking E{p2} yields the following variance for the dot product measurement error:

σ2
p ≡ E{p2}

= rT
1 AT R2Ar1 + rT

2 AT R1Ar2 + Trace(R1R2)

= Trace(Ar1r
T
1 AT R2) + Trace(Ar2r

T
2 AT R1) + Trace(R1R2)

(6)

where E{v1v
T
1 } ≡ R1 and E{v2v

T
2 } ≡ R2, each given by Eq. (2b). Note that the effective

measurement noise in the dot product contains both Gaussian and χ2 components. But since

the noise is small compared to the unit vector observation, then using the same analogy shown

in Ref. 19, the effective noise can essentially be treated as purely Gaussian. Since we do not

know the attitude, then Ar1 and Ar2 are replaced by b̃1 and b̃2, respectively. Typically, errors

introduced by this substitution are second-order in nature,17 so the variance is completely

independent of the attitude matrix A.

The chosen βσp bound (for some scalar β) has a large effect on the results of both the

angle and planar triangle methods. If the correct solution lies outside the bounds of the

measurement error, neither method will find the solution, or worse arrive at an incorrect

solution. If the βσp bound is set high, it is less likely an incorrect solution will be reached,

since it is more likely the correct solution lies within the βσ bound. However, if the βσp

bound is set too high, too many possible solutions will exist for each angle and planar triangle

in the FOV and a single solution may not be reached. Both methods are demonstrated using

a 3σp bound, meaning the probability that the correct angle will be within the range of the

measured angle will be 99.7%.

Angle Pivot

If there exists more than one possible solution to a measured angle, one method by

which the correct solution can be determined is based on “pivoting.” After all the possible

solutions to the first angle are determined, a second angle within the FOV is selected such

that it shares one star in common with the first angle. Once all the potential solutions to
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the second angle are found, the stars that make up both angles are examined. Since the

solution to both angles must have a star in common, any angles on either list that do not

have a star in common with at least one angle on the other list are rejected. If the number of

possible solutions for each measured angle isn’t reduced to one after the elimination, another

pivot is made; a third angle is chosen such that it has at least one star in common with the

second angle, and the possible solutions for the second and third angles that do not share a

common star are rejected. The pivoting process continues until a single solution is reached

or the star tracker runs out of angles to which it can pivot. If it runs out of angles before

obtaining a single solution, then the result is inconclusive.

Planar Triangle Method

Instead of measuring the angle between pairs of stars, the planar triangle method creates

planar triangles of combinations of three stars. The idea is that more information can be

obtained from a planar triangle than an angle, which will enable a star tracker to determine

the identity of stars more quickly and use fewer stars overall than the angle method. In

the algorithm presented here, the area and polar moment of triangles are used to determine

what triangle is being examined by the star tracker. One drawback of the this method is

that it will be impossible to identify stars with less than three stars in the FOV, while the

angle method needs only two stars. However, after including the measurement error present

in the star tracker, usually more than two stars are required to arrive at a solution using the

angle method. What will be shown is that the planar triangle method, in fact, will require

fewer pivots than the angle method and will more likely yield a solution using fewer stars

overall.

While the angle catalog can be created using more straightforward methods than the

spherical quad-tree, to create the planar triangle catalog without it would have been difficult.

Having to examine stars in combinations of three instead of two greatly increases the total

number of objects to examine. The catalog suiting the star tracker modeled here contains

662,779 planar triangles. For each of these triangles, the area and polar moment must be
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calculated making the catalog 167 MB in size, more than ten times larger than the equivalent

angle catalog.

Like the angle method, the triangles must be sorted by area and polar moment so that

the k-vector approach can be used to locate planar triangles quickly by their area or polar

moment. So that two separate catalogs aren’t necessary, two linked-list data structures are

sorted instead of the planar triangles themselves. In addition, plotting each triangle area

against position in the sorted list is not linear. To make the k-vector approach as fast as

possible, a parabola is fit between the first and last points (more details can be found in

Ref. 14).

Planar Triangle Area

Given three unit vectors pointing toward three stars, denoted by b̃1, b̃2 and b̃3, the area

of a planar triangle can be found using Heron’s formula:

A =
√

s (s− a) (s− b) (s− c) (7)

where

s =
1

2
(a + b + c) (8a)

a = ||b̃1 − b̃2|| (8b)

b = ||b̃2 − b̃3|| (8c)

c = ||b̃1 − b̃3|| (8d)

The equation is given for the star tracker frame, but can also be used in the ECI frame.

To obtain a bound for the measurement error the standard deviation of the calculated area

must be calculated.

Since the planar area is a nonlinear function of b̃1, b̃2 and b̃3, a linearization approach

must be used to determine its variance. To compute this quantity the following 1× 9 partial
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derivative matrix is evaluated:

H =

[
hT

1 hT
2 hT

3

]
(9)

where

hT
1 ≡ ∂A

∂a

∂a

∂b1

+
∂A
∂c

∂c

∂b1

(10a)

hT
2 ≡ ∂A

∂a

∂a

∂b2

+
∂A
∂b

∂b

∂b2

(10b)

hT
3 ≡ ∂A

∂b

∂b

∂b3

+
∂A
∂c

∂c

∂b3

(10c)

The partials with respect to a, b and c are given by

∂A
∂a

=
u1 − u2 + u3 + u4

4A
(11a)

∂A
∂b

=
u1 + u2 − u3 + u4

4A
(11b)

∂A
∂c

=
u1 + u2 + u3 − u4

4A
(11c)

where

u1 = (s− a) (s− b) (s− c) (12a)

u2 = s (s− b) (s− c) (12b)

u3 = s (s− a) (s− c) (12c)

u4 = s (s− a) (s− b) (12d)

The partials with respect to b1, b2 and b3 are given by

∂a

∂b1

= (b1 − b2)
T /a,

∂a

∂b2

= − ∂a

∂b1

(13a)

∂b

∂b2

= (b2 − b3)
T /b,

∂b

∂b3

= − ∂b

∂b2

(13b)

∂c

∂b1

= (b1 − b3)
T /c,

∂c

∂b3

= − ∂c

∂b1

(13c)
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The variance of the area, denoted by σ2
A, is given by

σ2
A = H R HT (14)

where

R ≡


R1 03×3 03×3

03×3 R2 03×3

03×3 03×3 R3

 (15)

where 03×3 denotes a 3× 3 matrix of zeros and R1, R2 and R3 are given by Eq. (2b). Note

that the matrices H and R are evaluated at the respective true values; however, replacing

the true values with the measured ones leads to second-order errors that are negligible for

typical star tracker noise levels. Since the standard deviation, σA, is derived analytically,

the bounds over which the true area is likely to exist can be determined precisely, no matter

the shape or size of the planar triangle.

Planar Triangle Polar Moment

The polar moment makes a good counterpart to area, since it is possible for two planar

triangles that have the same area to have very different second moments. In addition, two

planar triangles that have the same polar moments may have very different areas. When

it comes time to match planar triangles seen within the FOV of the star tracker to planar

triangles in the catalog, use of these two approaches will rapidly reduce the number of

possible solutions. The polar moment for a planar triangle is given by

J = A (a2 + b2 + c2)/36 (16)
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As with the area, the variance of the polar moment can also be derived in closed form. To

compute this quantity the following 1× 9 partial derivative matrix is evaluated:

H̄ =

[
h̄T

1 h̄T
2 h̄T

3

]
(17)

where

h̄T
1 ≡ ∂J

∂a

∂a

∂b1

+
∂J
∂c

∂c

∂b1

+
∂J
∂A

hT
1 (18a)

h̄T
2 ≡ ∂J

∂a

∂a

∂b2

+
∂J
∂b

∂b

∂b2

+
∂J
∂A

hT
2 (18b)

h̄T
3 ≡ ∂J

∂b

∂b

∂b3

+
∂J
∂c

∂c

∂b3

+
∂J
∂A

hT
3 (18c)

with

∂J
∂a

= A a/18,
∂J
∂a

= A b/18,
∂J
∂a

= A c/18 (19a)

∂J
∂A

= (a2 + b2 + c2)/36 (19b)

All other quantities in Eq. (18) are given from the area variance calculations. The variance

of the polar moment, denoted by σ2
J , is given by

σ2
J = H̄ R H̄T (20)

As with the area variance the true values are replaced with their respective measured ones.

Planar Triangle Pivot

The method for matching planar triangles is similar to the method for matching angles.

A planar triangle is made from three stars in the FOV and its area and polar moment are

calculated. A range over which the true area and polar moment exist are calculated using

the standard deviations for each. Going through the catalog, triangles that have an area
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and polar moment that fit within the bounds calculated for the triangle in the FOV are

sought. Ideally, only one possible solution exists, but this typically does not happen. When

more than one solution exists, a pivot similar to the angle method is made. Another planar

triangle is made from the stars in the FOV such that there are two stars in common with

the first triangle, as shown in Figure 1. A list of possible solutions is made and then the

solutions between the first planar triangle and second planar triangle are compared. Any

solution in each list that does not have two stars in common with at least one solution in

the other lists is discarded. After the comparison is made, if more than one solution exists,

another pivot is made. Pivoting continues until either a single solution is found or there are

no more triangles to which to pivot. Pivoting such that only one star is shared between the

first and second planar triangles can be done, but would be less effective. The number of

triangles that are likely to share one star is greater than two, so the solution would require

a greater number of pivots.

Testing each possible solution to the first triangle against each possible solution to the

pivot triangle can be time consuming, since there can be hundreds of solutions per triangle

in the FOV. To reduce the number of combinations to test, three binary search trees are cre-

ated.14 The first tree contains star number 1 of each of the first triangle’s possible solutions.

The second tree contains star number 2 and tree number three contains star number 3. One

of the pivot triangle stars is checked to see if it exists in any of the three binary trees, and

if it does, it tests the other two stars to see if it matches any of the stars of the triangle it

matched in the binary tree. If not, a second star is tested against the binary trees, similar to

the first. If still nothing matches, that triangle can be excluded as a solution. This approach

greatly reduces the number of overall combinations that need to be tested, which greatly

improves the speed of the algorithm.

Comparison of Methods

To test the angle and planar triangle methods, a random star tracker attitude is generated

1,000 times using the approach shown in Ref. 20. Figure 2 shows the distribution of the
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number of stars in the FOV. Each method is tested to see if it can positively identify at least

one angle or triangle in the FOV. The star pattern recognition algorithm does not attempt

to determine final attitude; it only identifies the stars that make up the angles or triangles.

If all of the stars determined by the star identification algorithm actually are in the FOV,

it is considered a correct result. If any of the stars output by the algorithm are not in the

FOV, the result is considered a failure. If the algorithm cannot yield a single solution to

the angles or triangles in the FOV, it is recorded as an inconclusive result. Under ideal

conditions, a star tracker will only see stars within its FOV; however, it is entirely possible

a piece of space debris enters the FOV of a star tracker, which may be misinterpreted as a

star. Both the angle method and the planar triangle method will be tested to see how such

a “false” star affects the ability of each algorithm to reach a solution.

Each time the star pattern recognition algorithm is tested, the simulated star tracker

must be set in a random attitude and the stars within the FOV determined. The locations

of the stars then have to be mapped to the star tracker body frame to demonstrate that the

properties of the triangles cataloged are not dependent on the attitude in which the triangles

properties have been calculated. Given the body axis in terms of the tracker coordinate

frame, the location of the stars in the ECI coordinate frame can be converted to the frame

of the star tracker using bi = Ari with a random attitude. The coordinates of the stars are

so far still true, which would not be reported by a real star tracker. For a typical tracker

with a 512 × 512 pixel array and 8 × 8 degree FOV, the pixel subtense is about 60 arcsec or

270 microradians. Typical errors are about 1/10th of a pixel, so a measurement error with a

standard deviation, denoted by σi in Eq. (2b), of 21 microradians is added to the true body

vectors.

If a false star is added to the FOV, then another random frame is created such that

one axis is collinear with the boresight of the tracker. Either of the two remaining axes

is perpendicular to the boresight, and so a vector is created along one of the axes with a

random arc length up to half the FOV of the tracker. The direction of the false star in ECI
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coordinates is then the boresight vector plus the random vector unitized. The vector is then

converted to the frame of the star tracker and noise added as if it were another star. This

false star is then added to the list of stars seen in the FOV of the star tracker and used in

either the angle or planar triangle method for solution.

Testing Conditions

The CPU times stated are based on hardware using an Apple Powerbook G4, 500 MHz,

with 512 MB RAM. All simulations are done using MATLAB R© Version 6.5.0.1915, Release

13. All graphics output from the routines are turned off and care is taken to ensure there

are no other significant processes running in the background during testing. Each method

is reduced to a single subroutine called from the random attitude testing routine. The time

is measured from the line of code directly before calling the routine to the time it returns

from it. The MATLAB R© variable “CPUTIME” is used. Both the angle and planar triangle

method star pattern recognition algorithms are run with only one limit: if the number

of possible solutions to any particular angle or triangle exceeds 10,000, then the angle or

triangle is rejected. A typical angle will have only a few hundred possible solutions, and a

triangle many hundred solutions. Angles or triangles that have far more possible solutions

take a large amount of time to process and do not contribute to a successful run, so they are

removed. While the absolute time measurements reported here cannot be directly compared

to actual star trackers, since the hardware is so completely different, it does make relative

comparison of the angle method and planar triangle method possible.

Angle Method Results

Referring to Figure 3, it can be seen that the angle method is successful in identifying at

least one angle in the FOV 59% of the time and cannot positively identify any of the angles

40% of the time, even when allowed unlimited pivots. Less than one percent of the attitudes

tested contained less than two stars within the FOV, for which the angle method could not

be tested and less than one percent of the attitudes give incorrectly identified results. Since
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every possible triangle has been cataloged, the only way an incorrect result can occur is if the

correct solution lies outside the 3σ bound placed on the angle recognition algorithm. Since

the probability of the angle being within a 3σ bound is 99.7%, the errors encountered are

not unexpected. Referring to Figure 4, it can be seen that the angle method rarely works

if there are less than 4 stars in the FOV. This means that at least two pivots are required

before any stars can be identified. It is interesting to note that the angle method is most

successful when there are four stars in the FOV. If more than two pivots are required, the

rate of success drops.

The number of pivots required by the angle method is shown in Figure 5. The average

number of pivots is 5.669, with a standard deviation of 4.769. Because the angle method

requires two stars before pivoting, the average number of stars required is the average number

of pivots required plus two. In this case, the angle method requires an average of 7.669 stars

before yielding a result, positive or negative.

It is important to note that virtually any attitude that required nine or more pivots would

ultimately not be solved. The angle method attempts pivots from largest angle to smallest

angle, since the largest angles tend to have the smallest number of possible solutions. After

a certain number of pivots, the number of possible solutions for an angle becomes so great

that pivoting no longer reduces the possible number of solutions. In some cases, the number

of solutions can begin to rise worsening the problem. Since a lot of time is spent by the angle

method algorithm determining the order in which to pivot, limiting the number of pivots

to nine significantly improves the time required by the angle method without significantly

affecting the success rate of the method.

The CPU time required to execute the angle method is shown in Figure 6. The average

time required is 7.203 seconds with a standard deviation of 3.787 seconds. Note that this

chart shows a short spike at the left side which results from requiring at least 3 stars in the

FOV before a pivot can be made. Since no pivots can be made in those situations, little

CPU time is required. Another spike exists at the right side of the chart. All the attitudes
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requiring more than 10 seconds are grouped together to make the chart more compact.

With the 9-pivot limit, the overall success climbs slightly to 61%. Each test uses different

attitudes, so it is not unreasonable to see some variation in the results after only 1,000

attitudes. It does demonstrate, however, that limiting the pivots does not significantly

affect the success rate of the method. More interesting is that the average time required per

attitude drops to 6.217 seconds, a 13.7% improvement. The standard deviation also drops to

2.142 seconds. Since the number of pivots is limited, the average number of pivots required

drops to 4.67, and therefore the number of average number of stars required drops to 6.67,

a 15% improvement.

If a false star is added to the FOV, the angle method has a much more difficult time

reaching a solution, as shown in Figure 7. The overall success rate drops to 25% and 18%

of the results are incorrect. Essentially, if any of the stars used by the angle method include

the false star, the angle method cannot reach the correct result and will either approach the

wrong solution or no solution at all. We should note that the results of the angle method

shown here do not seem to match the current state-of-the-art provided by several vendor

specifications. There are many possibilities for this disparity. For example, numerous other

checks can be created to increase the results of the angle method, such as using relative

brightness information.21 The results shown here are strictly based on only matching angles

with no other checks. The angle method results are next compared to results using planar

triangles.

Planar Triangle Method Results

The overall results for the planar triangle method are shown in Figure 8. This method

is able to obtain a successful result 95% of the time, but is not able to positively identify

any planar triangles 4% of the time. Less than 1% percent of the attitudes contained less

than 3 stars in the FOV, showing that this does not occur often. In addition, less than one

percent of the attitudes are incorrectly identified, which is to be expected due to the 3σ

bound placed on the triangle search.
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The overall result as a function of the number of stars present in the FOV is shown in

Figure 9. This method cannot be used when there are less than three stars in the FOV

and is never able to determine any of the triangles in the FOV with less than four stars,

meaning that at least one pivot is always required. Once there are four stars in the FOV, the

planar triangle method almost always succeeds in finding the correct solution. The number

of pivots required by the planar triangle method is shown in Figure 10. The mean number

of pivots required is 1.262 and more than 2 pivots are rarely required. Since the planar

triangle method requires three stars before a pivot can occur, the average number of stars

required by this method is 4.262. Since only a small number of attitudes require more than

two pivots, the time efficiency of the method might be improved by limiting the number of

pivots required to 2.

The CPU time required for the planar triangle method is shown in Figure 11. Solutions

that take 10 seconds or more are grouped together into the 10 second slot to save space.

The average time required is 20.16 seconds, yet the median is 1.455 seconds. This happens

since some of the 150 attitudes that took more than 10 seconds took extraordinary amounts

of time, as long as 400 seconds. These attitudes generally contained 20 or more stars in the

FOV, which creates conditions where thousands of triangles in the FOV have to be studied

and ordered for pivoting. Without pivot limits, the time required can be surprising.

As used in the angle method, by limiting the number of pivots to an appropriate number,

the time required by the method can be improved without significantly changing the rate of

success. Since the planar triangle method rarely needs more than two pivots, the number of

pivots can be limited to two. The resulting graphs look very much like the results without

pivot limits and are not included here. With this limit the overall success rate drops slightly

to 94%. The average time drops significantly to 1.022 seconds, a 98% improvement. The

median moves to 0.7531 seconds. Since the number of pivots is limited, the average number

of pivots drops to 1.097, meaning only an average of 4.097 stars are required.

If a false star is added to the FOV, the planar triangle method, like the angle method, has
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a much more difficult time reaching a solution, as shown in Figure 12. The overall success

rate drops to 52% and 5% of the results are incorrect. Like the angle method, if a false star

happens to be used by the method, the planar triangle method cannot reach the correct

result and will either approach the wrong solution or no solution at all.

Summary of Results

A summary of the results between the angle method and planar triangle method, both

with pivot limits, is shown in Table 1. Being able to match the stars in the celestial sphere to

those seen in the FOV of a star tracker by using more than one property can result in a very

fast recognition algorithm with a high success rate. For a star tracker with an 8 degree FOV,

sensitive to magnitude 6.0 stars, the planar triangle method is almost twice as likely to be

successful in identifying stars than the angle method. With appropriate pivot limits placed

on both methods to minimize the response times without significantly sacrificing the rate of

successful results, the planar triangle method achieves a solution five times faster than the

angle method. Just as important, the planar triangle method achieves greater success using

fewer stars than the angle method. The planar triangle method, on average, examines only

4.097 stars versus the angle method’s 6.671, which is a 39% improvement.

Both methods have similar amounts of incorrect results when there is no false star in the

FOV, due to the 3σ bound on the angle and planar triangle searches. With such bounds,

it is expected that 0.3% of the attitudes will not be determined correctly, since, in those

situations the correct solution to an angle or triangle lies outside the bounds of the search.

If a false star is added to the FOV of the star tracker, success rates of both methods suffer,

but the planar triangle method suffers less. It is able to correctly determine the stars in the

FOV almost twice as often as the angle method and incorrectly identifies the stars in the

FOV about 15% as often. This is due to the fact fewer stars are required to determine the

stars in the FOV and so the planar triangle method is less likely to start with or pivot to a

triangle which would include the false star. It is interesting to note that the planar triangle

method has almost the same overall success with a false star in the FOV as the angle method
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does without it.

Determining the order for pivoting requires a large portion of the CPU time, particularly

for the planar triangle method because combinations of three stars have to be examined as

opposed to combinations of two stars required by the angle method. Since the number of

pivots for the planar triangle method can be limited to three without greatly affecting the

results, the average CPU time required dramatically drops. The angle method can only be

limited to 9 pivots before impacting the results and so cannot benefit as much. The price

for speed is certainly storage. Requiring 167 MB, the planar triangle catalog, including

the k-vector array, is more than ten times larger than that required for the angle method.

Methods for data storage aboard spacecraft are constantly improving and perhaps in the

not-too-distant future (if not already), this size database will not be a significant issue.

Conclusions

A new approach for star pattern recognition has been developed using planar triangles

that incorporates area and polar moments to effectively identify stars. The approach pre-

sented here tackles the worst-case scenario for a star tracker: no a priori attitude information

and no other sensor information to assist the identification process. Simulation results indi-

cated that the planar triangle method is almost twice as likely to be successful in identifying

stars and achieves greater success using fewer stars than the angle method. Furthermore,

the planar triangle method is less sensitive to false star problems than the angle method.
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Table 1: Angle Method with Pivot Limits Vs. Planar Triangle Method with Pivot
Limits

Item Angle Triangle
Minimum Stars Required 2 3

Min. Stars Req’d for Success 3 4
Overall Success Rate 61% 94%
Inconclusive Result 37% 5%

Incorrect Result < 1% < 1%
Average No. Pivots Required 4.67 1.097
Average No. Stars Required 6.671 4.097
Average CPU Time Required 6.217 sec 1.022 sec

False Star Correct Result 25% 52%
False Star Inconclusive Result 57% 42%

False Star Incorrect Result 18% 5%
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Figure 1: Pivoting Stars within Field of View of the Star Tracker
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Figure 4: Distribution of Results for Angle Method without Pivot Limit
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Figure 5: Pivots Required for Angle Method without Pivot Limit
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Figure 6: CPU Time Required for Angle Method without Pivot Limit
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Figure 7: Angle Method Results with a False Star in the FOV

33 of 38



95%

1%4%< 1%
Planar Triangle Method, No Pivot Limit

Correct Result
Too Few Stars
Inconclusive Result
Incorrect Result

Figure 8: Overall Results for Planar Triangle Method without Pivot Limit
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Figure 9: Distribution of Results for Planar Triangle Method without Pivot Limit
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Figure 10: Pivots Required for Planar Triangle Method without Pivot Limit

36 of 38



0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Time Required (sec)

O
cc

ur
an

ce
s

Planar Triangle Method, No Pivot Limit

Mean      = 20.16
Std Dev = 126.1
Median   = 1.455

Correct Result
Too Few Stars
Inconclusive Result
Incorrect Result

+ 

Figure 11: CPU Time Required for Planar Triangle Method without Pivot Limit
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Figure 12: Planar Triangle Method Results with a False Star in the FOV
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