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ABSTRACT 
This paper presents a summary of the basic simulation parameters and results of a study for the Geostationary 

Operational Environmental Satellite (GOES).  The study involves the simulation of minor modifications to the current 
spacecraft, so that the relative performance of these modifications can be analyzed.  The first modification studied requires 
the placement of a baseline inertial reference unit, such as the Dry Rotor Inertia Reference Unit (DRIRU-II) or the Space 
Inertial Reference Unit (SIRU), onto the spacecraft.  The second modification involves using the imager/sounder assembly 
for real-time on-board attitude determination information.  The third modification studied is the addition of star trackers to 
provide precise attitude knowledge.  Simulation results are presented for each modification. 
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1. INTRODUCTION 

In this paper, a design study is shown for attitude determination of the Geostationary Operational Environmental 
Satellite (GOES).  The current (GOES-8) spacecraft specification for the knowledge requirement is 112 µrad.  This 
requirement is met through ground processing 99% of the time in the east/west direction and 95% of the time in the 
north/south direction.  The spacecraft specification for the within-frame image registration is 42 µrad.  This requirement is 
met through ground processing 90% of the time in the east/west direction and 70% of the time in the north/south direction.  
The current spacecraft uses an Earth Sensor Assembly (ESA) to provide roll and pitch information.  A set of gyros, the 
Digital Integration Rate Assembly (DIRA), also is on the current spacecraft.  However, the DIRA has an operational lifetime 
of 2000 hours.  Therefore, the on-board gyros are not used for mission mode attitude determination and control. 

A number of new attitude determination schemes and hardware modifications is presented.  The first modification 
involves the addition of high precision gyros, such as the Dry Rotor Inertia Reference Unit (DRIRU-II) or Space Inertial 
Reference Unit (SIRU), onto the spacecraft with the existing ESA.  Simulation results are presented using a Kalman filter for 
attitude determination. 

The imager/sounder assembly is currently used to obtain landmark and/or star observations in order to compensate for 
spacecraft motions and external disturbances through ground processing.  The second modification utilizes the 
imager/sounder assembly as another attitude sensor for on-board attitude determination.  This provides a means to 
supplement the ESA determined attitude, as well as providing yaw information.  Simulation results are also presented using a 
Kalman filter for attitude determination. 

The final modification involves the addition of star trackers with or without high precision gyros to provide precise 
attitude knowledge.  The proposed GOES attitude determination system includes one or two star trackers.  A covariance 
analysis is first shown to determine the optimal orientations of the star trackers.  Next, an actual star availability analysis is 
shown using the optimal tracker orientations and GOES orbit.  The QUEST1 algorithm is used for attitude determination 
without gyros.  In order to further improve attitude knowledge an enhanced QUEST algorithm is also utilized.  This involves 
a simple first-order Kalman filter type algorithm to filter noisy star measurements.  Finally, simulation results for all case 
studies are presented. 
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2. EARTH SENSOR, IMAGER/SOUNDER 

In this section, a brief overview of the simulation parameters for the gyro model, the ESA model, and the 
imager/sounder model is shown.  The true angular velocity is assumed to be modeled by2 

 ω ω η= − −~
g b 1  (1) 

where ω  is the true angular velocity, ~ω g  is the gyro-determined angular velocity, and b  is the gyro drift vector, 

 b = η2  (2) 

The 3 1×  vectors, η1  and η2 , are assumed to be modeled by a Gaussian white-noise process with 

 E t iiη b g{ } = =0 1 2,  (3) 

 E t t Q t t i ji j
T

i ijη η δ δb g b g{ } b g′ = − ′ =, ,1 2  (4) 

where 

 Q Iv1
2

3 3= ×σ  (5a) 

 Q Iu2
2

3 3= ×σ  (5b) 

The DRIRU-II drift-rate noise and measurement noise characteristics are given by σ µu = × −215 10 4 3 2. secrad  and 

σ µv = 0 206 1 2. secrad .  The nominal motion of the spacecraft involves a rotation once per orbit about the spacecraft’s y-
axis.  Therefore, the nominal angular velocity is given by 

 ω ω=
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N
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0

0
n  (6) 

where ω n  is the orbit rotation rate 7 27 10 5. / sec× − rade j . 
The ESA measures the spacecraft’s roll and pitch angles.  These angles are measured with respect  to a moving Earth 

frame.  The gyros provide attitudes with respect to an inertially fixed frame (e.g., GCI).  Since the body rotation axis is about 
the spacecraft’s y-axis, the body measurement vector is given by3 
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 (7) 

where r  and p  are the scanner roll and pitch angles, respectively.  The inertial reference vector is given by 

 I A q Be
T

e= b g  (8) 

where q  is the true quaternion (obtained by kinematic propagation using the true angular velocity).  The ESA 
“measurements” are obtained by using the following model 

 ~p p v wp p= + +  (9) 

where v p  is a zero-mean Gaussian process with a 3σ  value of 0.02 degrees, and wp  represents the non-repeatable errors 

due to Earth cloud and Earth radiance/gradients effects.  The non-repeatable error is assumed to be modeled by the following 
discrete process 
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 w i A w i L A g ip p+ = + −1 1 2 1 2b g b g e j b g/
 (10a) 

 A t B= −exp 4∆b g  (10b) 

where ∆t  is the sampling interval (0.25 seconds for the ESA), B  is the bandwidth (for weather purposes, this set to about 
1/6 days), L  is the 1σ  amplitude (experience has shown that this is about 200 µrad ), and g  is a zero-mean normal 
Gaussian process.  This same error model is applied to the Earth roll “measurement.”  Since the roll and pitch measurements 
from the Earth sensor are small, the body measurements can be approximated by 

 ~
~

~B
p

rB
e
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N
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O

Q
PPP1

 (11) 

The imager/sounder assembly can measure stars in a 23 E / W 21 N / S×  field of view, outside of the Earth limb.   The 
orbit-attitude tracking system contains a catalog of bright stars visible by the imager/sounder which typically senses three 
stars at 45 second intervals.  For simulation purposes these stars are assumed to be found in different quadrants in the field of 
view. Each instrument performs a star look every 30 minutes.  The imager/sounder measures the tangent of two angles, β1  
and β2 , resulting in a body vector given by3 

 Bi s/
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+ +
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The imager/sounder “measurements” are obtained by using the following model 

 tan
~

tan , ,β βi i bi biv w i= + + =1 2  (13) 

where vb  is a zero-mean Gaussian process with a 3σ  value of 28 µrad .  The non-repeatable error in the imager/sounder is 
assumed to be modeled by the following process 

 x x
n
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−
L
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0 1
0

0
12ω
η  (14a) 

 w xb = 1 0  (14b) 

where η  is a zero-mean Gaussian process.  The standard deviation of η  is selected such that the output of wb  has a 3σ  
value of about 200 µrad . 

2.1 Simulation Results 

For this part of the study, an investigation of the relative performance between gyro-aided and gyroless attitude 
determination was examined.  For the on-board gyro case, a standard Kalman filter with a gyro propagated model was used 
for attitude determination.  The simulations were run for six cases: 1) ESA only with no non-repeatable (NR) errors, 2) ESA 
only with NR errors, 3) ESA and imager/sounder (I/S) with no NR ESA errors and no NR I/S errors, 4) ESA and I/S with no 
NR ESA errors and with NR I/S errors, 5) ESA and I/S with NR ESA errors and no NR I/S errors, and 6) ESA and I/S with 
both NR ESA errors and NR I/S errors. 

The first two cases involve using the ESA only.  A Monte Carlo type analysis shows that 200-250 µrad  is about the 3σ  
range for this error.  With no NR errors in the ESA, the attitude accuracy is within 60 µrad .  With the NR errors in the ESA, 
this accuracy is degraded to about 200 µrad .  Also, large errors in the yaw angle estimates are due to filter un-observability.  
The observability of using an ESA combined with gyro measurements in a Kalman filter can be shown by using the 
simplifying assumption of a constant coefficient system (see [4] for details).  A summary of the results is shown in Table 1. 
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Table 1 Attitude Errors for Various Sensor Configurations and Error Sources 

Case Error Sources Roll Errors Pitch Errors Yaw Errors 

1 no NR ESA 60 µrad  60 µrad  1 105×  µrad  

2 NR ESA 200 µrad  200 µrad  1 105×  µrad  

3 no NR ESA, no NR I/S 60 µrad  60 µrad  200 µrad  

4 no NR ESA, NR I/S 100 µrad  100 µrad  200 µrad  

5 NR ESA, no NR I/S 100 µrad  100 µrad  200 µrad  

6 NR ESA, NR I/S 200 µrad  200 µrad  300 µrad  

 

From Table 1, using the imager/sounder as another sensor significantly improves the yaw angle estimate.  Also, since the 
magnitude of the non-repeatable errors is assumed to be approximately the same in the ESA and in the imager/sounder 
assembly, the attitude errors are also approximately equal when adding these errors to each sensor individually (i.e., case 
four and five).  The sixth case involves using both the ESA and imager/sounder assembly with non-repeatable errors added 
to each sensor.  A purely deterministic attitude found using QUEST yields errors which are approximately the same 
magnitude as case six.  Therefore, the addition of gyros does not seem to significantly improve the attitude accuracy. 

3. STAR TRACKER 

In this section, the simulation results using a star tracker with and without gyros are presented.  First, the star tracker 
model and parameters are shown.  Then, a covariance analysis is presented in order to determine the optimal orientation of 
the star trackers.  Next, the availability of actual stars for the GOES orbit is shown.  Results are then presented using 
QUEST1 to determine the spacecraft attitude.  An Enhanced QUEST algorithm is also derived which filters sensor noise.  
Finally, simulation results are presented using gyros and a Kalman filter. 

All results shown in this section include the dynamics and external disturbance on the spacecraft.  The GOES Flight 
Software Dynamics Model implements a GOES Attitude and Orbit Control Electronics (AOCE) firmware emulation 
FORTRAN code, which uses a six degree-of-freedom dynamics model.  The initial model was developed to examine the 
augmentation of the ESA with gyros, and the current capability was developed to compare with actual GOES performance 
using the ESA.  A star tracker and star tracker/gyro were also added into the simulation.  The simulation includes rotating 
solar array inertia effects with fully coupled inertia tensor dynamics, magnetic torquers with ideal torque response, and 
gravity gradient and solar pressure disturbances. 

The star tracker can sense up to six stars in an 8 8×  field of view with a sampling interval of 0.1 seconds.  The catalog 
contains stars ranging from +1.0 to +6.0 magnitude.  The star tracker measures the tangent of two angles, β1  and β2 , 
resulting in a body vector given by 

 Bs =
+ +
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β β
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where the z-axis of the star tracker is along the boresight.  The star tracker “measurements” are obtained by using  

 tan
~

tan , ,β βi i sv i
i

= + =1 2  (16) 

where vs  is a zero-mean Gaussian process with a 3σ  value of 87 2665. µrad  (18 arc − sec ).  

Each star tracker must be positioned so that sun intrusions can be avoided at all times.  For the GOES orbit, and 
available sun shade for the star tracker, the minimum exclusion area (allowing for a 3° safety margin) is from 55° North to 
55° South of the Nadir vector.  For the single star tracker case, the 55° orientation produces the following order for 
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knowledge accuracy: (1) roll angle (i.e., about the spacecraft’s x-axis) is known most accurately, then (2) yaw angle (i.e., 
about the spacecraft’s y-axis), and (3) pitch angle (i.e., about the spacecraft’s y-axis) being the least accurate.  Roll is the 
most accurate since the star tracker is perpendicular to this spacecraft’s x-axis.  Pitch accuracy is least accurate since the 55° 
star tracker position leads to the y-axis being the least “orthogonal” axis with respect to the tracker boresight. 

For the two tracker case, a covariance analysis was performed in order to determine the optimal orientation.  Assuming 
that each star tracker measures one star for simplicity, the error covariance matrix is given by5 

 P
b b

b b b b b b b bT T T=
×

+ + × ×L
NM

O
QP

σ 2

1 2
2 1 1 2 2 1 2 1 2

1
2
b gb g  (17) 

where σ  is the measurement error standard deviation, and b1  and b2  are measurement vectors of each star.  For a North-
South configuration, these measurement vectors are given by 
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Using Equation (18), the covariance in Equation (17) becomes 

 P
c

s

=

L

N

MMMMMM

O

Q

PPPPPP

σ 2

2

2

2

1 0 0

0 1 0

0 0 1

 (19) 

The next configuration studied was to place the both star trackers 55° North (or South) from Nadir and rotated by an angle 
ϑ ,  The measurement vectors for this case are given by 

 b
c s
s

c c
b

c s
s

c c
1 2=
L

N
MMM

O

Q
PPP

=
−L

N
MMM

O

Q
PPP

~

~
,

~

~
 (20) 

where ~ sins ≡ ϑ , and ~ cosc ≡ ϑ .  The covariance matrix in Equation (17) for this case is given 

 P
c s c c s s

c s
s c s c c s c c s c s

c s c c s c s c c c s s
=

+
+ −
− +

L

N

MMM

O

Q

PPP
σ 2

4 2 2 2 2 2

2 2

2 4 2 2 3 2

3 2 2 2 2 2 22

0 0
0
0

~ ~ ~

~
~ ~ ~ ~ ~

~ ~ ~ ~ ~e j
 (21) 

In order to determine the optimal rotation angle, a cost function involving roll and pitch errors (i.e., allowing for relaxed yaw 
error conditions) is defined, given by the sum of the roll and pitch covariances, 

 J
c s c c s s

c s s c s cϑ σb g
e j e j=

+
+ +

2

4 2 2 2 2 2
2 2 2 4 2 2

2 ~ ~ ~
~ ~ ~  (22) 
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Minimizing this cost function with respect to ϑ  leads to the optimal rotation given by ϑ = 90 .  Therefore, the covariance 
matrix in Equation (21) becomes 

 P
s

c
=

L

N

MMMMMM

O

Q

PPPPPP

σ 2
2

22

1 0 0

0 1 0

0 0 1

 (23) 

Equation (23) shows that the yaw angle contains the smallest error, even though yaw was relaxed for the optimal separation 
angle.  Therefore, comparing Equation (19) and Equation (23) leads to the conclusion that the optimal location for the two 
tracker case is given by one tracker 55° North and one tracker 55° South from Nadir. 

3.1 Simulation Results 

Figure 1 shows the actual number of stars within the North pointing tracker field of view.  There is always a minimum 
of 2 stars, except for the interval from 2.15 to 2.283 hours.  A star with a magnitude of 6.256 was added in this interval for 
the QUEST solution.  Figure 2 shows the number of stars within the South pointing tracker field of view.  Stars can be added 
to the South tracker catalog in order to insure a minimum of two stars, but this was not done, since the North tracker was 
used for simulations involving one tracker.  Figure 3 shows the combined number of stars for both trackers (without the 
addition of any stars).  This shows that a minimum of 4 stars is available for the two tracker case.  Also, the percentages of 
time in the orbit with the number of stars in the field of view are shown by Tables 2 and 3. 

Table 2  North Pointing Star Catalog 

Number of Stars Percentage in FOV 

0 0.0 

1 0.625 

2 10.972 

3 15.625 

4 27.709 

5 23.958 

6 21.111 

Table 3  South Pointing Star Catalog 

Number of Stars Percentage in FOV 

0 0.0 

1 1.458 

2 8.056 

3 20.972 

4 28.889 

5 23.272 

6 17.153 
 

In this section simulation results using the QUEST and Enhanced QUEST algorithms without gyros are presented.  The 
QUEST algorithm minimizes the following cost function 

 J A B A I
k

n

s sk k
b g = −

=
∑1

2
1
2

1

2

σ
 (24) 

where A  is the attitude matrix, and n  is the number of stars available.  QUEST is a deterministic approach which utilizes a 
point-by-point solution.  Therefore, previous measurements are not utilized in the attitude solution.  This algorithm requires 
at least two star measurements to determine the attitude, so a star is added (as previously described) to the single star tracker 
case. 

In general, the attitude knowledge is determined more accurately as the number of star measurements at one time 
increases and/or the separation distance between stars increases.  This can be seen by the deterministic error covariance, 
given by1 
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3 3

1

1

 (25) 

Figure 4 shows the attitude errors from QUEST determined attitude using a single (North) star tracker.  Note the large errors 
about 2 hours into the simulation corresponds to the point where the star availability is primarily 2 stars with a small 
separation.  Figure 4 also shows the 3σ  bounds from Equation (25).  This shows excellent agreement between theory and 
simulation.  Figure 5 shows the attitude errors and 3σ  bounds for the two star tracker case.  This shows the significant 
improvement in attitude knowledge by using two trackers. 

In order to further improve the attitude accuracy, an Enhanced QUEST algorithm (EQA) was developed.  This is a 
simple first-order Kalman filter which combines a propagated model with the QUEST determined attitudes.  Since gyros are 
not used for this case, the angular velocity is assumed to be perfect (i.e., given by Equation (6)).  This assumption is a poor 
one, since external disturbances, and control and sensor errors are present in the actual system.  Typical control errors using 
the ESA are shown in Figure 6.  This shows the large errors and coupling in the roll/yaw axis.  The EQA is given by 

 expq t q
k k+

− = RST
UVW +

1
1
2

b g b g b gΩ ∆ω  (26a) 

 ~q q q
k k k
+ = − − +b g b g b g1 α α  (26b) 

where ∆t = 01.  seconds, ~q
k

 is the QUEST determined attitude at time tk , and α  is a scalar gain.  This gain was determined 

by minimizing the attitude errors from the simulated runs.  A value which is too small adds tends to neglect measurements, 
and emphasizes the inadequacy of the approximation in Equation (6).  A value which is too large adds too much 
measurement noise, and tends to neglect model corrections.  A value of α = 0 05.  was determined to be optimal.  The EQA 
covariance is derived by re-writing Equation (26) as 

 ~q q I q q I
k k k k+

−

+
= ⊗ + ⊗ −

F
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I
KJ

L
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O
QP1 4 4

1

1
Φ Φα { }  (27a) 

 Φ Ω ∆4
1
2

≡ RST
UVWexp ωb g t  (27b) 

where ⊗  denotes quaternion multiplication (see [2]).  The QUEST determined quaternion is written as 
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where q
k+1

 is the true quaternion, and δ ~q
k+1

 is a three component error vector.  Substituting Equation (28) into Equation 

(27a), and post-multiplying both sides of the resulting equation by q
k+
−

1
1  yields 
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Using a first-order approximation yields the following covariance for the EQA 

 P P Pqqk qqk
T

qq k
~~

+
= − +

1
2

3 3
21 α αb g Φ Φ  (30) 

where Φ3  is the state transition matrix of ω × .  Since this matrix is constant and nearly the identity matrix, the diagonal 
elements of Equation (30) approach the following steady-state value 
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Figure 7 shows the attitude errors and bounds from Equation (31) using one star tracker and the EQA.  Comparing Figure 7 
with Figure 4 shows a significant improvement using the EQA.  Figure 8 shows the attitude errors using two trackers and the 
EQA.  Comparing Figure 8 with Figure 5 again shows a significant improvement using the EQA. 

In this section, the results using gyros and a Kalman filter are presented.  Two gyro cases are simulated.  The first case 
involves the use of a DRIRU-II.  The second case involves the use of a SIRU.  The parameters for both gyros are 
summarized in Table 4. 

Table 4  Gyro Parameters 

Parameters DRIRU-II SIRU 

σ u  (white noise) 215 10 4 3 2. sec× − µrad  155 10 4 3 2. sec× − µrad  

σ v  (random walk) 0 206 1 2. secµrad  16 1 2. secµrad  

   

The gyro model is shown by Equations (1) and (2).  The relative performance of the attitude estimation can be found by 
numerically iterating the Kalman filter equations to steady state.  Farrenkopf6 obtained an analytic solution for the case when 
the three attitude error angles are assumed decoupled.  Farrenkopf’s results for the preupdate and postupdate attitude error 
standard deviations, denoted by σ −b g  and σ +b g , respectively, can be written as 

 σ σ ξ− = −b g e j2
1
21  (32a) 

 σ σ ξ+ = −b g b g /  (32b) 

where 

 ξ γ γ γ= + + + +F
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2S S S S S Su u v u v u, /b g  (33a) 

 S t S tu u v v= =σ σ σ σ∆ ∆
3
2

1
2/ , /  (33b) 

In the limiting case of very frequent updates, the preupdate and the postupdate attitude error standard deviations both 
approach the continuous-update limit, given by 

 σ σ σ σ σ∞ = +
F
H
GG

I
K
JJ∆ ∆t tv u v

1
4

1
2 2

1
2

1
4

2  (34) 

Using the parameters in Table 4 in Equation (34), it was determined that the DRIRU-II steady-state error is approximately 
2.8 times better (i.e., more accurate) than the SIRU.  This is also shown in the simulations.  Figures 9 and 10 show the 
attitude errors using the SIRU for the one tracker and two tracker cases, respectively.  Figures 11 and 12 show the attitude 
errors using the DRIRU-II for the one tracker and two tracker cases, respectively.  Comparing Figure 9 to Figure 11, and 
Figure 10 to Figure 12, it is seen that the DRIRU-II is approximately 2 to 3 more accurate for the attitude knowledge than 
using the SIRU. Results for the cases without gyros and cases with gyros are shown in Table 5 and Table 6, respectively. 
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Table 5  Attitude Error Results Without Gyros 

Cases Simulated 
Roll Error 

µ σradb g 3  

Pitch Error 

µ σradb g 3  

Yaw Error 

µ σradb g 3  

QUEST (1 Tracker) 60 1250 900 

QUEST (2 Trackers) 35 70 50 

EQA (1 Tracker) 12 225 175 

EQA (2 Trackers) 6 10 8 

 

Table 6  Attitude Error Results With Gyros 

Cases Simulated 
Roll Error 

µ σradb g 3  

Pitch Error 

µ σradb g 3  

Yaw Error 

µ σradb g 3  

KF, DRIRU-II (1 Tracker) 3 15 10 

KF, DRIRU-II (2 Trackers) 2 3 2.5 

KF, SIRU (1 Tracker) 7 30 12 

KF, SIRU (2 Trackers) 5 9 7 
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Figure 1  Availability of Stars for the North Tracker 
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Figure 2  Availability of Stars for the South Tracker 
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Figure 3  Availability of Stars for Both Trackers 
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Figure 4  Attitude Errors and Bounds Using One Tracker 

(QUEST) 
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Figure 5  QUEST Errors and Bounds Using Two Trackers 
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Figure 6  Control Errors 
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Figure 7  Attitude Errors and Bounds Using One Tracker 

(Enhanced QUEST) 
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Figure 8  Attitude Errors Using Two Trackers (Enhanced 

QUEST) 
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Figure 9  Attitude Errors Using One Tracker (Kalman Filter, 

SIRU) 
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Figure 10  Attitude Errors Using Two Trackers (Kalman 

Filter, SIRU) 
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Figure 11  Attitude Errors Using One Tracker (Kalman Filter, 

DRIRU-II) 
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Figure 12  Attitude Errors Using Two Trackers (Kalman 

Filter, DRIRU-II) 
 

4. CONCLUSIONS 

This study provided some insights for using gyros and/or star trackers on the GOES spacecraft.  It was determined that 
the gyros do not significantly reduce the non-repeatable errors with the ESA.  Also, using gyros does not provide any 
observability in the yaw angle estimate, when using the ESA.  The star tracker simulation results show a significant 
improvement over the ESA attitude knowledge errors.  The greatest improvements were shown using either: (1) two trackers 
with the EQA, or (2) one tracker and a DRIRU-II type gyro, and (3) two trackers and either a SIRU type gyro or a higher 
quality gyro such as the DRIRU-II.  Adding gyros to the spacecraft is the most ideal case, since the Kalman filter bandwidth 
is larger than the EQA filter bandwidth (i.e., the Kalman filter with gyros can sense higher frequency spacecraft motions than 
with the EQA).  The utilization of on-board gyros may also improve the pointing accuracy, since the controller bandwidth 
may be increased. 
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