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Introduction

In recent years, much effort has been devoted to the closed-loop design of spacecraft with

large angle slews.  Vadali and Junkins1 and  Wie and Barba2 derive a number of simple control

schemes using quaternion and angular velocity (rate) feedback.  Other full state feedback

techniques have been developed that are based on variable-structure (sliding-mode) control,

which uses a feedback linearizing technique and an additional term aimed at dealing with model

uncertainty.  A variable-structure controller has been developed for the regulation of spacecraft

maneuvers using a Gibbs vector parameterization,3 a modified-Rodrigues parameterization,4 and

a quaternion parameterization.5  In both [2] and [5], a term was added so that the spacecraft

maneuver follows the shortest path and requires the least amount of control torque.  The

variable-structure control approach using a quaternion parameterization has been recently

expanded to the attitude tracking case.6,7  However, these controllers do not take into account the

shortest possible path as shown in Refs. [2] and [5].

This note expands upon the results in Ref. [5] to provide an optimal control law for

asymptotic tracking of spacecraft maneuvers using variable-structure control.  It also provides

new insight using a simple term in the control law to produce a maneuver to the reference

attitude trajectory in the shortest distance.  Controllers are derived for either external torque

inputs or reaction wheels.
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Background

In this section, a brief review of the kinematic and dynamic equations of motion for a three-

axis stabilized spacecraft is shown.  The attitude is assumed to be represented by the quaternion,

defined as 13 4
TT q� �� � �q q , with � � � �13 1 2 3 ˆ sin / 2

T
q q q� � �q n  and � �4 cos / 2q � � , where

n̂  is a unit vector corresponding to the axis of rotation and F  is the angle of rotation.  The

quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity

(� ), given by

� � � �
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2 2
� � � 	q q q� �� (1)
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and n nI
´

 represents an n n�  identity matrix.  The 3 3´  dimensional matrices � ���  and � �13 �q

are referred to as cross product matrices since � �� � �a b a b  (see Ref. [8]).

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector,

the quaternion components cannot be independent.  This condition leads to the following

normalization constraint 2
13 13 4 1T T q� � �q q q q .  Also, the error quaternion between two

quaternions, q  and dq , is defined by

13 1

4
dq�
-

� �

 �� � �

 �� �

q
q q q

�
� (3)

where the operator Ä  denotes quaternion multiplication (see Ref. [8] for details), and the inverse

quaternion is defined by 
1 2 3 4

1 T
d d d d dq q q q- � �� 
 
 
� �q .  Other useful identities are given

by � �13
T

d� 	q q q�  and 4
T

dq� � q q .  Also, if Equation (3) represents a small rotation then

4 1q� � , and 13q�  corresponds to the half-angles of rotation.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft

are given by
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� �J J� 
 � � u� � �� (4)

where J  is the inertia matrix of the spacecraft, and u  is the total external torque input.  If the

spacecraft is equipped with 3 orthogonal reaction or momentum wheels, then Euler’s equations

become:

� � � �J J J J
 � 
 � � 
 u� � � �� (5a)

� �J � � u� �� � (5b)

where J  is the diagonal inertia matrix of the wheels, J  now includes the mass of the wheels, ww

is the wheel angular velocity vector relative to the spacecraft, and u  is the wheel torque vector.

Selection of Switching Surfaces

Optimal Control Analysis

We first consider a sliding manifold for a purely kinematic relationship, with �  as the

control input.  The variable-structure control design is used to track a desired quaternion dq  and

corresponding angular velocity d� .  As shown previously for regulation,5 under ideal sliding

conditions, the trajectory in the state-space moves on the sliding manifold.  For tracking, the

following loss function is minimized to determine the optimal switching surfaces:

� � � � � �13 13
1

2
s

TT
d d

t
dt�

¥

� �� � � 
 

 �� �� q q� � � � � � � (6)

subject to the bilinear system constraint given in Equation (1).  Note that �  is a scalar gain and

st  is the time of arrival at the sliding manifold.  Minimization of Equation (6) subject to

Equation (1) leads to the following two-point-boundary-value-problem:

� �
1

2
� 	q q �� (7a)

� � � � � �
1

2
T

d d�� 
 	 	 � 	q q q� � �� (7b)

where ll  is the co-state vector.  The optimal �  is given by

� �
1

2
T

d� 
 	 q� � � � (8)

Next, the following sliding vector is chosen:
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� � � �T
d dk
 � 	 �q q� � 0 (9)

where k  is a scalar gain.  The sliding vector is optimal if the solution of Equation (9) minimizes

Equation (6).  This can be proven by first substituting Equation (9) into Equation (8), yielding

2 dk� 
 q� (10)

Next, using the fact that the desired quaternion can be obtained from the following

� �
1

2d d d�� 	q q� (11)

leads directly to

� �d dk� 
 	 q� �� (12)

Comparing Equation (12) to Equation (7b), and using Equation (9) now leads to the following

relationship:

� � � � � � � � � � � �2T T
d d d d d d d dk k k�
 	 � 
 	 	 
 	 � 	 	q q q q q q q q� � (13)

Equation (13) is satisfied for k �� � .  Therefore, the sliding condition in Equation (9) leads to

an optimal solution (i.e., minimum P  in Equation (6)).

For this special case, it can be shown that the value of the loss function in Equation (6) is

given by

� �42 1 sk q t�* � �� � 
� � (14)

where k  must now be strictly positive.  Since 4q�  corresponds directly to the cosine of half the

angle error of rotation, both q�  and 
 q�  represent the same rotation; however, the value of the

loss function in Equation (14) is significantly different for each rotation.  One rotation � �q�

gives the shortest distance to the sliding manifold, while the other � �
 q�  gives the longest

distance.  In order to give the shortest possible distance the following sliding vector is chosen:

� � � � � �4sgn T
d s dk q t�� �
 � 	 �� � q q� � 0 (15)

For a discussion on using � �4 sq t�� �� �  in a control law see Refs. [2] and [5].  Using this sliding

condition leads to the following value for the loss function:
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� �42 1 sk q t�* � �� � 
� � (16)

which yields a minimal value for any rotation.

Lyapunov Analysis

The sliding vector shown in Equation (15) can also be shown to be stable using a Lyapunov

analysis.  The time derivative of 13q�  can be shown to be given by

� � � �� �13 4 13
1 1

2 2d dq�� 
 � � �q q� � � � � �� (17)

Next, the following candidate Lyapunov function is chosen:

13 13
1

2
T

sV � q q� � (18)

Using the sliding vector in Equation (15), the time derivative of Equation (18) is given by

4 13 13
1

0
2

T
sV k q�� 
 �q q� �� (19)

Hence, sV  is indeed a Lyapunov function for 0k > .  This analysis generalizes the results shown

in Ref. [7], where the spacecraft’s attitude is restricted in the workspace defined with 4 0q � .

Variable-Structure Tracking

The previous section showed the effectiveness of using � �4sgn sq t�� �� �  in the sliding

manifold.  In this section, we consider a variable-structure controller for the complete system

(i.e., including the dynamics).  The goal of the variable-structure controller is to track a desired

quaternion dq  and corresponding angular velocity d� .  The variable-structure control design

with external torques only is given by (note that � �4sgn q t�� �� �  is now being used instead of

� �4sgn sq t�� �� � )

� � � � � � � � � � � �4
1

sgn
2

T T
d d d dJ J k q G�

� �� �� � � 	 	 
	 	 � 
� �� �� �
u q q q q� � � � � �� (20)

where G  is a 3 3´  positive definite, diagonal matrix, and the ith component of JJ  is given by

� �sat , , 1,2,3i i is i� �� � (21)
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As stated previously, the term � �4sgn q�  is used to drive the system to the desired trajectory in

the shortest distance.  The saturation function is used to minimize chattering in the control

torques.  This function is defined by

� �

1 for

sat , for 1, 2,3

1 for

i i

i
i i i i

i i

s

s
s s i

s

�

� �
�

�

��
��� � ��
�

 � 
��

(22)

where �  is a small positive quantity.  The sliding manifold is given by

� � � � � �4sgn T
d dk q�� 
 � 	s q q� � (23)

The stability of the closed-loop system using this controller can be evaluated using the following

candidate Lyapunov function

1

2
TV � s s (24)

Using Equations (4), (20) and (23) the time-derivative of Equation (24) can be shown to be given

by TV G� 
s �� , which is always less than or equal to zero as long as G  is positive definite.

Hence, stability is proven.

If wheels are used to control the spacecraft, then the sliding mode controller is given by the

following:

� � � � � � � � � � � �

� �� �

4
1

sgn
2

T T
d d d dJ J k q G

J J

�
� �� �� 
 	 	 
	 	 
 �� �� �� �


 � �

u q q q q� � � �

� � �

�

(25)

The stability of the control system with wheels in Equations (5) and (25) can also be easily

proven using the Lyapunov function in Equation (24).

Analysis

In this section an analysis of using � �4sgn q�  for all times in the control law is shown.  We

first assume that the desired angular velocity is zero � �d �� 0  and that the matrix G  is given by

a scalar times the identity matrix � �3 3g I
´

.  We further assume that the thickness of the boundary

layer �  and the gain g  are sufficiently large so that
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� �4 13sgnG k q� � �� � q� � � (26)

where g� �� .  Using Equations (4), (17) and (20), the closed-loop dynamics for �  now

become

� � � �� � � �4 4 3 3 13 4 13
1

sgn sgn
2

k q q I k q� � � � �
´

� 
 � � 
 
q q� � � � �� (27)

Taking two time derivatives of 4
T

dq� � q q , and using both Equation (27) and the quaternion

constraint equation 1T �q q� �  yields

� �4 4 4 4 4 4
1 1 1 1

sgn
2 2 4 2

Tq k q q k q q k q� � � � � � � � �
� � � �� � � � � !  !" # " #

� ��� � (28)

Equation (28) represents a second-order nonlinear spring-mass-damper type system with an

exogenous step input.  The stability of Equation (28) can be evaluated by considering the

following candidate Lyapunov function

� �
4

2 2
4 4 4 4

1 1 1 1
1 sgn

2 2 4 2
T

qV q q k q qd � � � � �
� � � �� � � 
 ! � �" #

� �� (29)

The last term in Equation (29) is always greater or equal to zero since 0� � , 0k > , and

� �4 40 sgn 1q q� �� � .  Taking the time-derivative of Equation (29), and using Equations (27)

and (28) gives

� �4

2 2
4 4 4 4

1 1 1

2 4 2
T

qV k q q k q qd � � � � � �
� � � �� 
 � 
 � !  !" # " #

� �� � (30)

Hence, since 0� �  and 0k > , Equation (29) is indeed a Lyapunov function.  The advantage of

using � �4sgn q�  in the control law at all times (even before the sliding manifold is reached) now

becomes clear.  The step input in Equation (28) is a function of � �4sgn q� .  Therefore, the

response for 4q�  will approach � �4sgn q�  for any initial condition.  This tends to drive the

system to the desired location in the shortest distance.  Furthermore, this inherently takes into

account the rate errors as well.  For example say that � �4 0q t�  is positive, and that a high initial

rate is given which tends to drive the system away from 4 1q� � .  The control law will

automatically begin to null the rate.  But, if the initial rate is large enough and the control

dynamics are relatively slow, then 4q�  may become negative.  Since � �4sgn q�  is used in the
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control system, then from Equation (28) the control law will subsequently drive the system

towards 4 1q� � 
 .  Therefore, using � �4sgn q�  at all times produces an optimal response for any

type of initial condition error.

Example

A variable-structure controller has been used to control the attitude of the Microwave

Anisotropy Probe (MAP) spacecraft from quaternion observations and gyro measurements.

Details of the spacecraft parameters and desired attitude and rates can be found in Ref. [9].  The

control system has been designed to bring the actual attitude to the desired attitude in less than

20 minutes.  For the simulations the spacecraft has been controlled using reaction wheels.  The

gains used in the control law given by Equation (25) are: 0.015k = , 3 30.0015G I
´

� , and

0.01e = .  To illustrate the importance of using � �4sgnk q t�� �� � , a number of simulations have

been run.  The initial quaternion is given by � � � � � � � �0 00 0 sin 2 cos 2
T

dt t� �� � � �� �q q

and the actual velocity has been set to zero.  Test cases have been executed using 210� � o ,

240o , 270o , 300o , and 330o .  Table 1 summarizes the results of using � �4sgnk q t�� �� �  and k

only in Equation (25).  The final time for the simulation runs is given by 20ft �  minutes.

Clearly, by using � �4sgnk q t�� �� �  in the control law, better performance is achieved in the closed-

loop system than using just k .

Conclusions

A new variable-structure controller for optimal spacecraft tracking maneuvers has been

shown.  The new controller was formulated for both external torque inputs and reaction wheel

inputs.  Global asymptotic stability was shown using a Lyapunov analysis.  New insight was

shown for the advantage of using a simple term in the control law (i.e., producing a maneuver to

the reference attitude trajectory in the shortest distance).  The sliding motion was also shown to

be optimal in the sense of a quadratic loss function in the multiplicative error quaternions and

angular velocities.  Simulation results indicated that the addition of the simple term in the control

law always provides an optimal response, so that the reference attitude motion is achieved in the

shortest possible distance.
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Table 1  Cost Function Values for Various F

Value of 
0

1

2

ft
T dt� s s

F  (deg) Gain = k Gain = � �4sgnk q t�� �� �

210 1.0787 0.9313

240 0.8988 0.6543

270 0.6136 0.3566

300 0.3185 0.1300

330 0.1095 0.0194


