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I ntroduction

In recent years, much effort has been devoted to the closed-loop design of spacecraft with
large angle slews. Vadali and Junkins' and Wie and Barba® derive a number of simple control
schemes using quaternion and angular velocity (rate) feedback. Other full state feedback
techniques have been developed that are based on variable-structure (sliding-mode) control,
which uses a feedback linearizing technique and an additional term aimed at dealing with model
uncertainty. A variable-structure controller has been developed for the regulation of spacecraft
maneuvers using a Gibbs vector parameterization,® a modified-Rodrigues parameterization,* and
a quaternion parameterization.® In both [2] and [5], a term was added so that the spacecraft
maneuver follows the shortest path and requires the least amount of control torque. The
variable-structure control approach using a quaternion parameterization has been recently
expanded to the attitude tracking case.®’ However, these controllers do not take into account the
shortest possible path as shown in Refs. [2] and [5].

This note expands upon the results in Ref. [5] to provide an optimal control law for
asymptotic tracking of spacecraft maneuvers using variable-structure control. It also provides
new insight using a simple term in the control law to produce a maneuver to the reference
atitude trgjectory in the shortest distance. Controllers are derived for either external torque

inputs or reaction wheels.
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Background

In this section, a brief review of the kinematic and dynamic equations of motion for a three-
axis stabilized spacecraft is shown. The attitude is assumed to be represented by the quaternion,

T
defined as qs[qlT3 q4} ,with gz =[cq o q3]T =fisin(®/2) and g4 = cos(P/2), where

N is a unit vector corresponding to the axis of rotation and @ is the angle of rotation. The
guaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity

(w), given by

1=-0(@)a=35(do ®

~[@x] @ Ol 3x3+ [z %]
Q(w)=| S ()| e )
—a)T : 0 —q;l_-g

and |,y representsan nx n identity matrix. The 3x 3 dimensional matrices [@x] and [og3 X]

are referred to as cross product matrices since ax b =[ax|b (see Ref. [8]).

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector,

the quaternion components cannot be independent. This condition leads to the following
normalization constraint qTq:oaT3oa3+q§:1. Also, the error quaternion between two

quaternions, q and qgq , is defined by

o3

1
=q®qq 3
o0y

oq=

where the operator ® denotes quaternion multiplication (see Ref. [8] for details), and the inverse
T

guaternion is defined by qal :[—qd1 —0Od, —Od, qu . Other useful identities are given

by Sz =2" (dg)g and Say =q'qq. Also, if Equation (3) represents a small rotation then

0qy =1, and dqy3 corresponds to the half-angles of rotation.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft
are given by



Jo =-wx(Jw)+u (4)

where J isthe inertia matrix of the spacecraft, and u is the total external torque input. If the
spacecraft is equipped with 3 orthogonal reaction or momentum wheels, then Euler’s equations

become:
(I-J)o=-0x(Jo+Id)-T (59)
J(@+o)=0 (5b)

where J isthe diagonal inertia matrix of the wheels, J now includes the mass of the wheels, @

isthe wheel angular velocity vector relative to the spacecraft, and U isthe wheel torque vector.

Selection of Switching Surfaces
Optimal Control Analysis

We first consider a sliding manifold for a purely kinematic relationship, with @ as the
control input. The variable-structure control design is used to track a desired quaternion g4 and

corresponding angular velocity @y . As shown previously for regulation,” under ideal dliding

conditions, the trgjectory in the state-space moves on the sliding manifold. For tracking, the
following loss function is minimized to determine the optimal switching surfaces:

H(w):%_[ l:pé‘qué‘oa3+(a)—a)d)T (a)—a)d)} dt (6)

S

subject to the bilinear system constraint given in Equation (1). Note that o isascalar gain and
ts is the time of arrival at the dliding manifold. Minimization of Equation (6) subject to

Equation (1) leads to the following two-point-boundary-val ue-problem:
.
q=E ()@ (7a)
. _ _T 1_
A=-pE(qq)E (qd)q+§:(/1)a) (7b)
where A isthe co-state vector. The optima @ isgiven by
1_t
w=-_E (q) A +ayg (8)

Next, the following sliding vector is chosen:



(a)—a)d)+kET (0g)g=0 9)

where k isascalar gain. The diding vector is optimal if the solution of Equation (9) minimizes

Equation (6). Thiscan be proven by first substituting Equation (9) into Equation (8), yielding
A=-2kqq (20)

Next, using the fact that the desired quaternion can be obtained from the following

A

Ga =5 = (da) @g (11)
leads directly to

/i :—kE(qd)a)d (12

Comparing Equation (12) to Equation (7b), and using Equation (9) now leads to the following
relationship:

—kE(dq)@g =—pE(dg)E" (ag)a—kE(dg)@g +k°E(dg) =" (ag)a (13)
Equation (13) is satisfied for k = i\/; . Therefore, the sliding condition in Equation (9) leads to
an optimal solution (i.e., minimum IT in Equation (6)).
For this specia case, it can be shown that the value of the loss function in Equation (6) is
given by

IT" = 2k[1- 60, (ts) ] (14)

where k must now be strictly positive. Since dq, corresponds directly to the cosine of half the
angle error of rotation, both g and —dq represent the same rotation; however, the value of the

loss function in Equation (14) is significantly different for each rotation. One rotation (&q)

gives the shortest distance to the sliding manifold, while the other (-8q) gives the longest

distance. In order to give the shortest possible distance the following sliding vector is chosen:
T _
(@-a@q)+ksgn[5a4(ts) |2 (ag)a=0 (15)

For a discussion on using [5q4 (ts)] in a control law see Refs. [2] and [5]. Using this sliding

condition leads to the following value for the loss function:



m = 2k[1—|5q4 (ts)|] (16)

which yields aminimal value for any rotation.

Lyapunov Analysis
The dliding vector shown in Equation (15) can also be shown to be stable using a Lyapunov
analysis. Thetime derivative of g3 can be shown to be given by
. 1 1
60¢3=§5q4(a)—a)d)+§[6q13x](a)+a)d) (17)
Next, the following candidate L yapunov function is chosen:
1.1
Vs = 0013003 (18)
Using the dliding vector in Equation (15), the time derivative of Equation (18) is given by
. 1 T
Vs=-5 k|6 4| Scg3dy3 <0 (19
Hence, Vg isindeed a Lyapunov function for k> 0. This analysis generalizes the results shown
in Ref. [7], where the spacecraft’ s attitude is restricted in the workspace defined with g4 > 0.

Variable-Structure Tracking
The previous section showed the effectiveness of using sgn[dgy(ts)] in the sliding

manifold. In this section, we consider a variable-structure controller for the complete system
(i.e., including the dynamics). The goal of the variable-structure controller is to track a desired

quaternion gq and corresponding angular velocity ey. The variable-structure control design

with external torques only is given by (note that sgn[ 5ay (t)] is now being used instead of

Sgn[5Q4 (ts)] )

u=[wx]J a)+J{%ksgn(5q4)[5T (a)2(qq)@g —Z" (qd)E(q)a)}+a')d —Gﬂ} (20)

where G isa 3x 3 positive definite, diagonal matrix, and thei™ component of ## isgiven by

g =sa(s,g), =123 (21)



As stated previously, the term sgn(8qy) is used to drive the system to the desired trgjectory in

the shortest distance. The saturation function is used to minimize chattering in the control

torques. Thisfunction isdefined by
1 for §>¢
st (5,6)= % for |g|<g =123 (22)
-1 for §<-—g

where £ isasmall positive quantity. The sliding manifold is given by

s=(w-awy)+kson(6as)ZE" (qq)q (23)
The stability of the closed-loop system using this controller can be evaluated using the following
candidate L yapunov function

V= % s's (24)

Using Equations (4), (20) and (23) the time-derivative of Equation (24) can be shown to be given

by V =-s'G#, which is always less than or equal to zero as long as G is positive definite.

Hence, stability is proven.

If wheels are used to control the spacecraft, then the sliding mode controller is given by the

following:

u=(J- j){%ksgn(&h)[g (99)E(q)@—E=" (9)Z(ag )wd}_a)d +GI9}

~lox](Jo+Id)

(25)

The stability of the control system with wheels in Equations (5) and (25) can also be easily
proven using the Lyapunov function in Equation (24).

Analysis
In this section an analysis of using sgn (5q4) for all timesin the control law is shown. We
first assume that the desired angular velocity is zero (a)d = O) and that the matrix G is given by

ascaar times the identity matrix (g I 3><3) . We further assume that the thickness of the boundary

layer £ andthegain g aresufficiently large so that



Gd=Lfw+ksgn(5d,)d0y3 (26)

where f=g/e. Using Equations (4), (17) and (20), the closed-loop dynamics for @ now

become
. 1
& =~ ksgn(604){50s! 33 +[Schs x|} @~ S - B ksgn (5s) Sy @

Taking two time derivatives of g, = qqu, and using both Equation (27) and the quaternion

constraint equation 8q' 5q =1 yields
(1 (1 1 7 1
Sty +| S k|00l + B |00 +| 5 BK|5s|+ 70" @ |50 = Bksn(04) (28)

Equation (28) represents a second-order nonlinear spring-mass-damper type system with an
exogenous step input. The stability of Equation (28) can be evaluated by considering the

following candidate Lyapunov function

1.0 1(1 1
Vsq, :Eé‘q§+§(zaﬂwj5q§ +§,B k[1—5q4sgn(é‘q4):| (29)
The last term in Equation (29) is always greater or equal to zero since >0, k>0, and
0<dqas0n (5q4)S1. Taking the time-derivative of Equation (29), and using Equations (27)

and (28) gives
. 1 2 1 1
Vsq, = _(E k|5y| +ﬂj5(ﬁ _Z('[HE k|5Q4|j (wTw)&ﬁ (30)

Hence, since >0 and k >0, Equation (29) is indeed a Lyapunov function. The advantage of

using sgn (5q4) in the control law at all times (even before the diding manifold is reached) now
becomes clear. The step input in Equation (28) is a function of sgn(5q4). Therefore, the

response for 6q, will approach sgn(5q4) for any initial condition. This tends to drive the

system to the desired location in the shortest distance. Furthermore, this inherently takes into

account the rate errors as well. For example say that 5oy (tg) is positive, and that a high initial

rate is given which tends to drive the system away from 6q,=1. The control law will
automatically begin to null the rate. But, if the initia rate is large enough and the control
dynamics are relatively slow, then §q, may become negative. Since sgn (5q4) is used in the
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control system, then from Equation (28) the control law will subsequently drive the system
towards oq, =—1. Therefore, using sgn (5q4) at all times produces an optimal response for any

type of initial condition error.

Example

A variable-structure controller has been used to control the attitude of the Microwave
Anisotropy Probe (MAP) spacecraft from quaternion observations and gyro measurements.
Details of the spacecraft parameters and desired attitude and rates can be found in Ref. [9]. The
control system has been designed to bring the actual attitude to the desired attitude in less than
20 minutes. For the simulations the spacecraft has been controlled using reaction wheels. The

gains used in the control law given by Equation (25) are: k=0.015, G=0.001513,3, and

£=0.01. To illustrate the importance of using ksgn[5q4 (t)] a number of simulations have
been run. Theinitial quaternionisgivenby q(tg)=[0 0 sin(®/2) cos(CI>/2)]T ®qq (to)

and the actual velocity has been set to zero. Test cases have been executed using @ = 210°,
240°, 270°, 3007, and 330°. Table 1 summarizes the results of using ksgn[say(t)] and k

only in Equation (25). The final time for the ssimulation runs is given by ty =20 minutes.

Clearly, by using ksgn[5q4 (t)] in the control law, better performance is achieved in the closed-
loop system than using just k.

Conclusions

A new variable-structure controller for optima spacecraft tracking maneuvers has been
shown. The new controller was formulated for both external torque inputs and reaction wheel
inputs. Global asymptotic stability was shown using a Lyapunov analysis. New insight was
shown for the advantage of using a simple term in the control law (i.e., producing a maneuver to
the reference attitude tragjectory in the shortest distance). The sliding motion was aso shown to
be optimal in the sense of a quadratic loss function in the multiplicative error quaternions and
angular velocities. Simulation results indicated that the addition of the simple term in the control
law always provides an optimal response, so that the reference attitude motion is achieved in the
shortest possible distance.
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Table1 Cost Function Valuesfor Various @

1 [t
Value of —J. s's dt
2J)o

® (deg) | Gain=k | Gain= ksgn[Sa(t)]

210 1.0787 0.9313
240 0.8988 0.6543
270 0.6136 0.3566
300 0.3185 0.1300

330 0.1095 0.0194




