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In this paper a novel approach is developed for relative navigation and attitude esti-
mation of spacecraft flying in formation. The approach uses information from an optical
sensor, which employs relatively simple electronic circuits with modest digital signal pro-
cessing requirements, to provide multiple line-of-sight vectors from spacecraft to another.
The sensor mechanism is well suited for both near-Earth and deep space applications since
it is fully independent of any external systems. The line-of-sight measurements are coupled
with gyro measurements and dynamical models in an extended Kalman filter to determine
relative attitude, position and gyro biases. The quaternion is used to describe the relative
kinematics and general relative orbital equations are used to describe the positional dy-
namics. Simulation results indicate that the combined sensor/estimator approach provides
accurate relative position and attitude estimates.

I. Introduction

Spacecraft formation flying is an important technology, but not a new concept anymore.1,2 Since the early
days of the space program several formation flying applications, such as rendezvous and docking maneuvers,
have been accomplished in practice. Modern day spacecraft formation flying applications include long base-
line interferometry, stereographic imaging, synthetic apertures, and distinguishing spatial from temporal
magnetospheric variations. Many missions, in particular interferometry missions, rely on precise relative po-
sition and attitude knowledge in order to maintain mission requirements. To date most research studies into
determining relative positions and attitudes between vehicles have involved using the Global Positioning Sys-
tem (GPS),3 which restricts the spacecraft formation to near-Earth applications. An application of GPS-like
technology to a deep space mission has been proposed,4 but this requires extensive hardware development
and is subject to the generic GPS performance-limiting effects, including multipath, geometric dilution of
precision, integer ambiguity resolution and cycle slip. The main objective of this paper is to provide a novel,
reliable and autonomous relative navigation and attitude determination system, employing relatively simple
electronic circuits with modest digital signal processing requirements, and being fully independent of any
external systems.

The sensor measurements using in this paper are based on a vision-based navigation (VISNAV) system
which comprises an optical sensor of a new kind combined with specific light sources (beacons) in order
to achieve a selective or “intelligent” vision. The sensor is made up of a Position Sensing Diode (PSD)
placed in the focal plane of a wide angle lens. When the rectangular silicon area of the PSD is illuminated

∗Graduate Student, Department of Mechanical & Aerospace Engineering. Email: sk242@eng.buffalo.edu. Student Member
AIAA.

†Associate Professor, Department of Mechanical & Aerospace Engineering. Email: johnc@eng.buffalo.edu. Associate Fellow
AIAA.

‡Postdoctoral Research Fellow, Department of Mechanical & Aerospace Engineering. Email: cheng3@eng.buffalo.edu. Mem-
ber AIAA.

§Graduate Student, Department of Mechanical & Aerospace Engineering. Email: fosbury@eng.buffalo.edu. Student Member
AIAA.

¶George J. Eppright Chair Professor, Department of Aerospace Engineering. Email: junkins@tamu.edu. Fellow AIAA.

1 of 18

American Institute of Aeronautics and Astronautics



by energy from a beacon focused by the lens, it generates electrical currents in four directions that can
be processed with appropriate electronic equipment to estimate the energy centroid of the image. While
the individual currents depend on the intensity of the light, their imbalances are weakly dependent on the
intensity and are almost linearly proportional to the location of the centroid of the energy incident on the
PSD. The idea behind the concept of intelligent vision is that the PSD can be used to see only specific
light sources, accomplished by frequency domain modulation of the target lights and some relatively simple
analog signal processing (demodulation). The light is produced by LEDs (beacons) modulated at an arbitrary
known frequency while the currents generated are driven through an active filter set on the same frequency.
Calculating the current imbalances then yields two analog signals directly related to the coordinates locating
the centroid of that beacon’s energy distribution on the PSD, in a quasi-linear fashion, and therefore to the
incident direction of this light on the wide-angle lens (which gives a line-of-sight vector). Benefits of this
configuration include: 1) very small sensor size, 2) very wide sensor field-of-view (FOV), 3) no complex/time
consuming charge-coupling-device signal processing or pattern recognition required, 4) excellent rejection of
ambient light interference under a wide variety of operating conditions, and 5) relatively simple electronic
circuits with modest digital signal processing micro-computer requirements. These benefits clearly make the
VISNAV system a viable sensor for relative navigation and attitude determination of spacecraft in formation.5

A more detailed description of the VISNAV system can be found in Ref. 6.
This paper presents an extended Kalman filter (EKF) formulation to estimate the relative attitude and

position of two spacecraft using the VISNAV sensor approach coupled with gyro measurements from each
spacecraft. The attitude kinematics are based on the quaternion. Three different formulations are presented.
The first estimates the relative attitude and individual gyro biases for the chief and deputy spacecraft. The
second estimates the relative attitude, and the relative rate bias and the deputy gyro bias. The third
estimates the relative attitude, and the relative rate bias and the chief gyro bias. The analysis of relative
position motion of spacecraft also have been a key issue for planning formation flying and orbital rendezvous
missions. In the early 1960’s, Clohessy and Wiltshire (CW) formulated a set of simple linear relative equations
of motion, derived by assuming small deviations from a circular reference orbit with no perturbations.7,8

Others have generalized the CW equations for eccentric reference orbits,9 and to include perturbations and
higher-order nonlinear effects.10 Another interesting approach formulates the relative motion in spherical
coordinates in order to derive second-order expressions.11 In this paper the nonlinear relative equations of
motions are used in cartesian components with no external disturbances.12 Other formulations that include
disturbances can be easily derived if necessary.

The organization of this paper proceeds as follows. First, an overview of the relative coordinates systems
and positional equations of motion is given. Then, the basic equations for the VISNAV system and gyro
models are shown. Next, a review of the quaternion kinematics is provided, followed by a derivation of the
relative attitude motion equations. Next, an EKF is derived for attitude estimation only, which assumes
that the relative positions are known. Then, the relative position equations are appended to the state vector
in order to perform full attitude and position estimation. Finally, simulation results are presented.

II. Overview

In this section an overview of the frames used to describe the relative position and attitude equations of
motion is shown. The measurements equations for the VISNAV sensor, which provides line-of-sight (LOS)
vectors from one spacecraft to another, are then derived. Also, standard gyro measurement equations are
shown, which will be used for relative attitude estimation.

A. Relative Orbital Motion Equations

The spacecraft about which all other spacecraft are orbiting is referred to as the chief. The remaining
spacecraft are referred to as the deputies. The relative orbit position vector, ρ, is expressed in components
by ρ = [x y z]T . A complete derivation of the relative equations of motion for eccentric orbits can be found
in Ref. 12. If the relative orbit coordinates are small compared to the chief orbit radius, then the equations
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Figure 1. General Type of Spacecraft Formation with Relative Motion

of motion are given by
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ẏ − y
ṙc
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= wx (1a)
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= wy (1b)

z̈ + z θ̇2 rc

p
= wz (1c)

where p is semilatus rectum of the chief, rc is the chief orbit radius and θ̇ is true anomaly rate of the chief.
Also, wx, wy and wz are acceleration disturbances which are modelled as zero-mean Gaussian white-noise
processes. The true anomaly acceleration and chief orbit-radius acceleration are given by

θ̈ = −2
ṙc

rc
θ̇ (2a)

r̈c = rc θ̇2

(

1 − rc

p

)

(2b)

If the chief satellite orbit is assumed to be circular so that ṙc = 0 and p = rc, then the relative equations of
motion reduce to the simple form known as the CW equations (with disturbances added here):

ẍ − 2n ẏ − 3n2x = wx (3a)

ÿ + 2n ẋ = wy (3b)

z̈ + n2z = wz (3c)

where n = θ̇ is the mean motion.

B. Vision Based Navigation System and Gyro Model

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic images or LOS mea-
surements. Photogrammetry can generally be divided into two categories: far range photogrammetry with
camera distance settings to infinity (commonly used in star cameras13), and close range photogrammetry
with camera distance settings to finite values. In general close range photogrammetry can be used to de-
termine both the position and attitude of an object, while far range photogrammetry can only be used to
determine attitude. The VISNAV system comprises an optical sensor of a new kind combined with specific
light sources (beacons), which can be used for close range photogrammetry-type applications. The relation-
ship between the position/attitude and the observations used in photogrammetry involves a set of colinearity
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Figure 2. Vision Based Navigation System

equations, which are reviewed in this section. Figure 2 shows a schematic of the typical quantities involved
in basic photogrammetry from LOS measurements, derived from light beacons in this case. It is assumed
that the location of the sensor focal plane is known within the deputy spacecraft coordinate system, which
is usually obtained through calibration. Also, without loss in generality, we assume that the chief spacecraft
frame coincides with the frame describe in Figure 1. If we choose the z-axis of the sensor coordinate system
to be directed outward along the boresight, then given object space and image space coordinate frames (see
Figure 2), the ideal object to image space projective transformation (noiseless) can be written as follows:14

χi = −f
A11(Xi − x) + A12(Yi − y) + A13(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (4a)

γi = −f
A21(Xi − x) + A22(Yi − y) + A23(Zi − z)

A31(Xi − x) + A32(Yi − y) + A33(Zi − z)
, i = 1, 2, . . . , N (4b)

where N is the total number of observations, (χi, γi) are the image space observations for the ith LOS,
(Xi, Yi, Zi) are the known object space locations of the ith beacon, (x, y, z) are the unknown object space
location of the sensor modelled by Eq. (1), f is the known focal length, and Ajk are the unknown coefficients
of the attitude matrix, A, associated to the orientation from the object plane (chief) to the image plane
(deputy). The goal of the inverse problem is given observations (χi, γi) and object space locations (Xi, Yi, Zi),
for i = 1, 2, . . . , N , determine the attitude (A) and position (x, y, z).

The observation can be reconstructed in unit vector form as

bi = Ari, i = 1, 2, . . . , N (5)

where

bi ≡
1

√

f2 + χ2
i + γ2

i







−χi

−γi

f






(6a)

ri ≡
1

√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2







Xi − x

Yi − y

Zi − z






(6b)

When measurement noise is present, Shuster15 has shown that nearly all the probability of the errors is
concentrated on a very small area about the direction of Ari, so the sphere containing that point can be
approximated by a tangent plane, characterized by

b̃i = Ari + υi, υT
i Ari = 0 (7)
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where b̃i denotes the ith measurement, and the sensor error υi is approximately Gaussian which satisfies

E {υi} = 0 (8a)

E
{

υiυ
T
i

}

= σ2
i

[

I3×3 − (Ari)(Ari)
T
]

(8b)

and E { } denotes expectation and I3×3 denotes a 3×3 identity matrix. Equation (8b) makes the small FOV
assumption of Ref. [15]; however, for a large FOV lens with significant radial distortion, this covariance model
should be modified appropriately.16 The advantage of using the model in Eq. (8) is that the measurement
covariance in the EKF formulation can effectively be replaced by a nonsingular matrix given by σ2

i I3×3 (see
Ref. 17 for more details). Hence, the measurement covariance matrix used in the EKF from all available
LOS vectors is given by

Rk = diag
[

σ2
1 σ2

2 . . . σ2
N

]

⊙ I3×3 (9)

where “diag” denotes a diagonal matrix and ⊙ denotes the Kronecker tensor product.
A common sensor that measures the angular rate is a rate-integrating gyro. For this sensor, a widely

used model is given by18

ω̃ = ω + β + ηv (10a)

β̇ = ηu (10b)

where ω is the continuous-time true angular rate, ω̃ is the measured rate, β is the drift, and ηv and ηu are
independent zero-mean Gaussian white-noise processes with

E
{

ηv(t)ηT
v (τ)

}

= I3×3σ
2
vδ(t − τ) (11a)

E
{

ηu(t)ηT
u (τ)

}

= I3×3σ
2
uδ(t − τ) (11b)

where δ(t − τ) is the Dirac delta function. In this paper we use (ηcv, ηcu) and (ηdv, ηdu) to denote the
parameters of chief and deputy gyros, respectively. It is important to note that gyros measure with respect
to an inertial frame, not with respect to the frames used to the describe the chief and deputy spacecraft
shown in this section.

III. Relative Attitude Kinematics

In this section a brief review of the attitude kinematics equation of motion using the quaternion is shown,
as well as some useful identities. Then, the relative attitude kinematics between two spacecraft are shown,
followed by a closed-form solution of the relative state transition matrix.

A. Quaternion Kinematics

In this section a brief review of the quaternion kinematics is shown. More details are given in Ref. 19. The

quaternion is defined by q ≡
[

̺T q4

]T
, with ̺ ≡ [q1 q2 q3]

T
= ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê

is the axis of rotation and ϑ is the angle of rotation.19 Since a four-dimensional vector is used to describe
three dimensions, the quaternion components cannot be independent of each other. The quaternion satisfies
a single constraint given by ||q|| = 1. The attitude matrix is related to the quaternion by

A(q) = ΞT (q)Ψ(q) (12)

with

Ξ(q) ≡
[

q4I3×3 + [̺×]

−̺T

]

(13a)

Ψ(q) ≡
[

q4I3×3 − [̺×]

−̺T

]

(13b)
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where [̺×] is a cross product matrix since a × b = [a×]b, with

[a×] ≡







0 −a3 a2

a3 0 −a1

−a2 a1 0






(14)

Successive rotations can be accomplished using quaternion multiplication. Here we adopt the convention of
Ref. [20] who multiply the quaternions in the same order as the attitude matrix multiplication: A(q′)A(q) =
A(q′ ⊗ q). The composition of the quaternions is bilinear, with

q′ ⊗ q =

[

Ψ(q′)
... q′

]

q =

[

Ξ(q)
... q

]

q′ (15)

Also, the inverse quaternion is given by q−1 =
[

−̺T q4

]T
. Note that q ⊗ q−1 = [0 0 0 1]T , which is the

identity quaternion.
The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (16)

where

Ω(ω) ≡
[

−[ω×] ω

−ωT 0

]

(17)

Some useful identities are given by

ΞT (q)Ξ(q) = ΨT (q)Ψ(q) = I3×3 (18a)

Ξ(q)ΞT (q) = Ψ(q)ΨT (q) = I4×4 − qqT (18b)

ΞT (q)q = ΨT (q)q = 03×1 (18c)
[

ω

0

]

⊗ q = Ω(ω)q (18d)

q ⊗
[

ω

0

]

= Γ(ω)q (18e)

Ψ(q)ω = Γ(ω)q (18f)

where

Γ(ω) ≡
[

[ω×] ω

−ωT 0

]

(19)

It is assumed in Eqs. (18a) and (18b) that ||q|| = 1. Also, Ω(a) and Γ(b) commute for any a and b, so that
Ω(a)Γ(b) = Γ(b)Ω(a).

B. Relative Kinematics

In this section a review of the relative quaternion kinematics is shown. Also, a solution of the associated
state transition matrix is derived. The relative attitude, denoted by the quaternion q, which is used to map
vectors in the chief frame to vectors in the deputy frame is expressed by

q = qd ⊗ q−1
c (20)

where qd and qc are the attitudes of the chief (leader) and deputy (follower) spacecraft, respectively. Equation
(20) is similar to the error quaternion used in Kalman filtering. Following Ref. 20, the relative quaternion
kinematics can be shown to be given by

q̇ = −
[

[ωc×]̺

0

]

+
1

2

[

(ωd − ωc)

0

]

⊗ q (21)
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where ωc and ωd are the angular velocities of the chief and deputy, respectively. Equation (21) is equivalent
to the kinematics shown in Ref. 21:

q̇ =
1

2
Ξ(q)ωdc (22)

where ωdc is the relative angular velocity defined by

ωdc ≡ ωd − A(q)ωc (23)

Equation (22) can be simplified by substituting Eq. (12) into Eq. (23) and using the identities in Eqs. (16),
(18b), (18c) and (18f), which yields

q̇ =
1

2
Θ(ωd, ωc)q (24)

where Θ(ωd, ωc) ≡ Ω(ωd) − Γ(ωc).
We now show a closed-form solution for the state transition matrix of 1

2Θ(ωd, ωc). As an aside, note
that the eigenvalues of this matrix are given by ±(||ωd||+ ||ωc||)j and ±(||ωd|| − ||ωc||)j. Since the matrices
Ω(ωd) and Γ(ωc) commute, we can write

exp

[

1

2
Θ(ωd, ωc)t

]

= exp

[

1

2
Ω(ωd)t

]

exp

[

−1

2
Γ(ωc)t

]

(25)

The closed-form solution for the matrix exponential of 1
2Ω(ωd)t is well documented (see Ref. 22). Applying

a similar derivation to the matrix − 1
2Γ(ωc)t gives

exp

[

−1

2
Γ(ωc)t

]

= I4×4 cos

(

1

2
||ωc||t

)

− Γ(ωc)

sin

(

1

2
||ωc||t

)

||ωc||
(26)

Hence, the discrete-time propagation of the relative quaternion is given by

qk+1 = Ω̄(ωdk
)Γ̄(ωck

)qk (27)

with

Ω̄(ωdk
) ≡













cos

(

1

2
||ωdk

||∆t

)

I3×3 − [ψk×] ψk

−ψT
k cos

(

1

2
||ωdk

||∆t

)













(28a)

Γ̄(ωck
) ≡













cos

(

1

2
||ωck

||∆t

)

I3×3 − [ζk×] −ζk

ζT
k cos

(

1

2
||ωck

||∆t

)













(28b)

where

ψk ≡
sin

(

1

2
||ωdk

||∆t

)

ωdk

||ωdk
|| (29a)

ζk ≡
sin

(

1

2
||ωck

||∆t

)

ωck

||ωck
|| (29b)

and ∆t is the sampling interval. Note that the matrices Ω̄(ωdk
) and Γ̄(ωck

) also commute.
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IV. Relative Attitude Estimation

In this section the necessary equations for relative attitude estimation between two spacecraft are derived.
The estimator used for this relative estimation is based on the EKF. A review of the EKF equations can
be found in Ref. 23. In this section it is assumed that the relative position is known, and only the attitude
and gyro biases will be estimated. In the next section, relative position estimation will be implemented as
well. Three attitude estimation formulations are presented here. The first estimates the relative attitude and
individual gyro biases for the chief and deputy spacecraft. The second estimates the relative attitude, and
the relative rate bias and the deputy gyro bias. The third estimates the relative attitude, and the relative
rate bias and the chief gyro bias.

A. Chief and Deputy Gyro Bias Case

In this section a formulation to estimate the relative attitude, as well as the chief and deputy gyro biases is
derived. The truth equations are given by

q̇ =
1

2
Ξ(q)ωdc (30a)

ωdc = ωd − A(q)ωc (30b)

β̇c = ηcu (30c)

β̇d = ηdu (30d)

ωc = ω̃c − βc − ηcv (30e)

ωd = ω̃d − βd − ηdv (30f)

The estimates are given by

˙̂q =
1

2
Ξ(q̂)ω̂dc (31a)

ω̂dc = ω̂d − A(q̂)ω̂c (31b)

˙̂
βc = 0 (31c)

˙̂
βd = 0 (31d)

ω̂c = ω̃c − β̂c (31e)

ω̂d = ω̃d − β̂d (31f)

Note that the quaternion kinematics involves the attitude matrix. To provide a set of linearized equations
used in the covariance propagation in the EKF, we employ the linearization approach shown in Ref. 20. The
error quaternion and its derivative are given by

δq = q ⊗ q̂−1 (32a)

δq̇ = q̇ ⊗ q̂−1 + q ⊗ ˙̂q
−1

(32b)

The derivative of q̂−1 can be derived by taking the derivative of q̂ ⊗ q̂−1 = [0 0 0 1]T , which leads to

˙̂q
−1

= −1

2
q̂−1 ⊗

[

ω̂dc

0

]

(33)

Substituting Eqs. (30a) and (33) into Eq. (32b) leads to

δq̇ =
1

2

[

ωdc

0

]

⊗ δq − 1

2
δq ⊗

[

ω̂dc

0

]

(34)

Next, we define the following error variables: δωd ≡ ωd − ω̂d and δωc ≡ ωc − ω̂c. Using these definitions in
ωdc gives

ωdc = ω̂d − A(q)ω̂c + δωd − A(q)δωc (35)
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The linearization process make the following assumptions, which are valid to within first-order:20

δq =

[

1
2δα

1

]

(36a)

A(q) = {I3×3 − [δα×]}A(q̂) (36b)

where δα is a small angle-error correction. Substituting Eq. (36b) into Eq. (35) and neglecting second-order
effects leads to

ωdc = ω̂dc − [A(q̂)ω̂c×]δα + δωd − A(q̂)δωc (37)

Substituting Eqs. (36a) and (37) into Eq. (34), and again neglecting second-order effects leads to

δα̇ = −[ω̂d×]δα + δωd − A(q̂)δωc (38)

The derivative of the fourth error quaternion component is zero. Next, using δωd = −(∆βd + ηdv) and

δωc = −(∆βc + ηcv), where ∆βd ≡ βd − β̂d and ∆βc ≡ βc − β̂c, in Eq. (38) leads to

δα̇ = −[ω̂d×]δα − ∆βd + A(q̂)∆βc + A(q̂)ηcv − ηdv (39)

The error-state dynamics are now given by

∆ẋ = F∆x + Gw (40)

with

∆x ≡
[

δαT ∆βT
c ∆βT

d

]T

(41a)

w ≡
[

ηT
cv ηT

dv ηT
cu ηT

du

]T

(41b)

where

F =







−[ω̂d×] A(q̂) −I3×3

03×3 03×3 03×3

03×3 03×3 03×3






(42a)

G =







A(q̂) −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3






(42b)

and the spectral density matrix of the process noise w is given by

Q =











σ2
cvI3×3 03×3 03×3 03×3

03×3 σ2
dvI3×3 03×3 03×3

03×3 03×3 σ2
cuI3×3 03×3

03×3 03×3 03×3 σ2
duI3×3











(43)

The linearization of the output (measurement) process exactly follows Ref. 20, which is not shown here.
Solutions for the state transition matrix of F and discrete-time process noise covariance are intractable

due to the dependence of both on the attitude matrix. A numerical solution is given by van Loan24 for fixed-
parameter systems, which includes a constant sampling interval and time invariant state and covariance
matrices. First, the following 12 × 12 matrix is formed:

A =

[

−F GQGT

0 FT

]

∆t (44)

Then, the matrix exponential of Eq. (44) is computed:

B = eA ≡
[

B11 B12

0 B22

]

=

[

B11 Φ−1Q
0 ΦT

]

(45)
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Table 1. Extended Kalman Filter for Relative Attitude Estimation

q̂(t0) = q̂0, β̂c(t0) = β̂c0
β̂d(t0) = β̂d0

Initialize
P (t0) = P0

Kk = P−

k HT
k (q̂−

k )[Hk(q̂−

k )P−

k HT
k (q̂−

k ) + Rk]−1

Gain
Hk(q̂−

k ) =









[A(q̂−)r1×] 03×3 03×3

...
...

...

[A(q̂−)rN×] 03×3 03×3









∣

∣

∣

∣

∣

∣

∣

∣

tk

P+
k = [I − KkHk(q̂−

k )]P−

k

∆x̂+
k = Kk[ỹk − hk(q̂−

k )]

∆x̂+
k ≡

[

δα̂+T
k ∆β̂+T

ck
∆β̂+T

dk

]T

Update hk(q̂−

k ) =













A(q̂−)r1

A(q̂−)r2

...

A(q̂−)rN













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

q̂+
k = q̂−

k +
1

2
Ξ(q̂−

k )δα̂+
k

β̂+
ck

= β̂−
ck

+ ∆β̂+
ck

β̂+
dk

= β̂−

dk
+ ∆β̂+

dk

ω̂+
ck

= ω̃ck
− β̂+

ck

ω̂+
dk

= ω̃dk
− β̂+

dk

Propagation
q̂−

k+1 = Ω̄(ω̂+
dk

)Γ̄(ω̂+
ck

)q̂+
k

P−

k+1 = ΦkP+
k ΦT

k + Qk

where Φ is the state transition matrix of F and Q is the discrete-time covariance matrix. The state transition
matrix and discrete-time process noise covariance are then given by

Φ = BT
22 (46a)

Q = ΦB12 (46b)

If the sampling interval is “small” enough (well within Nyquist’s limit), then Q = ∆tGQGT is a good
approximation for the solution given by Eq. (46b).

A summary of the EKF equations for relative attitude estimation is shown in Table 1, where P is the
covariance matrix that consists of the covariance of the attitude errors and chief and deputy biases, and the
vector ỹ is given by ỹ = [b̃T

1 b̃T
2 · · · b̃T

N ]T . Note that the propagated gyro biases are equivalent to their
respected previous-time updates. A quaternion measurement, denoted by q̃, which can be computed when
at least 4 LOS vectors are available,25 may be used instead of body vector measurements. Then ỹk −hk(q̂−

k )
is replaced with 2ΞT (q̂−

k )q̃k. The factor of 2 is required since the angle error is used in the EKF update.
Also, Hk(q̂−

k ) is replaced with Hk = [I3×3 03×3 03×3] and Rk is replaced with a 3× 3 matrix of the attitude
errors.

The EKF provides estimates for the individual biases of the chief and deputy, which in turn are used
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to estimate for their respective angular velocities. The estimated relative angular velocity can be computed
using Eq. (31b), which is typically used in a controller, such as the one presented in Ref. 21. The covariance

of the estimated relative bias, defined by β̂dc ≡ β̂d − A(q̂)β̂c, is useful to quantify the expected error in the

relative velocity estimate. Using the error definitions of the biases and attitude, β̂dc can be expressed by

β̂dc = (βd − ∆βd) − {I3×3 + [δα×]}A(q)(βc − ∆βc) (47)

Assuming unbiased estimates gives E
{

β̂dc

}

= βd − A(q)βc. Next, ignoring second-order effects leads to

β̂dc − E
{

β̂dc

}

= [A(q)βc×]δα + A(q)∆βc − ∆βd (48)

Hence, the covariance of β̂dc is given by

cov
{

β̂dc

}

= HP HT (49)

where
H ≡

[

[A(q)βc×] A(q) −I3×3

]

(50)

and P is the covariance from the EKF. Note that H is evaluated at the true values, but must be replaced with
their respective estimate values for practical purposes. This leads to second-order errors when the estimates
are close to their true values.

B. Relative and Deputy Gyro Bias Case

In this section a formulation to estimate the relative attitude, as well as the relative and deputy gyro biases
is derived. Estimating for the relative bias directly is useful since the EKF gives its covariance directly in
this case. The linearized equations must now involve β̂d and β̂dc. We first derive the attitude-error equation
in terms of these variables. Defining ∆βdc ≡ βdc − β̂dc, and using β̂dc = β̂d − A(q̂)β̂c, βc = β̂c + ∆βc and
Eq. (36b) leads to

∆βdc = [(β̂dc − β̂d)×]δα + ∆βd − A(q̂)∆βc (51)

where second-order effects are ignored. Solving Eq. (51) for A(q̂)∆βc − ∆βd and substituting the resultant
into Eq. (39) leads to

δα̇ = −[(ω̃d − β̂dc)×]δα − ∆βdc + A(q̂)ηcv − ηdv (52)

Next, we need to determine a dynamics model for βdc = βd − A(q)βc. Taking the time derivative of this
equation and using Eqs. (30b)-(30f) in the resulting expression yields

β̇dc = −[(ω̃d − A(q)ω̃c − βd − ηdv + A(q)ηcv)×]βdc

+ [(ω̃d − A(q)ω̃c − ηdv + A(q)ηcv)×]βd + ηdu − A(q)ηcu

(53)

The estimate equation is given by

˙̂
βdc = −[(ω̃d − A(q̂)ω̃c − β̂d)×]β̂dc + [(ω̃d − A(q̂)ω̃c)×]β̂d (54)

The linear dynamics of ∆
˙̂
βdc can be derived in a similar fashion as the other linearized equations shown to

this point. For brevity this derivation is omitted here. The error-state dynamics are given by

∆ẋ = F∆x + Gw (55)

with

∆x ≡
[

δαT ∆βT
dc ∆βT

d

]T

(56a)

w ≡
[

ηT
cv ηT

dv ηT
cu ηT

du

]T

(56b)
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where

F =







−[(ω̃d − β̂dc)×] −I3×3 03×3

F21 F22 F23

03×3 03×3 03×3






(57a)

F21 = [(β̂d − β̂dc)×][A(q̂)ω̃c×] (57b)

F22 = −[(ω̃d − A(q̂)ω̃c − β̂d)×] (57c)

F23 = [(ω̃d − A(q̂)ω̃c − β̂dc)×] (57d)

G =







A(q̂) −I3×3 03×3 03×3

−[(β̂d − β̂dc)×]A(q̂) [(β̂d − β̂dc)×] −A(q̂) I3×3

03×3 03×3 03×3 I3×3






(57e)

and the spectral density matrix of the process noise w is given by Eq. (43). The EKF filter equations can now
be employed using the state matrices in Eq. (55) in the covariance propagation as well as Eqs. (31a), (31d)
and (54) for the state propagation. We note that a closed-form solution for the state propagation equation
is difficult due to the appearance of the attitude matrix in Eq. (54). However, if the sampling interval is
“small enough” (within Nyquist’s upper limit), then a pure discrete-time propagation can be employed by
holding q̂ constant throughout the interval, while using the discrete-time quaternion propagation shown in
Table 1.

C. Relative and Chief Gyro Bias Case

In this section the necessary equations to estimate the relative attitude, as well as the relative and chief gyro
biases are shown. For brevity these equations are shown without derivation. The dynamic equation for the
relative bias estimate is given by

˙̂
βdc = [A(q̂)β̂c×]β̂dc − [A(q̂)β̂c×](ω̃d − A(q̂)ω̃c) (58)

The error-state dynamics are given by
∆ẋ = F∆x + Gw (59)

with

∆x ≡
[

δαT ∆βT
dc ∆βT

c

]T

(60a)

w ≡
[

ηT
cv ηT

dv ηT
cu ηT

du

]T

(60b)

where

F =







−[(ω̃d − β̂dc)×] −I3×3 03×3

F21 F22 F23

03×3 03×3 03×3






(61a)

F21 = [A(q̂)β̂c×][A(q̂)ω̃c×] + [(ω̃d − A(q̂)ω̃c − β̂dc)×][A(q̂)β̂c×] (61b)

F22 = [A(q̂)β̂c×] (61c)

F23 = [(ω̃d − A(q̂)ω̃c − β̂dc)×]A(q̂) (61d)

G =







A(q̂) −I3×3 03×3 03×3

−[A(q̂)β̂c×]A(q̂) [A(q̂)β̂c×] −A(q̂) I3×3

03×3 03×3 03×3 I3×3






(61e)

and the spectral density matrix of the process noise w is again given by Eq. (43). The EKF filter equations
can now be employed using the state matrices in Eq. (59) in the covariance propagation as well as Eqs. (31a),
(31c) and (58) for the state propagation.
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V. Relative Attitude and Position Estimation

In this section the necessary equations for both relative attitude and position estimation between two
spacecraft are derived. The state vector in the attitude-only estimation formulations shown in the previous
section is now appended to include position and velocity of the deputy, radius and radial rate of the chief,
and the true anomaly and its rate. This appended vector is given by

X =
[

x y z ẋ ẏ ż rc ṙc θ θ̇
]T

≡
[

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

]T
(62)

Then the nonlinear state-space model follows from Eqs. (1) and (2) as

Ẋ = f(X) ≡







































x4

x5

x6

x1x
2
10 (1 + 2x7/p) + 2x10 (x5 − x2x8/x7)

−2x10 (x4 − x1x8/x7) + x2x
2
10 (1 − x7/p)

−x7x
2
10x3/p

x8

x7x
2
10 (1 − x7/p)

x10

−2x8x10/x7







































(63)

In this formulation the chief radius and true anomaly, as well as their respective derivatives, are estimated.
The observability of these quantities from relative position measurements is discussed in Ref. 26. If this
information is assumed known a priori, then these states can removed and their respective measured values
can be added as process noise in the state model. The error-state vector for the chief and deputy gyro bias
case is now a combination of Eqs. (41) and (62):

∆x ≡
[

δαT ∆βT
c ∆βT

d ∆ρT ∆ρ̇T ∆rc ∆ṙc ∆θ ∆θ̇
]T

(64)

with obvious definitions of ∆ρ, ρ̇, ∆rc, ∆ṙc, ∆θ and ∆θ̇. The matrices F and G that are used in the EKF
covariance propagation are given by

F =













−[ω̂d×] A(q̂) −I3×3 03×10

03×3 03×3 03×3 03×10

03×3 03×3 03×3 03×10

010×3 010×3 010×3
∂f(X)

∂X

∣

∣

∣

X̂













(65a)

G =

























A(q̂) −I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 I3×3

02×3 02×3 02×3 02×3 02×3

02×3 02×3 02×3 02×3 02×3

























(65b)

where X̂ denotes the estimate of X. The partial matrix ∂f(X)/∂X is straightforward to derive and is not

shown here for brevity. Defining the new process noise vector as w ≡
[

ηT
cv ηT

dv ηT
cu ηT

du wx wy wz

]T
, then
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the new matrix Q is given by

Q =

























σ2
cvI3×3 03×3 03×3 03×3 03×1 03×1 03×1

03×3 σ2
dvI3×3 03×3 03×3 03×1 03×1 03×1

03×3 03×3 σ2
cuI3×3 03×3 03×1 03×1 03×1

03×3 03×3 03×3 σ2
duI3×3 03×1 03×1 03×1

01×3 01×3 01×3 01×3 wx 0 0

01×3 01×3 01×3 01×3 0 wy 0

01×3 01×3 01×3 01×3 0 0 wz

























(66)

The sensitivity matrix is also modified to be

Hk(q̂−

k , ρ̂−

k ) =















[A(q̂−)r̂−1 ×] 03×3 03×3
∂b̂−

1

∂ρ̂−
03×7

...
...

...
...

...

[A(q̂−)r̂−N×] 03×3 03×3
∂b̂−

N

∂ρ̂−
03×7















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tk

(67)

where r̂−i is given by Eq. (6b) evaluated at ρ̂− ≡ [x̂− ŷ− ẑ−]
T

and the partial matrix ∂b̂−

i /∂ρ̂− is given by

∂b̂−

i

∂ρ̂−
= A(q̂−)

∂r̂−i
∂ρ̂−

(68)

where

∂r̂−i
∂ρ̂−

=
1

ŝ−i







−
[

(Yi − ŷ−)2 + (Zi − ẑ−)2
]

(Xi − x̂−)(Yi − ŷ−) (Xi − x̂−)(Zi − ẑ−)

(Xi − x̂−)(Yi − ŷ−) −
[

(Xi − x̂−)2 + (Zi − ẑ−)2
]

(Yi − ŷ−)(Zi − ẑ−)

(Xi − x̂−)(Zi − ẑ−) (Yi − ŷ−)(Zi − ẑ−) −
[

(Xi − x̂−)2 + (Yi − ŷ−)2
]







(69)

with ŝ−i ≡
[

(Xi − x̂−)2 + (Yi − ŷ−)2 + (Zi − ẑ−)2
]3/2

. The EKF can now be executed with these new
quantities to estimate both relative attitude and position.

VI. Simulation Results

In this section simulation results are presented that show the performance of the EKF to estimate both
relative attitude and position between spacecraft using LOS vectors from the VISNAV sensor. For the
chief spacecraft, parameters from the Hubble Space Telescope are selected. The semimajor axis is given
by 6,998,455 meters and the eccentricity is e = 0.00172. A bounded relative orbit is used. The constraint
required on the Cartesian initial conditions must then satisfy12

ẏ(t0)

x(t0)
=

−n(2 + e)
√

(1 + e)(1 − e)3
(70)

This bounded relative orbit constraint is valid for both eccentric and circular chief orbits. Note that its form
requires that t0 be defined to be at the orbit perigee point. This is only used for simulation purposes though.
The EKF can be initiated at any part of the orbit. The initial chief orbit radius and true anomaly rate are
given by rc(t0) = a(1 − e) and θ̇(t0) =

√

µ/p (1 + e)/rc, where µ = 3.986008 × 1014 m3/s2. At perigee we
have ṙc(t0) = 0 and θ(t0) = 0. The initial condition for the vector X in appropriate units of meters and
meters per second is given by

X(t0) =
[

200 200 100 0.01 −0.4325 0.01 rc(t0) 0 0 θ̇(t0)
]T

(71)

The simulation time for relative motion between the two spacecraft is 600 minutes and time interval is 10
seconds. The spectral densities of the process noise components wx, wy and wz in Eq. (1) are each given by
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Figure 3. Gyro Bias Estimates and Attitude Errors

√
10× 10−11 m/(s

√
s). The orbit period of deputy is calculated to be 5,820 seconds. This period makes the

deputy move about 6 times around the chief during the simulation run.
The true relative attitude motion is given by propagating Eq. (27) using an initial quaternion given

by q(t0) = [
√

2/2 0 0
√

2/2]T and angular velocities given by ωc = [0 0.0011 − 0.0011]T rad/sec and
ωd = [−0.002 0 0.0011]T rad/sec for the entire simulation run. The gyro noise parameters are given by
σcu = σdu =

√
10 × 10−10 rad/sec3/2 and σcv = σdv =

√
10 × 10−5 rad/sec1/2. The initial biases for each

axis of both the chief and deputy gyros is given by 1 deg/hr. Six beacons are assumed to exist on the chief:

X1 = 0.5m, Y1 = 0.5m, Z1 = 0.0m (72a)

X2 = −0.5m, Y2 = −0.5m, Z2 = 0.0m (72b)

X3 = −0.5m, Y3 = 0.5, Z3 = 0.0m (72c)

X4 = 0.5m, Y4 = −0.5m, Z4 = 0.0m (72d)

X5 = 0.2m, Y5 = 0.5m, Z5 = 0.1m (72e)

X6 = 0.0m, Y6 = 0.2m, Z6 = −0.1m (72f)
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Figure 4. Orbit Element Estimates

These beacons are assumed to be visible to the PSD on the deputy throughout the entire simulation run.
Simulated VISNAV measurements are generated using Eq. (7) with a measurement standard deviation given
by 0.0005 degrees.

In order to initialize the EKF a nonlinear least squares routine from the synthetic measurements is used
to determine the initial relative attitude and position. Each individual covariance sub-matrix for attitude,
gyro biases, position and velocity is assumed to be isotropic, i.e. a diagonal matrix with equal elements. The
initial attitude covariance is given by I3×3 deg2. The initial chief and deputy gyro bias covariances are each
set to 4I3×3 (deg/hr)2. The initial position covariance is set to 5I3×3 m2 and the initial velocity covariance is
set to 0.02I3×3 (m/s)2. The initial variance for the chief position is set to 1,000 m2 and the velocity variance
is set to 0.01 (m/s)2. The initial variance for the true anomaly is set to 1× 10−4 rad2 and the rate variance
is set to 1 × 10−4 (rad/sec)2.

Figures 3(a) and 3(b) show the chief and deputy bias estimates, which are all well estimated by the EKF.
Figure 3(c) shows the attitude errors and respective 3σ bounds derived from the EKF covariance matrix.
All errors remain within their respective bounds, which indicates that the EKF is working properly. The
attitude errors are within 0.05 degrees. Figure 4(a) shows a comparison between the true and estimated
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position, with the errors shown in Figure 4(b). Relative position knowledge is within 0.3 meters for each axis.
Figure 4(c) shows the relative velocity errors, which shows that velocity knowledge is within 2×10−4 meters
per second. The chief orbital element errors are shown in Figure 4(d). The chief radius has a maximum
3σ bound of about 300 meters, although the actual errors are much smaller. The velocity errors are well
below 1 meter per second. The true anomaly 3σ bound shows that its estimate error may be fairly large,
up to about 2 degrees, although the actual errors are much smaller. The true anomaly rate is known to
within 1 × 10−7 rad/sec. The accuracy of these estimates not only depends on the accuracy of the PSD
sensor and the number of beacons, but also on the “spread” of the beacons as well as the distance from the
beacons and PSD. From Figures 3(c) and 4(b) the attitude and position covariance increases just past 60
minutes, which intuitively makes sense since this coincides with the maximum relative distance between the
spacecraft. Still, the simulation results indicate that using a filter with gyros and an orbital dynamic model
significantly increases the accuracy over a deterministic solution by at least 2 orders of magnitude.

VII. Conclusions

An extended Kalman filter has been designed for relative navigation and attitude determination of space-
craft. The measurements were assumed to be given by line-of-sight observations using a novel sensing ap-
proach involving beacons and position sensing technology in the focal plane. For attitude estimation three
different filter formulations were presented. The first directly estimated the chief and deputy gyro biases.
The second estimated the relative rate and deputy gyro biases, and the third estimated the relative rate and
chief gyro biases. For position estimation a nonlinear orbital model was used, where perturbation were mod-
elled by process noise. Simulation results have shown that the combined relative attitude/position Kalman
filter is able to achieve accurate results using a close configuration of beacons with a modest relative distance
between spacecraft. It is important to note that the filter developed in this paper estimates not only the
deputy states, but also the chief states including the chief radius, true anomaly and gyro biases. In actual
practice, the chief parameters will be known through external sensors onboard the chief spacecraft. For this
more practical case, the states in the filter design presented here can be reduced to only deputy associated
parameters. Still, this paper has shown that it is also possible to estimate both chief and deputy states if
desired.

References

1Robertson, A., Corazzini, T., LeMaster, F., and How, J. P., “Formation Sensing and Control Technologies for a Separated
Spacecraft Interferometer,” Proceedings of the 1998 American Control Conference, Philadelphia, PA, June 1998, pp. 1574–1580.

2Carpenter, J., Leitner, J., Folta, D., and Burns, R., “Benchmark Problems for Spacecraft Formation Flying Missions,”
AIAA Guidance, Navigation, and Control Conference, Austin, TX, Aug. 2003, AIAA 2003-5364.

3Corazzini, T., Robertson, A., Adams, J. C., Hassibi, A., and How, J. P., “GPS Sensing for Spacecraft Formation Flying,”
ION-GPS-97 Conference, Kansas, MO, Sept. 1997.

4Purcell, G., Kuang, D., Lichten, S., Wu, S. C., and Young, L., “Autonomous Formation Flyer (AFF) Sensor Technology
Development,” AAS Guidance and Control Conference, Breckenridge, CO, Feb. 1998, AAS 98-062.

5Alonso, R., Crassidis, J. L., and Junkins, J. L., “Vision-Based Navigation for Formation Flying of Spacecraft,” AIAA
Guidance, Navigation, and Control Conference, Denver, CO, August 2000, AIAA 2000-4439.

6Junkins, J. L., Hughes, D. C., Wazni, K. P., and Pariyapong, V., “Vision-Based Navigation for Rendezvous, Docking and
Proximity Operations,” 22nd Annual AAS Guidance and Control Conference, Breckenridge, CO, Feb. 1999, AAS 99-021.

7Hill, G., “Researches in the Lunar Theory,” American Journal of Mathematics, , No. 1, 1878, pp. 5–26.
8Clohessy, W. and Wiltshire, R., “Terminal Guidance System for Satellite Rendezvous,” Journal of Guidance, Control,

and Dynamics, Vol. 8, No. 2, March-April 1985, pp. 235–242.
9Inalhan, G., Tillerson, M., and How, J. P., “Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits,”

Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, Jan.-Feb. 2002, pp. 48–59.
10Alfriend, K. T., Yan, H., and Vadali, S. R., “Nonlinear Considerations in Satellite Formation Flying,” AIAA/AAS

Astrodynamics Specialist Conference, Monterey, CA, Aug. 2002, AIAA 2002-4741.
11Karlgaard, C. D. and Lutze, F. H., “Second-Order Relative Motion Equations,” AAS/AIAA Astrodynamics Specialist

Conference, Quebec City, Canada, July 2001, AAS 01-464.
12Schaub, H. and Junkins, J. L., Analytical Mechanics of Aerospace Systems, chap. 14, American Institute of Aeronautics

and Astronautics, Inc., New York, NY, 2003.
13Ju, G., Pollack, T., and Junkins, J. L., “DIGISTAR II Micro-Star Tracker: Autonomous On-Orbit Calibration and

Attitude Estimation,” AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, August 1999, AAS 99-431.
14Light, D. L., “Satellite Photogrammetry,” Manual of Photogrammetry, edited by C. C. Slama, chap. 17, American Society

of Photogrammetry, Falls Church, VA, 4th ed., 1980.

17 of 18

American Institute of Aeronautics and Astronautics



15Shuster, M. D. and Oh, S. D., “Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance and
Control , Vol. 4, No. 1, Jan.-Feb. 1981, pp. 70–77.

16Cheng, Y., Crassidis, J. L., and Markley, F. L., “Attitude Estimation for Large Field-of-View Sensors,” AAS Malcolm
D. Shuster Astronautics Symposium, Grand Island, NY, June 2005, AAS-05-462.

17Shuster, M. D., “Kalman Filtering of Spacecraft Attitude and the QUEST Model,” The Journal of the Astronautical
Sciences, Vol. 38, No. 3, July-Sept. 1990, pp. 377–393.

18Farrenkopf, R. L., “Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators,” Journal
of Guidance and Control , Vol. 1, No. 4, July-Aug. 1978, pp. 282–284.

19Shuster, M. D., “A Survey of Attitude Representations,” Journal of the Astronautical Sciences, Vol. 41, No. 4, Oct.-Dec.
1993, pp. 439–517.

20Lefferts, E. J., Markley, F. L., and Shuster, M. D., “Kalman Filtering for Spacecraft Attitude Estimation,” Journal of
Guidance, Control, and Dynamics, Vol. 5, No. 5, Sept.-Oct. 1982, pp. 417–429.

21Xing, G. Q. and Parvez, S. A., “Nonlinear Attitude State Tracking Control for Spacecraft,” Journal of Guidance, Control,
and Dynamics, Vol. 24, No. 3, May-June 2001, pp. 624–626.

22Markley, F. L., “Matrix and Vector Algebra,” Spacecraft Attitude Determination and Control , edited by J. R. Wertz,
appendix C, Kluwer Academic Publishers, The Netherlands, 1978, p. 755.

23Crassidis, J. L. and Junkins, J. L., Optimal Estimation of Dynamic Systems, chap. 7, Chapman & Hall/CRC, Boca
Raton, FL, 2004.

24van Loan, C. F., “Computing Integrals Involving the Matrix Exponential,” IEEE Transactions on Automatic Control ,
Vol. AC-23, No. 3, June 1978, pp. 396–404.

25Sun, D. and Crassidis, J. L., “Observability Analysis of Six-Degree-of-Freedom Configuration Determination Using Vector
Observations,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, Nov.-Dec. 2002, pp. 1149–1157.

26Psiaki, M. L., “Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements,” Journal of
Guidance, Control, and Dynamics, Vol. 22, No. 2, March-April 1999, pp. 305–312.

18 of 18

American Institute of Aeronautics and Astronautics


