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presented. The first estimates the relative attitude and individual gyro bi-
ases for the chief and deputy spacecraft. The second estimates the relative
attitude, and the relative velocity bias and the deputy gyro bias. The third
estimates the relative attitude, and the relative velocity bias and the chief
gyro bias. Simulation results indicate that the combined sensor/estimator

approach provides accurate relative attitude and position estimates.

I. Introduction

Spacecraft formation flying is an important technology, but not a new concept anymore.!?

Since the early days of the space program several formation flying applications, such as ren-
dezvous and docking maneuvers, have been accomplished in practice. Modern day spacecraft
formation flying applications include long baseline interferometry, stereographic imaging,
synthetic apertures, and distinguishing spatial from temporal magnetospheric variations.
Many missions, in particular interferometry missions, rely on precise relative attitude and
position knowledge in order to maintain mission requirements. To date most research studies
into determining relative attitudes and positions between vehicles have involved using the
Global Positioning System (GPS),®> which restricts the spacecraft formation to near-Earth
applications. An application of GPS-like technology to a deep space mission has been pro-
posed,* but this requires extensive hardware development and is subject to the generic GPS
performance-limiting effects, including multipath, geometric dilution of precision, integer
ambiguity resolution and cycle slip. An objective of this paper is to provide a novel, reliable
and autonomous relative attitude and position estimation system that is independent of any
external systems.

The relative sensor measurements used in this paper are line-of-sight (LOS) vectors be-
tween two spacecraft. These can be obtained from a vision-based navigation (VISNAV)
system, which comprises an optical sensor of a new kind combined with specific light sources
(beacons) in order to achieve a selective or “intelligent” vision. The sensor is made up of a

Position Sensing Diode (PSD) placed in the focal plane of a wide angle lens. Benefits of this
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configuration include: 1) very small sensor size, 2) very wide sensor field-of-view (FOV), 3)
no complex/time consuming charge-coupling-device signal processing or pattern recognition
required, 4) excellent rejection of ambient light interference under a wide variety of operating
conditions, and 5) relatively simple electronic circuits with modest digital signal processing
micro-computer requirements. A more detailed description of the VISNAV system can be
found in Ref. 5.

This paper presents an extended Kalman filter (EKF) formulation to estimate the relative
attitude and position of two spacecraft using LOS observations coupled with gyro measure-
ments from each spacecraft. The attitude kinematics are based on the quaternion. Three
different formulations are presented. The first estimates the relative attitude and individual
gyro biases for the chief and deputy spacecraft. The second estimates the relative attitude,
and the relative velocity bias and the deputy gyro bias. The third estimates the relative
attitude, and the relative velocity bias and the chief gyro bias. The analysis of relative posi-
tion motion of spacecraft also has been a key issue for planning formation flying and orbital
rendezvous missions. In the early 1960’s, Clohessy and Wiltshire (CW) formulated a set
of simple linear relative equations of motion, derived by assuming small deviations from a
circular reference orbit with no perturbations.®” Others have generalized the CW equations
for eccentric reference orbits,® and to include perturbations and higher-order nonlinear ef-
fects.” Another interesting approach formulates the relative motion in spherical coordinates
in order to derive second-order expressions.'® In this paper the nonlinear relative equations
of motions use Cartesian components with no external disturbances.!! Other formulations
that include disturbances can be easily derived if necessary.

The organization of this paper proceeds as follows. First, an overview of the relative
coordinates systems and positional equations of motion is given. Then, the basic equations
for the VISNAV system and gyro models are shown. Next, a review of the quaternion kine-
matics is provided, followed by a derivation of the relative attitude motion equations. Next,
an EKF is derived for attitude estimation only, which assumes that the relative positions

are known. Then, the relative position equations are appended to the state vector in order
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Figure 1. General Type of Spacecraft Formation with Relative Motion

to perform full attitude and position estimation. Finally, simulation results are presented.

II. Overview

In this section an overview of the frames used to describe the relative attitude and position
equations of motion is shown. The measurement equations for the VISNAV sensor, which
provides LOS vectors from one spacecraft to another, are then derived. Also, standard gyro

measurement equations are shown, which will be used for relative attitude estimation.

A. Relative Orbital Motion Equations

The spacecraft about which all other spacecraft are orbiting is referred to as the chief. The
remaining spacecraft are referred to as the deputies. The relative orbit position vector, p, is
expressed in components by p = [z y 2|7, shown in Figure 1. The vector triad {6, 0y, 05}
is known as the Hill coordinate frame, where 0, is in the orbit radius direction, 0y, is parallel
with the orbit momentum vector and 6y completes the triad. A complete derivation of the
relative equations of motion for eccentric orbits can be found in Ref. 11. If the relative orbit

coordinates are small compared to the chief orbit radius, then the equations of motion are
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given by

f—x¥<1+25)—29<g—y5)=w% (1a)
p ro

gj+29<i—x%)—y92<1—%):wy (1b)

where p is semilatus rectum of the chief, r, is the chief orbit radius and 6 is true anomaly rate

of the chief. Also, w,, w, and w, are acceleration disturbances which are modeled as zero-

2

mean Gaussian white-noise processes, with variances given by o2,

2 2 ~
o, and o7, respectively.

The true anomaly acceleration and chief orbit-radius acceleration are given by

9:—2%9 (2a)
o =167 (1 — %) (2Db)

If the chief satellite orbit is assumed to be circular so that 7. = 0 and p = 7., then the
relative equations of motion reduce to the simple form known as the CW equations (with

disturbances added here):

i—2ny—3n'r =w, (3a)
j+2ni=w, (3b)
Z4nPz =w, (3c)

where n = 0 is the mean motion.

B. Vision-Based Navigation System and Gyro Model

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic im-
ages or LOS measurements. Photogrammetry can generally be divided into two categories:

far range photogrammetry with camera distance settings to infinity (commonly used in star
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Figure 2. Vision-Based Navigation System

cameras'?), and close-range photogrammetry with camera distance settings to finite val-
ues. In general close-range photogrammetry can be used to determine both the attitude
and position of an object, while far range photogrammetry can only be used to determine
attitude. The VISNAV system comprises an optical sensor of a new kind combined with
specific light sources (beacons), which can be used for close-range photogrammetry-type
applications. The relationship between the attitude/position and the observations used in
photogrammetry involves a set of colinearity equations, which are reviewed in this section.
Figure 2 shows a schematic of the typical quantities involved in basic photogrammetry from
LOS measurements, derived from light beacons in this case. It is assumed that the location
of the sensor focal plane is known within the deputy spacecraft coordinate system, which is
usually obtained through calibration. Without loss in generality, we assume that the chief
spacecraft frame coincides with the Hill frame describe in Figure 1. If we choose the z-axis of
the sensor coordinate system to be directed outward along the boresight, then given object
space and image space coordinate frames (see Figure 2), the ideal object to image space

projective transformation (noiseless) can be written as follows:!3

_ A ( x) (Yz ) ( z) i

Xi = fA31(Xz — LL’) + A32(Y; - y) + A33(Zz — Z)7 =12, N (43)
= — A21(Xi _$)+A22(Y;_y)+A23(Zz_Z) 1 =

Vi fA31(Xz — l’) + AgQ(Y; — y) + A33(Zi — Z)7 =12, N (4b>
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where N is the total number of observations, (y;,7;) are the image space observations for

the i LOS, (X;,Y;, Z;) are the known object space locations of the i'" beacon, (z,, 2)

are the unknown object space location of the sensor modeled by Eq. (1), f is the known

focal length, and Aj; are the unknown coefficients of the attitude matrix, A, associated

to the orientation from the object plane (chief) to the image plane (deputy). The goal of

the inverse problem is given observations (x;,7;) and object space locations (X;,Y;, Z;), for

i=1,2,...,N, determine the attitude (A) and position (z,y, 2).

The observation can be reconstructed in unit vector form as

b,-:Ar,-, ’é:1,2,...,N

where
—Xi
1
b; = —Yi
23 +97
f
Xi — T
! Y;
r, = L

VX =2 (VP (Zi-2 |
Zi —Z

When measurement noise is present, the measurement model becomes

(6b)

(7)

where b; denotes the i*" measurement, and the sensor error v; is approximately Gaussian
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which satisfies™

E{vi} =0 (8a)
R; = E{vw]} = J; R{ON T (8b)
where £ { } denotes expectation and
-1 0
1 1
Ji = —F—— 1l - ———bi |y, 9
Viter2| Y T T Teds [XZ %} (52)
0 O
22 2
RFOCAL _ o} (I+dx7)*  (dxim) (9b)

L+d(x;+~7
FOCTI | x4 dopp

2

where o

7 is the variance of the measurement errors associated with y; and v;, and d is on

the order of one. Note that as ; or ; increases then the individual components of RFOCAL
increase, which realistically shows that the errors increase as the observation moves away
from the boresight. As stated in Ref. 15, the covariance model is a function of the true
variables x; and ~;, which are never available in practice. However, using the measurements
themselves or estimated quantities from the EKF leads to only second-order error effects.
Equation (8) does not make the small FOV assumption, which is more useful for the
VISNAYV sensor since it incorporates a wide angle lens. Rather, the assumption leading to
Eq. (8) is that the measurement noise is “small” compared to the signal, so that a first-
order Taylor series expansion accurately captures the error process (see Ref. 14 for details).
However, there may be circumstances where all the LOS measurements are within a small

FOV. For this case Shuster!® has shown that nearly all the probability of the errors is

concentrated on a very small area about the direction of Ar;, so the sphere containing that
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point can be approximated by a tangent plane, characterized by

E{v;} =0 (10a)

R; = 07 (I3x3 — b;b]) (10b)

where 13,3 denotes a 3 x 3 identity matrix. Equation (10b) approximates Eq. (8b) well under
the small FOV assumption, but can lead to fairly large estimation errors if this assumption
is not valid.

The covariance matrices in Eqs. (8b) and (10b) are both singular, which leads to a
singularity in the calculation of the Kalman gain. Shuster'® first showed that the singu-
lar covariance matrix in Eq. (10b) can be effectively replaced with a nonsingular diagonal
matrix made up of ¢? terms. This concept is expanded in Ref. 14 to include the general
covariance shown by Eq. (8b). For each measurement, the matrix used to make up the EKF

measurement-error covariance matrix is given by a rank-one update to R;:
1 T

This matrix is always nonsingular.!* If Eq. (10b) is used in Eq. (11) then we have R; = 02I3,3.
Finally, concatenating all R; matrices for the available LOS measurements at time-step
into a block diagonal matrix leads to the EKF measurement covariance matrix, denoted by
Ry.

A common sensor that measures the angular velocity is a rate-integrating gyro. For this

sensor, a widely used model is given by'”

w=w+pB+mn, (12a)

where w is the continuous-time true angular velocity, @ is the measured velocity, 3 is the
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drift, and n, and m, are independent zero-mean Gaussian white-noise processes with

E{nu(t)n, (1)} = Isxsopd(t — 7) (13a)

E {nu(t)ng(T)} = 13x3055(t - T) (13b)

where §(t — 7) is the Dirac delta function. In this paper we use (Ney, Mew) and (Nay, Naw) tO
denote the parameters of chief and deputy gyros, respectively. It is important to note that
gyros measure with respect to an inertial frame, not with respect to the frames used to the

describe the chief and deputy spacecraft shown in this section.

III. Relative Attitude Kinematics

In this section a brief review of the attitude kinematics equation of motion using the
quaternion is shown, as well as some useful identities. Then, the relative attitude kinematics
equation between two spacecraft is shown, followed by a closed-form solution of the relative

state transition matrix.

A. Quaternion Kinematics

In this section a brief review of the quaternion kinematics is shown. More details are given
in Ref. 18. The quaternion is defined by q = [o” q4]T, with 0 = [ ¢ ¢3]” = ésin(0/2)
and g4 = cos(¥/2), where & is the axis of rotation and ¥ is the angle of rotation.'® Since
a four-dimensional vector is used to describe three dimensions, the quaternion components
cannot be independent of each other. The quaternion satisfies a single constraint given by

llg|| = 1. The attitude matrix is related to the quaternion by

Alq) =E"(q)¥(q) (14)
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with

4]3><3
=(q) = | W Tl (150)
L _QT -
o= |1 lox] (15b)
_QT

0 —das (05}
[ax] = as 0 —aq (16)
—Q9 aq 0

Successive rotations can be accomplished using quaternion multiplication. Here we adopt the
convention of Ref. [19] who multiply the quaternions in the same order as the attitude matrix

multiplication: A(q')A(q) = A(q'®q). The composition of the quaternions is bilinear, with
qd®q= [‘I’(q’) : q’] q= [E(Q) : q] q (17)

The inverse quaternion is given by g~ = [—QT q4]T. Note that q@q~* = [0 0 0 1]7, which
is the identity quaternion.

The quaternion kinematics equation is given by

4= 3=(@)w = 30(w) (18)
where
| lwx] w
Qw) = (19)
—wh 0

11 of 34




Some useful identities are given by

=N (@)=(a) = ¥ (@) (q) = Tsxs (20a)
E(@)="(a) = ¥(a) ¥ (q) = lixs —aq’ (20Db)
E"(a)g = V" (q)q = 031 (20c)
“le q=Q(w)q (20d)
0
a® || =T(w) (20¢)
0
V(q)w =T'(w)q (20f)
where

B wx] w
I(w) = (21)

—wT 0

It is assumed in Egs. (20a) and (20b) that ||q|| = 1. Also, Q(a) and I'(b) commute for any
a and b, so that Q(a)['(b) = I'(b){2(a).

B. Relative Kinematics

In this section a review of the relative quaternion kinematics is shown. The relative attitude,
denoted by the quaternion q, which is used to map vectors in the chief frame to vectors in

the deputy frame is expressed by

a=queq" (22)

where qq and q. are the attitudes with respect to an inertial frame of the chief and deputy

spacecraft, respectively. Equation (22) is similar to the error quaternion used in Kalman
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filtering. Following Ref. 19, the relative quaternion kinematics can be shown to be given by

o= — [w.x]o +% (wa — we) ©q (23)

0 0

where w,. and wy are the angular velocities of the chief and deputy, respectively. Equation

(23) is equivalent to the kinematics shown in Ref. 20:

N | —

where wy, is the relative angular velocity defined by
wie = wq — A(q)w, (25)

Equation (24) can be simplified by substituting Eq. (14) into Eq. (25) and using the identities
in Egs. (18), (20b), (20c) and (20f), which yields

. 1
q-= 5@((.0[1, wc)q (26)

where O(wy, w.) = Q(wy) — T'(w.).
A closed-form solution for the state transition matrix of 3O (wq, w,) is shown in Ref. 21.
As an aside, note that the eigenvalues of this matrix are given by +(||wqy|| + ||we||)7 and

+(||wa|| = ||we|])g. Since the matrices 2(wy) and I'(w,) commute, we can write

exp E@(ud, wc)t] — exp Eg(wd)t] exp [—%F(wc)t] (27)

The closed-form solution for the matrix exponential of 3Q(wq)t is well documented (see
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Ref. 22). Applying a similar derivation to the matrix —2I'(w,)t gives

/1
1 1 (§||wc||t)
exp [—51“(600)75} = Iyx4 COS <§H‘-'-’0Ht) —T'(w.)

[loel|

(28)

Hence, the discrete-time propagation of the relative quaternion, assuming that w, and wy

are constant over the sampling interval At = t;,1 — t, is given by

Qi+1 = Q(wdk )F<wck >Qk

with
— 1 T
cos <§||wdk|| At) I3z — [thrx] Vi,
Q(wdk) =
T 1
g cos ( S| A1
— 1 -
oS (§||wck|| At) I3z — [CrX¥] —Ck
f(w%) =
1
¢ cos gl )
where

. 1
sin <§||wdk|| At) W,

VY, =
||wa, ||
. 1
sin §||wck||At We,
Cr =
[we, ||

Note that the matrices Q(wg, ) and T'(w,, ) also commute.
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IV. Relative Attitude Estimation

In this section the necessary equations for relative attitude estimation between two space-
craft are derived. The estimator used for this relative estimation is based on the EKF. A
review of the EKF equations can be found in Ref. 23. In this section it is assumed that
the relative position is known, and only the attitude and gyro biases will be estimated. In
the next section, relative position estimation will be implemented as well. Three attitude
estimation formulations are presented here. The first estimates the relative attitude and
individual gyro biases for the chief and deputy spacecraft. The second estimates the relative
attitude, and the relative velocity bias and the deputy gyro bias. The third estimates the

relative attitude, and the relative velocity bias and the chief gyro bias.

A. Chief and Deputy Gyro Bias Case

In this section a formulation to estimate the relative attitude, as well as the chief and deputy

gyro biases is derived. The truth equations are given by

4= =@ (320)
wae = wq — A(q)we (32b)
Be = Neu (32¢)

Ba = Nau (32d)

we = We — Be — New (32e)
wq = W4 — Ba — Nav (32f)
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The estimates are given by

i = 5= (Q) (332)
Gae = Wq — AQ)@, (33b)
/éc =0 (33¢)
Bi=0 (33d)

W =@, — e (33¢)
Wq = @4 — By (33f)

The quaternion kinematics involves the attitude matrix. To provide a set of linearized equa-
tions used in the covariance propagation in the EKF, we employ the linearization approach

shown in Ref. 19. The error quaternion and its derivative are given by

dq=qoq! (34a)

. . o =1
34=q®q '+q®q (34b)

The derivative of @~ can be derived by taking the derivative of @@ g1 = [0 0 0 1]7, which

leads to

@ =-—5q'e (35)

Wdc

0 0
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Next, we define the following error variables: dwy; = wyg — wy and dw, = w, — w.. Using

these definitions in wy. gives

Wy = wg — A(Q)w, + dwy — A(q)dw. (37)

The linearization process make the following assumptions, which are valid to within first-

order:!?

%5a
0q = (38a)
1
A(q) = {I3x3 — [dax]} A(q) (38b)

where da is a small angle-error correction. Substituting Eq. (38b) into Eq. (37) and neglect-

ing second-order effects leads to

Whe = Wae — [A((AD‘;JCX](SQ + 0wy — A(él>5wc (39)

Substituting Eqgs. (38a) and (39) into Eq. (36), and again neglecting second-order effects
leads to

0 = —[wyx|da + dwy; — A(q)dw. (40)

The derivative of the fourth error-quaternion component is zero. Next, using dwy = —(ABy+
Nay) and dw,. = —(AB. + N ), where ABy = By — Bd and AB. = 8. — BC, in Eq. (40) leads
to

56 = —[Gax10a — ABa+ A@)AB. + Al@)Tew — T (41)

The error-state dynamics are now given by

Ax = FAx + Gw (42)
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with

T
Ax = [&xT ABT Aﬁg}

W= {nZ; oy M

where

A(q)

O3x3

O3x3

03x3

__I3X3

—lwax] A(q)

03x3

03x3

O3x3  I3x3 Osxs

O3x3  Oszx3

__I3X3
03x3

03x3

O3x3  O3x3  Osx3 133

and the spectral density matrix of the process noise w is given by

03x3
03x3

03x3

2
UCU13X3

03x3

2
Udv13x3

03x3

03x3

O3x3

O3x3

2
O-cu]3><3

03x3

O3x3
O3x3

03x3

2
Udu]éxs_

(43a)

(43b)

(44a)

(44b)

The linearization of the output (measurement) process exactly follows Ref. 19, which is not

shown here.

Solutions for the state transition matrix of F' and discrete-time process noise covariance

are intractable due to the dependence of both on the attitude matrix. A numerical solution

is given by van Loan?! for fixed-parameter systems, which includes a constant sampling

interval and time invariant state and covariance matrices. First, the following 18 x 18 matrix
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is formed:

“F  GQGT
A= At (46)

0 FT

Then, the matrix exponential of Eq. (46) is computed:

-1
B A= By B _ B, 7 Q (47)

0 By 0 o)

where @ is the state transition matrix of F' and Q is the discrete-time covariance matrix.

The state transition matrix and discrete-time process noise covariance are then given by

d = By, (48a)

Q=B (48Db)

If the sampling interval is “small” enough (well within Nyquist’s limit), then Q@ = AtG Q GT
is a good approximation for the solution given by Eq. (48b).

A summary of the EKF equations for relative attitude estimation is shown in Table 1,
where P is the covariance matrix that consists of the covariance of the attitude errors and
chief and deputy biases, and the vector y is given by y = [Bf Bg e B%]T The quaternion
is re-normalized after the update stage.! A quaternion measurement, denoted by ¢, which
can be computed when at least 4 LOS vectors are available,?> may be used instead of body
vector measurements. Then y; — hy(q; ) is replaced with 227(q, )qz. The factor of 2 is
required since the angle error is used in the EKF update. Also, Hy(q, ) is replaced with
Hy = [I3x3 03x3 0sx3] and Ry is replaced with a 3 x 3 covariance matrix of the attitude
errors.

The EKF provides estimates for the individual biases of the chief and deputy, which in
turn provide estimates for their respective angular velocities. The relative angular velocity,

which is typically used in a controller, such as the one presented in Ref. 20, can be computed

using Eq. (33b). The covariance of the relative bias is useful to quantify the expected error
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Table 1. Extended Kalman Filter for Relative Attitude Estimation

. q(to) = qo, Bc(tO) = /éco Bd(to) = Bdo
Initialize
P(ty) = B
Ky = Py HI (4, ) [Hi(q;) Py HE () + Ry ™!
Gain o [A(q_)rlx] O3><3 03><3
Hy(q,) = : :

[A(q7)ryX] Osxs Osxs
Pl =1[1—- Ky H(a;) Py
A%, = Kilyr — hi(dy)]

tg

T
s+ — ~ 4T A+T A+T
Axf = |defT ABIT AB

A(q7 )
A(q)r
Update hy (&) (@)rz
zil(fl_)l"]v b
4 =4 + 5E(a)0a
o = B, + AL,
Bi, = By, +ABy,
wh =, — B
Of =&y — B
Propagation o - Pa,

i = Qe D@
Pro = 0POL + O

in the relative velocity estimate. Using the error definitions of the biases and attitude, B4,
can be expressed by

ﬁdc = ﬁd - A(Q) /Bc

(49)
_ (Bd + Aﬁd) — {Iz3x3 — [0ax]} A(q) (Bc T Aﬁ6>

Assuming unbiased estimates gives E {84} = Bae. Next, ignoring second-order effects leads
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to

Bac — Bae = —[A(Q)B.x]dx — A(§) AB. + ABy (50)

Hence, the covariance of 3. is given by
cov {Ba} = HPH" (51)

where

H= _[A((Al)ﬁcx] _A((Al) ]3><3 (52)

and P is the covariance from the EKF.

B. Relative Velocity and Deputy Gyro Bias Case

In this section a formulation to estimate the relative attitude, as well as the relative velocity
and deputy gyro biases is derived. Estimating for the relative bias directly is useful since the
EKF gives its covariance directly in this case. Note that Eq. (51) is only valid to within first
order and may be inaccurate for large errors. The equations derived in this section and the
next are more complicated than the equations used to determine the individual biases of the
chief and deputy from the previous section; however, these alternate formulations may be
useful in more complex filters designs, such as the Unscented Kalman filter,?® which retain
higher-order terms. The linearized equations must now involve Bd and Bdc. We first derive
the attitude-error equation in terms of these variables. Defining ABy. = By — Bdc, and using

Bae = By — A(Q)Be, Be = Be + AB. and Eq. (38D) leads to
DB = [(Bac — Ba) 18 + ABs — A(Q)AB, (53)

where second-order effects are ignored. Solving Eq. (53) for A(q)AB.— A3, and substituting

the resultant into Eq. (41) leads to

0 = _[(do - Bdc) X]éa - ABdc + A(Q)ncv — Ndv (54)
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Next, we need to determine a dynamics model for B4, = B4 — A(q)B.. Taking the time

derivative of this equation and using Eqgs. (32b)-(32f) in the resulting expression yields

/Bdc = _[(‘:)d - A(q)‘:}c - Bd — Ndav + A(q)ncv)x]ﬁdc

(55)
+ [(@a — A(Q)@we — Maw + A(Q)New) X]Ba + Naw — A(Q)Neu
The estimate equation is given by
/édc = —[(@q — AQ)@. — Ba) x|Bac + [(@4 — A(@)@c) x]B4 (56)

The linear dynamics of ABdC can be derived in a similar fashion as the other linearized
equations shown to this point. For brevity this derivation is omitted here. The error-state

dynamics are given by

Ax = FAx + Gw (57)
with
T
Ax = [&ﬂ ABT Aﬁg} (58a)
T
w = {nZ; nh, nl, nfu} (58b)
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where

~[(@a = Bue)x] —Isxs Oz
F= Fy Fyy  Fo (592)
| O O3 Oss|
Fyy = [(Ba — Bue) x][Al@)@.x] (59D)
Fy = —[(@4 — A(Q)@. — Ba)¥] (59¢)
Fys = (@4 — A(@)@c — Buc) X] (59d)
A(q) — I3y O3x3  Osx3
G = | ~[(Ba— Bae)XJA@) [(Ba— Bac)x] —A@Q) Isxs (59)
] O3x3 O3x3 O3x3 ngg_

and the spectral density matrix of the process noise w is given by Eq. (45). The EKF
filter equations can now be employed using the state matrices in Eq. (57) in the covariance

propagation as well as Eqgs. (33a), (33d) and (56) for the state propagation.

C. Relative Velocity and Chief Gyro Bias Case

In this section the necessary equations to estimate the relative attitude, as well as the
relative velocity and chief gyro biases are shown. For brevity these equations are shown

without derivation. The dynamic equation for the relative bias estimate is given by

~

Bic = [A@)B:x|Buc — [A@)Bex](@a — A@),) (60)
The error-state dynamics are given by

Ax = FAx + Gw (61)

23 of 34




with

T
Ax = [wT ABT. Aﬁf} (62a)
T
W= {nZ; nd, nl, nfu} (62b)
where
—[(wq — Bdc)x] —I3x3 0O3x3
= Fxn Fo  Fos (63a)
i 03><3 03><3 O3><3_
Py = [A(Q)BX][A(@)@cx] + [(@d — A@)@e — Bae) X][A(§)Bex] (63b)
Fyy = [A(Q)B. ] (63c)
Fys = [(@a — A(@)@e — Bac) ¥ A(Q) (63d)
A(d) _]3><3 03><3 O3><3
G = -[A@Bx]A@) [A@)B.x] —A@) Isxs (63¢)
| 03><3 03><3 ]3><3 O3><3_

and the spectral density matrix of the process noise w is again given by Eq. (45). The EKF
filter equations can now be employed using the state matrices in Eq. (61) in the covariance

propagation as well as Eqgs. (33a), (33c) and (60) for the state propagation.

V. Relative Attitude and Position Estimation

In this section the necessary equations for both relative attitude and position estimation
between two spacecraft are derived. The state vector in the attitude-only estimation for-
mulations shown in the previous section is now appended to include relative position and

velocity of the deputy, radius and radial rate of the chief, and the true anomaly and its rate.
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This appended vector is given by

T
X:[xyzx'yércf’cﬁé]
T (64)
= |r1 ™ x3 Ty Tz Tg T7 Ty Tg 9510}
The nonlinear state-space model follows from Eqs. (1) and (2) as
T4
Ts
Te
Ill’%o (1 + 225'7/]9) + 25(310 (LU5 — Igl’g/l"y)
—2x10 (24 — 1128/ 77) + 2023, (1 — 27/
X:f(X) — 10( 4 1 8/ 7) 2 10( 7/ ) (65)
—272i3/p
Ts

vy (1 — 27/p)

210

—2!13' 8L10 / T
Here it is assumed that p is known perfectly. Any error in p can be incorporated into the
process noise vector if needed. The full state vector is now given by
T
X = [qT Bl 8] X' (66)
The error-state vector for the chief and deputy gyro bias case is now given by

T
Ax = [&xT ABT ABT ApT AT Ar, Ai, AO AD (67)
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with obvious definitions of Ap, p, Are, Ar., A0 and Af. The matrices F and G that are

used in the EKF covariance propagation are given by

[ (G0x] A@) Do
Osx3  Osxsz  Osxs
Osx3  Osxsz  Osxs

| Owxs  Oioxz Oroxs

A(Q) —Isxs Ozxz Osxs

Osx3  Osxz  Isxsz Osxs

O3x3  Osx3  O3xz  I3x3

Osx3  Osxz  Osxz Osxs

Osx3  Osx3  Osxz Osxs

O2x3  O2x3  Oaxg Oa2xs

| O2x3 O2x3 Oaxz Ozxs

03x10
03x10

03x10

If(X)

0X

O3x3
O3x3
O3x3
03x3
]3x3
O2x3

02x3

X-

(68a)

(68b)

where X denotes the estimate of X. The partial matrix 0f(X)/0X is straightforward to

derive and is not shown here for brevity. Defining the new process noise vector as w =

(0% n% n% nk, w, w, w.]", then the new matrix @ is given by

Uiﬂw3
O3x3
O3x3
O3x3
O1x3
O1x3

01x3

O3x3
U§v13x3
O3x3
O3x3
O1x3
O1x3

01x3

O3x3 O3x3
O3x3 O3x3
02,3z Osxs
O3x3 03133
O1x3 O1x3
O1x3 O1x3
01x3 01x3
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03%1
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The sensitivity matrix is modified to be

- b -
[A(@7)t] X] O3x3 O3x3 8ﬁ1— O3x7
Hy(qy, py,) = : S : z (70)
dby
A(q )iy x] 0 0 N0
_[ N ] 3x3 3x3 ap_ 3><7_ "
where r; is given by Eq. (6b) evaluated at p~ = [27 gy~ 2_]T and the partial matrix

8132-_ /O0p~ is given by

ob; L OF
oa- = Al g ()
where
, —[(Yi=97)*+(Zi - 27)7] (X —27)(Yi=97) (Xs —27)(Zi = 27)
P01
aﬁ— - §Z— (XZ - j_)(n - Q_) - [(Xz - i_)2 + (ZZ - 2_)2] (Yz - g_)(Zz - 2_)
| (X—a)(Zi—2) Yi=97)(Zi = 27) —[(Xi =27+ (Yi=97)7]

with 87 = [(X; —27)?*+ (Y, — 97 ) + (Z; — 2_)2]3/2. The EKF can now be executed with
these new quantities to estimate both relative attitude and position. In the formulation
of this section the chief radius and true anomaly, as well as their respective derivatives,
are estimated. The observability of these quantities from relative position measurements is
discussed in Refs. 27 and 28. If this information is assumed known a priori, then these states
can removed and their respective measured values can be added as process noise in the state

model.

VI. Simulation Results

In this section simulation results are presented that show the performance of the EKF
to estimate both relative attitude and position between spacecraft. For the chief spacecraft,

parameters from the Hubble Space Telescope are selected. The semimajor axis is given by
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6,998,455 meters and the eccentricity is e = 0.00172. A bounded relative orbit is used. The

constraint required on the Cartesian initial conditions must then satisfy!*

z(to)  /(I+e)(l—e)3

This bounded relative orbit constraint is valid for both eccentric and circular chief orbits.
Note that its form requires that ¢, be defined to be at the orbit perigee point. This is only
used for simulation purposes though. The EKF can be initiated at any part of the orbit.
The initial chief orbit radius and true anomaly rate are given by r.(ty) = a(l — e) and
0(to) = \/1n/p (1 + e)/re, where p = 3.986008 x 10™ m?3/s2. At perigee we have 7(ty) = 0
and 0(ty) = 0. The initial condition for the vector X in appropriate units of meters and

meters per second is given by

T
X(to) = {200 200 100 0.01 —0.4325 0.01 7.(ts) 0 0 6(to) (74)

The simulation time for relative motion between the two spacecraft is 600 minutes and the
update rate for all of the sensors is 10 seconds. The spectral densities of the process noise
components w,, w, and w, in Eq. (1) are each given by v/10 x 107" m/(s\/s). The relative
orbit period of the deputy is calculated to be 5,820 seconds. This period makes the deputy
move about 6 times around the chief during the simulation run.

The true relative attitude motion is given by propagating Eq. (29) using an initial
quaternion given by q(to) = [v/2/2 0 0 v/2/2]" and angular velocities given by w, =
[0 0.0011 — 0.0011]" rad/sec and wy = [—0.002 0 0.0011)7 rad/sec for the entire simu-
lation run. The gyro noise parameters are given by 0., = 0g, = V10 x 107 rad/sec®/? and

Oy = 0gp = V10 x 107° rad/sec'/2. The initial biases for each axis of both the chief and
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Figure 3. Gyro Bias Estimates and Attitude Errors
deputy gyros are given by 1 deg/hr. Six beacons are assumed to exist on the chief:
X;=05m, Y;=05m, Z;=0.0m (75a)
Xo=-05m, Y,=-0.5m, Z,=0.0m (75Db)
X3 = —0511'1, YE; = 05, Z3 = 0.0m (75(3)
X, =05m, Y,=-05m, Z;=0.0m (75d)
X;=02m, Y;=0.5m, Z5=0.1m (75e)
X =0.0m, Y;=02m, Zg=—0.1m (75f)
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Figure 4. Orbit Element Estimates

In order to provide a realistic simulation, measurement updates in the filter are only used
when the beacons are within the FOV of the sensor. Simulated VISNAV measurements
are generated using Eq. (7) with a measurement standard deviation given by o; = 0.0005
degrees.

In order to initialize the EKF a nonlinear least squares routine from the synthetic mea-
surements is used to determine the initial relative attitude and position. This corresponds

to an initial attitude error of about 3 degrees (3¢) and an initial position error of about 6
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meters (30) for each axis. The initial velocity and gyro biases are all set to zero for the filter,
and the initial chief orbit elements are given by their respected true values. Each individual
covariance sub-matrix for the attitude, gyro biases, position and velocity is assumed to be
initially isotropic, i.e. a diagonal matrix with equal elements. The initial attitude covariance
is given by I3y3 deg?. The initial chief and deputy gyro bias covariances are each set to
413,53 (deg/hr)?. The initial position covariance is set to 5I3x3 m? and the initial velocity
covariance is set to 0.023x3 (m/s)?. The initial variance for the chief position is set to 1,000
m? and the velocity variance is set to 0.01 (m/s)?. The initial variance for the true anomaly
is set to 1 x 107 rad? and the rate variance is set to 1 x 107 (rad/sec)?.

Figures 3(a) and 3(b) show the chief and deputy bias estimates, which are all well esti-
mated by the EKF. Figure 3(c) shows the attitude errors and respective 30 bounds derived
from the EKF covariance matrix. All errors remain within their respective bounds, which
indicates that the EKF is working properly. The attitude errors are within 0.1 degrees. Fig-
ure 4(a) shows a comparison between the true and estimated position, with the errors shown
in Figure 4(b). Relative position knowledge is within 0.4 meters for each axis. Figure 4(c)
shows the relative velocity errors, which shows that velocity knowledge is within 3 x 1074
meters per second. The chief orbital element errors are shown in Figure 4(d). The chief
radius has a maximum 30 bound of about 300 meters, although the actual errors are much
smaller. The velocity errors are well below 1 meter per second. The true anomaly 30 bound
shows that its estimate error may be fairly large, up to about 2 degrees, although the actual
errors are much smaller. The true anomaly rate is known to within 1 x 1077 rad/sec.

The accuracy of these estimates not only depends on the accuracy of the PSD sensor
and the number of beacons, but also on the “spread” of the beacons as well as the distance
from the beacons and PSD. From Figures 3(c) and 4(b) the attitude and position covari-
ance increases just past 60 minutes, which intuitively makes sense since this coincides with
the maximum relative distance between the spacecraft. It is again important to note that
the filter developed in this paper estimates not only the deputy states, but also the chief

states including the chief radius, true anomaly and gyro biases. In actual practice, the chief
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parameters will be known through external sensors onboard the chief spacecraft. For this
more practical case, the states in the filter design presented here can be reduced to only

deputy-associated parameters.

VII. Conclusions

An extended Kalman filter has been designed for relative attitude and position estimation
for spacecraft formation flying applications. The measurements were assumed to be given
by line-of-sight observations and gyro measurements from the chief and deputy spacecraft.
For attitude estimation three different filter formulations were presented. The first directly
estimated the chief and deputy gyro biases. The second estimated the relative velocity
and deputy gyro biases, and the third estimated the relative velocity and chief gyro biases.
For position estimation a nonlinear orbital model was used, where errors and disturbances
were modeled by process noise. Simulation results have shown that the combined relative
attitude/position Kalman filter is able to achieve accurate results using a close configuration

of beacons with a modest relative distance between spacecraft.
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