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Abstract
A new approach for the control of a spacecraft with large angle maneuvers is presented. This

new approach is based on a nonlinear predictive control scheme which determines the required
torque input so that the predicted responses match the desired trajectories. This is accomplished
by minimizing the norm-squared local errors between the predicted and desired quantities.
Formulations are presented which use either attitude and rate tracking or attitude-tracking alone.
The robustness of the new controller with respect to large system uncertainties is also
demonstrated. Finally, simulation results are shown which use the new control strategy to

stabilize the motion of the Microwave Anisotropy Probe spacecraft.

Introduction
The control of spacecraft for large angle slewing maneuvers poses a difficult problem. Some

of these difficulties include: the highly nonlinear characteristics of the governing equations,
control rate and saturation constraints and limits, and incomplete state knowledge due to sensor
failure or omission. The control of spacecraft with large angle slews can be accomplished by
either open-loop or closed-loop schemes. Open-loop schemes usually require a pre-determined
pointing maneuver and are typically determined using optimal control techniques, which involve
the solution of a two-point boundary value problem (e.g., the time optimal maneuver gjoblem

Also, open-loop schemes are sensitive to spacecraft parameter uncertainties and unexpected
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disturbance$. Closed-loop systems can account for parameter uncertainties and disturbances,

and thus provide a more robust design methodology.

In recent years, much effort has been devoted to the closed-loop design of spacecraft with
large angle slews. Wie and Batlerive a number of simple control schemes using quaternion
and angular velocity (rate) feedback. Asymptotic stability is shown by using a Lyapunov
function analysis for all cases. Tsioftaxpands upon these formulations by deriving simple
control laws based on both a Gibbs vector parameterization and a modified Rodrigues
parameterization, each with rate feedback (for a complete survey of attitude parameterizations
see Ref. [5]). Lyapunov functions are shown for all the controllers developed in Ref. [4] as well.
Other full state feedback techniques have been developed that are based on sliding mode
(variable structure) control, which uses a feedback linearizing technique and an additional term
aimed at dealing with model uncertaifityThis type of control has been successfully applied for
large angle maneuvers using a Gibbs vector parameteriZagi@uaternion parameterization,
and a modified Rodrigues parameterizaflo\nother robust control scheme using a nonlinear
H. control methodology has been developed by K&nghis scheme involves the solution of
Hamilton-Jacobi-Isaacs inequalities, which essentially determines feedback gains for the full
state feedback control problem so that the spacecraft is stabilized in the presence of uncertainties
and disturbances. Another class of controllers involves adaptive techniques, which update the
model during operation based on measured performances (e.g., see Ref. [6]). An adaptive
scheme which estimates external torques by tracking a Lyapunov function has been developed by
Schaub et. d* This method has been shown to be very robust in the presence of spacecraft

modeling errors and disturbances.

The aforementioned techniques all utilize full state knowledge (i.e., attitude and rate
feedback). The problem of controlling a spacecraft without full state feedback is more complex.
The basic approaches used to solve this problem can be divided into methods which estimate the
unmeasured states using a filter algorithm, or methods which develop control laws directly from
output feedback. Filtering methods, such as the extended Kalman filter, have been successfully
applied on numerous spacecraft systems without the use of rate-integrating gyro measurements
(e.g., see Refs. [12]-[14]). An advantage of these methods is that the attitude may be estimated

by using only one set of vector attitude observations (such as magnetometer observations).



However, these methods are usually much less accurate than methods which use gyro
measurements. A more direct technique has been developed by Lizarralde aftdwiveh,

solves the attitude problem without rate knowledge. This method is based on a passivity
approach, which replaces the rate feedback by a nonlinear filter of the quaternion. A model-based

filter reconstructing the angular velocity is not needed in this case.

In this paper, a new method for the control of large angle spacecraft maneuvers is presented.
This method is based on a nonlinear predictive controller for continuous systems with discrete
observations, developed by £u. The control law is based on the minimization of the norm-
squared local errors between the controlled variables and desired values. Also, an input-
constrained tracking problémis used for more realistic spacecraft applications. The nonlinear
predictive controller has been successfully applied on numerous systems, such as nonlinear
control of aircraft® Advantages of the new control scheme include: (i) the control law predicts
the torque input by tracking a one-time step ahead trajectory, (ii) the controller is very robust
with respect to spacecraft model uncertainties and disturbances, and (iii) the control scheme

produces unbiased control errors.

The organization of this paper proceeds as follows. First, a brief summary of the kinematics
and dynamics of a spacecraft is presented. Then, a brief overview of the nonlinear predictive
control theory with input constraints is shown. Next, a nonlinear predictive control scheme is
developed for the purpose of stabilizing a spacecraft with large angle maneuvers. Also, a
robustness study is shown for scalar multiplicative uncertainties in the inertia matrix. Finally,

simulation results are shown for the Microwave Anisotropy Probe (MAP) spacecratft.

Spacecraft Dynamics
In this section, a brief review of the kinematic and dynamic equations of motion for a three-

axis stabilized spacecraft is shown. The attitude is assumed to be represented by the quaternion,

defined as

o=

with
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wheren is a unit vector corresponding to the axis of rotation @nd the angle of rotation. The

guaternion kinematic equations of motion are derived by using the spacecraft’'s angular velocity
(w), given by
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whereQ(w) and=(q) are defined as
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where |« represents & x n identity matrix (also, @ will represent anx m zero matrix).

The 3x 3dimensional matricefw x] and[g13 X] are referred to as cross product matrices since

axb=[ax]b, with

0 —az a
[ax]=| a3 0 -& 5)
—ay q 0

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector,
the quaternion components cannot be independent.

This condition leads to the following
normalization constraint



qa'9=09/,q,.* ¢ =1 (6)

Also, the matrix=(q) obeys the following helpful relations

='(a)=(9)=9" alaxs (72)
=(a)="(a)= " alixg-ad’ (7b)
="(9)a= 0z (70)
=T(a)A=-="(A)q for anyA,y, (7d)

Also, the error quaternion of two quaterniogsandq, is defined by

%= {%3] =q0g " (8)

where the operatdrl denotes quaternion multiplication (see Ref. [3] for details), and the inverse
guaternion is defined by

~1_[_=~ ~ ~ =T

g =[-a -% -® 9)
Another useful identity is given by

%,,==(T)d (10

Also, if Equation (8) represents a small rotation tldep =1, and @13 corresponds to half-
angles of rotation.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft

are given by’

H=-wxH+u (11)
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where H is the total system angular momentumy,, is the total external torque (which
includes, control torques, aerodynamic drag torques, solar pressure torques, etc.). Also, the
angular velocity form of Euler’s equation can be used, given by

Jo=-wx(Jw)+u (12)

where J is the inertia matrix of the spacecraft, amds the total torque. Equations (8), (9), and

(12) can be used to show that rotational motion without nutation occurs only if the rotation is

about a principal axis of the rigid body (see Ref. [19] for detalils).

Nonlinear Predictive Control

Preliminaries
In this section, the nonlinear predictive control algorithm is summarized (see Ref. [16] for

more details). In the nonlinear predictive controller it is assumed that the system is modeled by
X(t)= 1 (X(1) + S A9) 4 (132)
(1) =¢(X1) (13b)
where f:R" - R" is sufficiently differentiable,x(t)OR" is the state vectory(t) ORY

represents the control-input vect@(x(t)):R" - R™9 is the control-input distribution matrix,

¢(x(1):R" -~ RMis the observation vector, aryft) OR™ is the output vector.

A Taylor series expansion of the output estimate in Equation (13b) is given by
Yt+a)= )+ A )AY9+ADY S K))_0) (14)

where the ™ element ofz( X(1),At) is given by

i AtK Kk
zi(z(t),At):Z—k! LF (G) (15)
k=1



wherep, 1 =12,...,m, is the lowest order of the derivative @f(g((t)) in which any component

of u(t) first appears due to successive differentiation and substitutio (fgron the right side.

L% (g) is ak™ order Lie derivative, defined by

L'}(q):q for k=0

a1 (16)
:—fd (q)f fork>1
X —

k
Lt (g)
A(At) OR™ ™M is a diagonal matrix with elements given by

P
Ai :A;—|, i=12,..m (17)

S(X ) DR™ Y is a matrix with each™ row given by

; ={L91[Lgi —1(q)],,_,, qu[ L -1(¢)]}, i=1,2,..,m (18)

where the Lie derivative with respect L%j in Equation (18) is defined by

ng[L'?i‘l(q)]s—qgj, j=12,..9 (19)

Equation (19) is in essence a generalized sensitivity matrix for nonlinear systems.
Nonlinear Control

A cost functional consisting of the weighted sum square of the desired-minus-actual residuals

plus the weighted sum square of the model correction term is minimized, given by
_1 T 17
J(y(t))—z_e(HAt) R¢ 'EI-A)+§_U() W )t (20)

where g(t+At) = J(t+At)- Y t+Af). The weighting matricesv JRY*9 and ROR™ ™ are

control-input and output-tracking weighting matrices, respectively. Af§o+At) represents



the desired output. Substituting Equation (14), and minimizing Equation (20) with respect to

u(t) leads to the following control input

-1
u(t)=~{[A@) S RA@Y $ ) W [A@IEEK [Riza)47(wb )+ ()] t@Y)
Equation (21) is used to perform a one-time step ahead control of the nonlinear system to the

desired value at time+ At .

The constrained-input case is defined by placing bounds on the control input, given by
L(xt)<sy(h)sU(xt), i=12,...,9 (22)

where Lj(x,t) and Uj(x,t) are given continuous functions of their arguments. Next, the

saturation function is defined by

Ui, u=2U
saf(u)=qu, L<y<y (23)
L, us<}

The unique optimal control is the solution of the following fixed-point equation (see Ref. [17] for

details)
g:p(g):sat{u S'A F{_@—_)z—[u( S\ R s )N ]_I}u (24)

where gA EE/(HAt)—_)(t), and all other arguments have been suppressed for clarity. The

variable u is defined by

-2

= ZZ[ST/\R/\S} IT (25)

i=1 =1

The fixed point iteration sequence is generate@'by: p(l_,lk_l), which typically converges in a

few iterations. Note that Equation (24) is not the same as Equation (21) with a saturation

mapping applied to the right hand side, unigdé RA St Whappens to be diagonal.



Spacecraft Predictive Control
In this section a nonlinear predictive controller is developed for spacecraft applications. The

output equation is assumed to be equivalent to the state equation, so that

X:l(:{g:| (26)

with state equations given by Equations (3) and (12). The lowest order derivativevbére u

first appears is 1, and the lowest order derivativej ofhere u first appears is 2. Therefore,

Equation (17) becomes (suppressing arguments for simplicity)

2
A= %[é?...'ﬂ_x_fu _____ 0&3} 27)

S(¥=(2." o (28)

It can also be shown that the matrix inverse in Equation (21) is constant by using the identity in

Equation (7a) and iR is given by
R:[ﬁq__'ﬁﬁf.é..._‘_’ﬂ%_%} (29)

where r; and r,, are scalars. This fact makes the control law particularly well suited for

computer implementation. Also, it is important to note that the control law in Equation (21) is
driven by both a quaternion and angular velodifference Differencing or adding quaternions

in any application is not usually desired, since the resulting quaternion may not have unit norm.
However, the correction for the quaternion is in actualityudtiplicative correction. This is due

to the structure of Equation (28) and from the identities in Equations (7d) and (10). For a more
complete discussion on additive and multiplicative quaternion corrections see Ref. [20]. The

vector z formed by using Equation (15) can be shown to be given by
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where

== {(@w)g+23(g) I wx] Jw} + %E(g)g) (31a)

z,,= -0t I wx] Jw (31b)

Note that thgw @)9 in Equation (31a) vanishes when used in Equation (21), due to the identity

in Equation (7c), if Equation (29) holds true.

Robustness
In this section, a robustness study is shown for scalar perturbations in the assumed inertia

matrix (i.e., assuming that the modeled inertia matrix perturbation is givex(tl))y, where

a(t) is a scalar, continuous function with bound given byo@t)<d). For simplicity the
regulation case is considered only, so thais the identity quaternion an@ =0 for t D[O,tf ]

Also, it is assumed that the control weighting matki)(is zero. Under these conditions and

perturbation, Euler’s equation in Equation (12) can be shown to be given by
@=(a-1)I [wx]Jw-ayw-aBq, (32)

where

4rq
B=—— (33a)
(At q +16rw)

2(At2rq + 8rw)

y = (33b)

At (At%rg +16r,,

Now, define a positive functiox = QTJC_O/Z . Using the norm inequalftyleads to
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V=-2ayV-afw'lq, 34
<-2ayv+aplo [|1a, -

Forrg=0,Vs g2at V(O), which decays to zero for arty. This means that forq =0 the

controller will always drive the angular velocity to zero. Fgr~ 0, using the well known

inequalityab< z& + @/(4 2 foranya, b, andz>0, and definingz = ay/ZH J"1H yields

2
Ve-2ayv+-3Y T+ 2P ‘1H (35)
-1
]
Next, use the following inequality
W' ws HJ"lﬂgT Jw (36)

Also, use the fact tha~t_]13H

is always bounded sind®<q; <1,i =1, 2 3 so that
Pa<ld S
The utilization of these expressions leads to

2
Vs-ayV+ %” J||2H J—1H (38)

Equation (38) cannot be integrated directly because of the time-dependence on the right hand

side, but a simple change of the independent variable t will eliminate a , leading to

V(1)< {v(o) —%” IF| J_l“] gavt +f_j2|| 7 Y (39)

Sincea andy are always positive, and using Equations (33) and (36), the following equation at

steady state is now given

2Atr
At M +8r,

Joosd s ———f|37 (40)
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Notice that Equation (40) is no longer a functionadt), and the angular velocity is always

-1
bounded. Also, the factof =2Atr, (Atzrq +8rw) has a maximum aft = /8ra,/rq sec. If

fw =g it is easy to see that the factor decreases rapidly hatoww/8 , and gradually decreases

aboveAt =+/8 (see Table 1). This is useful for determining a sampling interval which provides
robustness in the design.

Table 1 Sampling Interval and Robustness Factor

At f
0.01 0.0025
0.1 0.025

1 0.222
/8 0.354
10 0.185
100 0.020
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Attitude Tracking
The attitude-only tracking case is easily handled by the predictive controller. For this case the

gquantities in Equation (21) simply become

2
/\:A%|4><4 (41a)

2=z, (41b)
S(¥) = %z(_c) Jt (41c)

This is equivalent to setting, = 0 in Equation (29).

A linear analysis for this system can be performed assumingha®, and R= Iglaxa-

Euler’s equation for this closed-loop case reduces to
W=-—wW+——= (q )(_q (42)

where 2 = g(t+At). The linearized kinematic equations for small angle errors are derived in

Ref. [22]. Assuming tha’ET((’q_“A)gch_q13 to within first order, the linearized equations of

motion can be shown to be given by

—{wx] §|3x3
_X: ...... 4 ................... 2 ......... X (43)
_PI3X3 ‘A—|3><3
with
5_)(E|:@1§_:| (44)
-

The state matrix in Equation (43) can be easily shown to have stable eigenvalues for constant

This formulation will also be stable for large errors, but experience has shown that it produces
large control-input corrections. However, the attitude-only formulation works well when the

attitude errors are small, and may be used to ease the computational load.

13



Attitude Estimation of MAP
In this section, the predictive controller is used to control the attitude of the Microwave

Anisotropy Probe (MAP) spacecraft from quaternion observations and gyro measurements. The
spacecraft is due to be launched around the year 2000. The main objectives of the MAP mission
include: (1) to create a full-sky map of the cosmic microwave background and measure
anisotropy with 0.3 angular resolution, and (2) to answer fundamental cosmological questions
such as, inflationary versus non-inflationary “big bang” models, accurate determination of the

Hubble constant, and the existence and nature of dark matter.

The ideal orbit for the MAP spacecraft is about the Earth-Suragrange point, which is a
Lissajous orbit with approximately a 180-day period. Because of its distance, 1.5 million km
from Earth, this orbit affords great protection from the Earth's microwave emission, magnetic
fields, and other disturbances, with the dominant disturbance torque being solar radiation
pressure. It also provides for a very stable thermal environment and near 100% observing
efficiency, since the Sun, Earth, and Moon are always behind the instrument's field of view. In
this orbit MAP sees a Sun/Earth angle between 2 and 10 degrees. The instrument scans an
annulus in the hemisphere away from the Sun, so the universe is scanned twice as the Earth

revolves once around the sun.

The spacecraft orbit and attitude specifications are shown in Figure 1. To provide the scan
pattern, the spacecraft spins about the z-axis at 0.464 rpm, and the z-axis cones about the Sun-
line at 1 rev/hour. A 22%50.25 angle between the z-axis and the Sun direction must be
maintained to provide a constant power input, and to provide constant temperatures for alignment
stability and science quality. The instrument pointing knowledge is 1.8 arca)innfiich is not

required for onboard or real-time implementation.

The attitude determination hardware consists of a Digital Sun Sensor (DSS), Coarse Sun
Sensors (CSS’s), a star tracker, and gyroscopic rate sensors. The DSS is facing in the plus z
(nominal Sun) direction. The star tracker boresight is to be pointed perpendicular to the spin
axis, and 22.5and 157.5 from the instrument apertures. The attitude control hardware includes

a Reaction Wheel Assembly (RWA), which consists of three wheels oriented at a common angle
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to the spin axis, and distributed equally in azimuth about the spin axis. Also, the wheels torques

saturate at 0.1 N-m each.

The spacecraft's attitude is defined by a 3-1-3 Euler angle rotation relative to a rotating, Sun-

referenced frame. The three Euler angles?k\,reé, and , and the desired states for observing

mode are
2=1" = 00017482¢ (45a)
hr sec
6=225=Q03927rad (45b)
i = 0.464 rpm= 0.0485% (45¢)

The desired Euler angles f@vand ( are determined by integrating the Euler rates. A&ds

set to zero. The commanded quaternion is determined using

g = sir(g] co{a_?[ﬁ (46a)

. (6) . {o-0@
= sin — |si —— 46b
02 "{2 "( 2 (46b)
~ 6) . g~o+4l7
=C0$ — |Si 46¢
03 {2 r{ > (46¢)
~ o) [o+@
=co$ — |co 46d
O4 { 2 { 2 ] (46d)
The kinematic equation that transforms the commanded Euler rates to the commanded body rates
is given by
sindsingy cosf O @
@=|sinfcos -sinf 0|6 47)
cosd 0 1|y
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The proposed (on-board) control law is based on a quaternion feedback law derived by Wie

and Barbd,given by
u=-kp="(37) o Hy(w-B)=- k3 gy~ kw-5) (48)

Also, the problem of re-orientating a rigid spacecraft with control constraints has been
executed using cascade-saturation control logic (see Ref. [23] for details). Linearized equations

of motion can also be derived using the quaternion feedback (QF) control scheme shown in Ref.

[3], given by
5= 197 5leals (49)
_kp J_l Ao
where
Pop = I H{@x] 3+[ oox]} -ty T (50)

It can be easily shown that this system is unstablg i 0. Therefore, attitude-only tracking

cannot be implemented using this scheme.

A number of simulation studies have been performed comparing the quaternion feedback
scheme with the predictive controller. The initial conditions for the simulations are set to zero
for both the attitude and rate terms. For the predictive filter two cases are used. The first one
uses the basic control law shown in Equation (21) with a saturator applied to the right hand side
for enforcement of the control bounds (i.e., a non-optimal solution). The second case solves the
constrained predictive control problem using the iterative technique given by Equation (24). The
two cases are in fact equivalent if the assumed inertia matrix is diagonal. However, significant
differences arise even for small off-diagonal quantities. This is shown in Figure 2, where the
angle of axis rotation error corresponds to the afgile Equation (2) using the error quaternion.
Clearly, using the iterative scheme produces better performance. This is also shown for the
control input comparison in Figure 3. The iterative control scheme requires less switches and

control effort than constraining the control output directly.
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The next simulation study involves a comparison between the optimal predictive filter and an
optimal quaternion feedback scheme. Gains for the quaternion feedback controller were found
by minimizing a quadratic cost function, similar to a linear-quadratic cost function. Also, 5%
errors were introduced in the assumed inertia matrix. A comparison plot of the quaternion
feedback and predictive controller eigenaxis-rotation angle error is shown in Figure 4. Clearly,
the predictive filter outperforms the quaternion feedback controller. Also, the steady-state errors
are reduced significantly with the predictive filter. The quaternion feedback case produces a
steady-state pitch error of approximately 0.0This error can only be reduced slightly by using
integral control. It can be further reduced by using a feedforward acceleration term. This
essentially determines an added torque to reduce the steady-state error. However, this method

can be sensitive to modeling errors in the inertia matrix. The predictive controller produced a

steady-state error that is significantly lowetg{=1x 10 deg) than the quaternion feedback

controller. Also, the predictive controller requires less torque to achieve this performance, as
seen in Figure 5. A plot of the predictive controller phase error portrait is shown in Figure 6.
Finally, a plot of the predictive filter with quaternion-tracking for a relatively small initial error is
shown in Figure 7. This clearly shows that a quaternion-tracking predictive controller can

stabilize a spacecratft.

The next simulation case shows comparative results for disturbance rejection. The dominant

source of disturbance for MAP is solar radiation pressure torque. The instantaneous magnitude

of this torque is approximatelyxl TON-m. The spacecraft symmetry and spin will decrease

the long-term average. For simulation purposes a magnitude 10 times greater than the
approximate value is used. The geometric figure of the spacecraft is assumed to be a plane.
Force and torque equations for this simple geometric figure are shown in Ref. [24]. A plot of the
tracking errors with a solar pressure disturbance is shown in Figure 8. Clearly, the predictive
controller is able to reject disturbance torques more effectively than the quaternion feedback

controller.

Conclusions
In this paper, a new approach for the control of a spacecraft with large angle maneuvers was

presented. The new approach was developed using a model-based strategy to predict control
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torques, so that a continuous minimization of the tracking errors is achieved. Formulations were
presented which use either attitude and rate tracking or attitude tracking solely. Also, the
robustness of the new controller for errors in the assumed inertia matrix was shown. Next, a
simulation study was shown comparing the new controller with a more traditional proportional-
derivative type controller for the Microwave Anisotropy Probe spacecraft. Results indicate that
the predictive controller converges to the desired values faster than the traditional controller, and

provides nearly unbiased tracking errors.
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Fig. 1 MAP Spacecraft Specifications
Fig. 2 Optimal and Non-Optimal Predictive Control
Fig. 3 Optimal and Non-Optimal Predictive Control
Fig. 4 Quaternion and Optimal Predictive Control
Fig. 5 Quaternion and Optimal Predictive Control
Fig. 6 Phase Portrait Plot
Fig. 7 Quaternion-Tracking Predictive Control

Fig. 8 Disturbance Rejection Comparison
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