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Abstract.

A new approach for the control of a spacecraft with large angle maneuvers is presented.  This

new approach is based on a nonlinear predictive control scheme which determines the required

torque input so that the predicted responses match the desired trajectories.  This is accomplished

by minimizing the norm-squared local errors between the predicted and desired quantities.

Formulations are presented which use either attitude and rate tracking or attitude-tracking alone.

The robustness of the new controller with respect to large system uncertainties is also

demonstrated.  Finally, simulation results are shown which use the new control strategy to

stabilize the motion of the Microwave Anisotropy Probe spacecraft.

Introduction
The control of spacecraft for large angle slewing maneuvers poses a difficult problem.  Some

of these difficulties include: the highly nonlinear characteristics of the governing equations,

control rate and saturation constraints and limits, and incomplete state knowledge due to sensor

failure or omission.  The control of spacecraft with large angle slews can be accomplished by

either open-loop or closed-loop schemes.  Open-loop schemes usually require a pre-determined

pointing maneuver and are typically determined using optimal control techniques, which involve

the solution of a two-point boundary value problem (e.g., the time optimal maneuver problem1).

Also, open-loop schemes are sensitive to spacecraft parameter uncertainties and unexpected
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disturbances.2  Closed-loop systems can account for parameter uncertainties and disturbances,

and thus provide a more robust design methodology.

In recent years, much effort has been devoted to the closed-loop design of spacecraft with

large angle slews.  Wie and Barba3 derive a number of simple control schemes using quaternion

and angular velocity (rate) feedback.  Asymptotic stability is shown by using a Lyapunov

function analysis for all cases.  Tsiotras4 expands upon these formulations by deriving simple

control laws based on both a Gibbs vector parameterization and a modified Rodrigues

parameterization, each with rate feedback (for a complete survey of attitude parameterizations

see Ref. [5]).  Lyapunov functions are shown for all the controllers developed in Ref. [4] as well.

Other full state feedback techniques have been developed that are based on sliding mode

(variable structure) control, which uses a feedback linearizing technique and an additional term

aimed at dealing with model uncertainty.6  This type of control has been successfully applied for

large angle maneuvers using a Gibbs vector parameterization,7 a quaternion parameterization,8

and a modified Rodrigues parameterization.9  Another robust control scheme using a nonlinear

H∞ control methodology has been developed by Kang.10  This scheme involves the solution of

Hamilton-Jacobi-Isaacs inequalities, which essentially determines feedback gains for the full

state feedback control problem so that the spacecraft is stabilized in the presence of uncertainties

and disturbances.  Another class of controllers involves adaptive techniques, which update the

model during operation based on measured performances (e.g., see Ref. [6]).  An adaptive

scheme which estimates external torques by tracking a Lyapunov function has been developed by

Schaub et. al.11  This method has been shown to be very robust in the presence of spacecraft

modeling errors and disturbances.

The aforementioned techniques all utilize full state knowledge (i.e., attitude and rate

feedback).  The problem of controlling a spacecraft without full state feedback is more complex.

The basic approaches used to solve this problem can be divided into methods which estimate the

unmeasured states using a filter algorithm, or methods which develop control laws directly from

output feedback.  Filtering methods, such as the extended Kalman filter, have been successfully

applied on numerous spacecraft systems without the use of rate-integrating gyro measurements

(e.g., see Refs. [12]-[14]).  An advantage of these methods is that the attitude may be estimated

by using only one set of vector attitude observations (such as magnetometer observations).
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However, these methods are usually much less accurate than methods which use gyro

measurements.  A more direct technique has been developed by Lizarralde and Wen,15 which

solves the attitude problem without rate knowledge.  This method is based on a passivity

approach, which replaces the rate feedback by a nonlinear filter of the quaternion. A model-based

filter reconstructing the angular velocity is not needed in this case.

In this paper, a new method for the control of large angle spacecraft maneuvers is presented.

This method is based on a nonlinear predictive controller for continuous systems with discrete

observations, developed by Lu.16  The control law is based on the minimization of the norm-

squared local errors between the controlled variables and desired values.  Also, an input-

constrained tracking problem17 is used for more realistic spacecraft applications.  The nonlinear

predictive controller has been successfully applied on numerous systems, such as nonlinear

control of aircraft.18  Advantages of the new control scheme include: (i) the control law predicts

the torque input by tracking a one-time step ahead trajectory, (ii) the controller is very robust

with respect to spacecraft model uncertainties and disturbances, and (iii) the control scheme

produces unbiased control errors.

The organization of this paper proceeds as follows.  First, a brief summary of the kinematics

and dynamics of a spacecraft is presented.  Then, a brief overview of the nonlinear predictive

control theory with input constraints is shown.  Next, a nonlinear predictive control scheme is

developed for the purpose of stabilizing a spacecraft with large angle maneuvers. Also, a

robustness study is shown for scalar multiplicative uncertainties in the inertia matrix.  Finally,

simulation results are shown for the Microwave Anisotropy Probe (MAP) spacecraft.

Spacecraft Dynamics
In this section, a brief review of the kinematic and dynamic equations of motion for a three-

axis stabilized spacecraft is shown.  The attitude is assumed to be represented by the quaternion,

defined as

q
q

q
≡
�
��
�
��

13

4
(1)
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where �n  is a unit vector corresponding to the axis of rotation and θ  is the angle of rotation.  The

quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity

(ω ), given by

�q q q= =1

2

1

2
Ω Ξω ω� � 	 
 (3)

where Ω ω� �  and Ξ q	 
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where In n×  represents a n n×  identity matrix (also, 0n m×  will represent a n m×  zero matrix).

The 3 3×  dimensional matrices ω ×  and q
13

×  are referred to as cross product matrices since

a b a b× = × , with

a

a a

a a

a a

× ≡
−

−
−

�

�

�
�
�

�

�

�
�
�

0

0

0

3 2

3 1

2 1

(5)

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector,

the quaternion components cannot be independent.  This condition leads to the following

normalization constraint
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q q q q qT T= + =
13 13 4

2 1 (6)

Also, the matrix Ξ q	 
  obeys the following helpful relations

Ξ ΞT Tq q q q I	 
 	 
 = ×3 3 (7a)

Ξ Ξq q q q I q qT T T	 
 	 
 = −×4 4 (7b)

ΞT q q	 
 = ×03 1 (7c)

Ξ ΞT Tq q	 
 � �λ λ λ= − ×for any 4 1 (7d)

Also, the error quaternion of two quaternions, q  and ~q , is defined by

δ
δ

δ
q

q

q
q q≡

�
�
�
�

�
�
�
�

= ⊗ −13

4

1~ (8)

where the operator ⊗  denotes quaternion multiplication (see Ref. [3] for details), and the inverse

quaternion is defined by

~ ~ ~ ~ ~q q q q q T− = − − −1
1 2 3 4 (9)

Another useful identity is given by

δq q qT
13

1= −Ξ ~� � (10)

Also, if Equation (8) represents a small rotation then δq4 1≈ , and δq
13

 corresponds to half-

angles of rotation.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft

are given by19

�H H u= − × +ω ext (11)
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where H  is the total system angular momentum, uext  is the total external torque (which

includes, control torques, aerodynamic drag torques, solar pressure torques, etc.).  Also, the

angular velocity form of Euler’s equation can be used, given by

J J u�ω ω ω= − × +� � (12)

where J  is the inertia matrix of the spacecraft, and u  is the total torque.   Equations (8), (9), and

(12) can be used to show that rotational motion without nutation occurs only if the rotation is

about a principal axis of the rigid body (see Ref. [19] for details).

Nonlinear Predictive Control
Preliminaries

In this section, the nonlinear predictive control algorithm is summarized (see Ref. [16] for

more details).  In the nonlinear predictive controller it is assumed that the system is modeled by

�x t f x t G x t u t� � � �
 � � �
 � � �= + (13a)

y t c x t� � � �
 �= (13b)

where f n n:R R→  is sufficiently differentiable, x t n� �∈R  is the state vector, u t q� �∈R

represents the control-input vector, G x t n n q� �
 �:R R→ ×  is the control-input distribution matrix,

c x t n m� �
 �:R R→  is the observation vector, and y t m� �∈R  is the output vector.

A Taylor series expansion of the output estimate in Equation (13b) is given by

y t t y t z x t t t S x t u t+ ≈ + +∆ ∆ Λ ∆� � � � � �
 � � � � �
 � � �, (14)

where the i th  element of z x t t� �
 �,∆  is given by

z x t t
t

k
L ci

k

f
k

i

k

pi

� �
 � � �,
!

∆ ∆=
=

∑
1

(15)
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where pi , i m= 1 2, , ,� , is the lowest order of the derivative of c x ti � �
 �  in which any component

of u t� �  first appears due to successive differentiation and substitution for �x ti � �  on the right side.

L cf
k

i� �  is a k th  order Lie derivative, defined by

L c c k

L c
L c

x
f k

f
k

i i

f
k

i
f
k

i

� �

� � � �
= =

= ≥
−

for

for

0

1
1∂

∂

(16)

Λ ∆t m m� �∈ ×R  is a diagonal matrix with elements given by

λ ii

p

i

t

p
i m

i

= =∆
!

, , , ,1 2� (17)

S x t m q� �
 �∈ ×R  is a matrix with each i th  row given by

s L L c L L c i mi g f
p

i g f
p

i
i

q
i= =− −

1

1 1 1 2� � � �� �, , , , , ,� � (18)

where the Lie derivative with respect to Lgj
 in Equation (18) is defined by

L L c
L c

x
g j qg f

p
i

f
p

i
jj

i

i
−

−

≡ =1
1

1 2� �
� �∂

∂
, , , ,� (19)

Equation (19) is in essence a generalized sensitivity matrix for nonlinear systems.

Nonlinear Control

A cost functional consisting of the weighted sum square of the desired-minus-actual residuals

plus the weighted sum square of the model correction term is minimized, given by

J u t e t t R e t t u t W u tT T� �
 � � � � � � � � �= + + +1

2

1

2
∆ ∆ (20)

where e t t y t t y t t+ = + − +∆ ∆ ∆� � � � � �~ .  The weighting matrices W q q∈ ×R  and R m m∈ ×R  are

control-input and output-tracking weighting matrices, respectively.  Also, ~y t t+ ∆� �  represents
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the desired output.  Substituting Equation (14), and minimizing Equation (20) with respect to

u t� �  leads to the following control input

u t t S x R t S x W t S x R z x t y t t y t
T T� � � � � � � � � �� � � � � � � � � � � �= − + − + +

−
Λ ∆ Λ ∆ Λ ∆ ∆ ∆

1
, ~ (21)

Equation (21) is used to perform a one-time step ahead control of the nonlinear system to the

desired value at time t t+ ∆ .

The constrained-input case is defined by placing bounds on the control input, given by

L x t u t U x t i qi i i, , , , , ,� � � � � �≤ ≤ = 1 2� (22)

where L x ti ,� �  and U x ti ,� �  are given continuous functions of their arguments.  Next, the

saturation function is defined by

sati

i i i

i i i i

i i i

u

U u U

u L u U

L u L

� � =
≥
< <
≤

�
��

��

,

,

,

(23)

The unique optimal control is the solution of the following fixed-point equation (see Ref. [17] for

details)

u u S R e z S R S W I uT T= = − − + −ρ µ µ� � � � � �� �sat Λ Λ Λ∆ (24)

where e y t t y t∆ ∆≡ + −~� � � � , and all other arguments have been suppressed for clarity.  The

variable µ  is defined by

µ = +
�
��

��

�
��

��==

−

∑∑ S R S WT

ij
j

q

i

q

Λ Λ
2

11

1 2

(25)

The fixed point iteration sequence is generated by u uk k= −ρ 1� � , which typically converges in a

few iterations.  Note that Equation (24) is not the same as Equation (21) with a saturation

mapping applied to the right hand side, unless S R S WTΛ Λ +  happens to be diagonal.
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Spacecraft Predictive Control
In this section a nonlinear predictive controller is developed for spacecraft applications. The

output equation is assumed to be equivalent to the state equation, so that

y x
q

= =
�
��
�
��ω

(26)

with state equations given by Equations (3) and (12). The lowest order derivative of ω  where u

first appears is 1, and the lowest order derivative of q  where u  first appears is 2.  Therefore,

Equation (17) becomes (suppressing arguments for simplicity)

Λ ∆
∆

=
�
�
��

�
�
��

× ×

× ×

1

2
0

0 2

2
4 4 4 3

3 4 3 3

t I

t I
(27)

Using Equation (18) the S x� �  matrix can be shown to be

S x
q J

J
� � 	 
=

�

�
�
�
�

�

�
�
�
�

−

−

1

2
1

1

Ξ
(28)

It can also be shown that the matrix inverse in Equation (21) is constant by using the identity in

Equation (7a) and if R is given by

R
r I

r I
q=
�
��

�
��

× ×

× ×

4 4 4 3

3 4 3 3

0

0 ω
(29)

where rq  and rω  are scalars.  This fact makes the control law particularly well suited for

computer implementation.  Also, it is important to note that the control law in Equation (21) is

driven by both a quaternion and angular velocity difference.  Differencing or adding quaternions

in any application is not usually desired, since the resulting quaternion may not have unit norm.

However, the correction for the quaternion is in actuality a multiplicative correction.  This is due

to the structure of Equation (28) and from the identities in Equations (7d) and (10).  For a more

complete discussion on additive and multiplicative quaternion corrections see Ref. [20].  The

vector z formed by using Equation (15) can be shown to be given by
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z
z

z
q=
�
��
�
��ω

(30)

where

z
t

q q J J
t

qq = − ⋅ + × +−∆ Ξ ∆ Ξ
2

1

8
2

2
ω ω ω ω ω� � 	 
� � 	 
 (31a)

z t J Jω ω ω= − ×−∆ 1 (31b)

Note that the ω ω⋅� �q  in Equation (31a) vanishes when used in Equation (21), due to the identity

in Equation (7c), if Equation (29) holds true.

Robustness

In this section, a robustness study is shown for scalar perturbations in the assumed inertia

matrix (i.e., assuming that the modeled inertia matrix perturbation  is given by α t J� � , where

α t� �  is a scalar, continuous function with bound given by 0< <α δt� � ).  For simplicity the

regulation case is considered only, so that ~q  is the identity quaternion and ~ω = 0 for t t f∈ 0, .

Also, it is assumed that the control weighting matrix (W ) is zero.  Under these conditions and

perturbation, Euler’s equation in Equation (12) can be shown to be given by

�ω α ω ω α γ ω α β= − × − −−1 1
13� � J J q (32)

where

β
ω

=
+

4

162

r

t r r

q

q∆� �
(33a)

γ
ω

ω
=

+

+

2 8

16

2

2

∆

∆ ∆

t r r

t t r r

q

q

� �
� �

(33b)

Now, define a positive function V JT= ω ω 2 .  Using the norm inequality21 leads to
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�V V J q

V J q

T= − −

≤ − +

2

2

13

13

α γ α β ω

α γ α β ω
(34)

For rq = 0, V e Vt≤ −2 0α γ � � , which decays to zero for any α .  This means that for rq = 0 the

controller will always drive the angular velocity to zero.  For rq ≠ 0, using the well known

inequality ab z a b z≤ +2 2 4� �  for any a , b , and z> 0 , and defining z J= −α γ 2 1  yields

�V V
J

J q JT≤ − + +
−

−2
2 21

2

13

2 1α γ α γ ω ω α β
γ

(35)

Next, use the following inequality

ω ω ω ωT TJ J≤ −1 (36)

Also, use the fact that q
13

 is always bounded since 0 1 1 2 3≤ ≤ =q ii , , , , so that

J q J
13

≤ (37)

The utilization of these expressions leads to

�V V J J≤ − + −α γ α β
γ

2
2 1

2
(38)

Equation (38) cannot be integrated directly because of the time-dependence on the right hand

side, but a simple change of the independent variable τ α= t  will eliminate α , leading to

V t V J J e J Jt� � � �≤ −
�
�
�
�

�
�
�
�

+− − −0
2 2

2

2
2 1

2

2
2 1β

γ
β
γ

α γ (39)

Since α  and γ  are always positive, and using Equations (33) and (36), the following equation at

steady state is now given

ω
ω

ss
q

q

t r

t r r
J J≤

+
−2

82
1∆

∆
(40)
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Notice that Equation (40) is no longer a function of α t� � , and the angular velocity is always

bounded.  Also, the factor f t r t r rq q= +
−

2 82 1
∆ ∆ ω� �  has a maximum at ∆t r rq= 8 ω  sec.  If

r rqω =  it is easy to see that the factor decreases rapidly below ∆t = 8 , and gradually decreases

above ∆t = 8  (see Table 1).  This is useful for determining a sampling interval which provides

robustness in the design.

Table 1  Sampling Interval and Robustness Factor

∆t f

0.01 0.0025
0.1 0.025
1 0.222

8 0.354

10 0.185
100 0.020
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Attitude Tracking

The attitude-only tracking case is easily handled by the predictive controller. For this case the

quantities in Equation (21) simply become

Λ ∆= ×
t

I
2

4 42
(41a)

z zq= (41b)

S x q J� � 	 
= −1

2
1Ξ (41c)

This is equivalent to setting rω = 0  in Equation (29).

A linear analysis for this system can be performed assuming that W = 0 , and R r Iq= ×4 4 .

Euler’s equation for this closed-loop case reduces to

� ~ω ω= − +2 4
2∆ ∆

Ξ ∆
t t

q qT � � (42)

where ~ ~q q t t∆ ∆≡ +� � .  The linearized kinematic equations for small angle errors are derived in

Ref. [22].  Assuming that Ξ ∆T q q q~� � ≈ δ
13

 to within first order, the linearized equations of

motion can be shown to be given by

δ
ω

δ�

~

x
I

t
I

t
I

x=
− ×

− −

�

�

�
�
�

�

�

�
�
�

×

× ×

1

2
4 2

3 3

2 3 3 3 3
∆ ∆

(43)

with

δ
δ

ω ω
x

q
≡

−
�
��

�
��

13
~ (44)

The state matrix in Equation (43) can be easily shown to have stable eigenvalues for constant ~ω .

This formulation will also be stable for large errors, but experience has shown that it produces

large control-input corrections.  However, the attitude-only formulation works well when the

attitude errors are small, and may be used to ease the computational load.
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Attitude Estimation of MAP
In this section, the predictive controller is used to control the attitude of the Microwave

Anisotropy Probe (MAP) spacecraft from quaternion observations and gyro measurements.  The

spacecraft is due to be launched around the year 2000.  The main objectives of the MAP mission

include: (1) to create a full-sky map of the cosmic microwave background and measure

anisotropy with 0.3° angular resolution, and (2) to answer fundamental cosmological questions

such as, inflationary versus non-inflationary “big bang” models, accurate determination of the

Hubble constant, and the existence and nature of dark matter.

The ideal orbit for the MAP spacecraft is about the Earth-Sun L2 Lagrange point, which is a

Lissajous orbit with approximately a 180-day period.  Because of its distance, 1.5 million km

from Earth, this orbit affords great protection from the Earth's microwave emission, magnetic

fields, and other disturbances, with the dominant disturbance torque being solar radiation

pressure.  It also provides for a very stable thermal environment and near 100% observing

efficiency, since the Sun, Earth, and Moon are always behind the instrument's field of view.  In

this orbit MAP sees a Sun/Earth angle between 2 and 10 degrees.  The instrument scans an

annulus in the hemisphere away from the Sun, so the universe is scanned twice as the Earth

revolves once around the sun.

The spacecraft orbit and attitude specifications are shown in Figure 1.  To provide the scan

pattern, the spacecraft spins about the z-axis at 0.464 rpm, and the z-axis cones about the Sun-

line at 1 rev/hour.  A 22.5°±0.25° angle between the z-axis and the Sun direction must be

maintained to provide a constant power input, and to provide constant temperatures for alignment

stability and science quality.  The instrument pointing knowledge is 1.8 arcmin (1σ), which is not

required for onboard or real-time implementation.

The attitude determination hardware consists of a Digital Sun Sensor (DSS), Coarse Sun

Sensors (CSS’s), a star tracker, and gyroscopic rate sensors.  The DSS is facing in the plus z

(nominal Sun) direction.  The star tracker boresight is to be pointed perpendicular to the spin

axis, and 22.5° and 157.5° from the instrument apertures.  The attitude control hardware includes

a Reaction Wheel Assembly (RWA), which consists of three wheels oriented at a common angle
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to the spin axis, and distributed equally in azimuth about the spin axis.  Also, the wheels torques

saturate at 0.1 N-m each.

The spacecraft's attitude is defined by a 3-1-3 Euler angle rotation relative to a rotating, Sun-

referenced frame. The three Euler angles are 
~φ , 

~θ , and ~ψ , and the desired states for observing

mode are

~� .
sec

φ = =1 0 001745
rev

hr

rad
(45a)

~
. .θ = °=22 5 0 3927rad (45b)

~� .ψ = =0 464 rpm 0.04859
rad

sec
(45c)

The desired Euler angles for 
~φ and ~ψ  are determined by integrating the Euler rates. Also, 

~�θ  is

set to zero.  The commanded quaternion is determined using

~ sin
~

cos
~ ~

q1 2 2
=
�
��
�
��

−�
��

�
��

θ φ ψ
(46a)

~ sin
~

sin
~ ~

q2 2 2
=
�
��
�
��

−�
��

�
��

θ φ ψ
(46b)

~ cos
~

sin
~ ~

q3 2 2
=

�
��
�
��

+�
��

�
��

θ φ ψ
(46c)

~ cos
~

cos
~ ~

q4 2 2
=

�
��
�
��

+�
��

�
��

θ φ ψ
(46d)

The kinematic equation that transforms the commanded Euler rates to the commanded body rates

is given by

~
sin

~
sin~ cos~

sin
~

cos~ sin~

cos
~

~�

~�

~�
ω

θ ψ ψ
θ ψ ψ

θ

φ
θ
ψ

= −
�

�

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

0

0

0 1

(47)
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The proposed (on-board) control law is based on a quaternion feedback law derived by Wie

and Barba,3 given by

u k q q k k q kp
T

d p d= − − − = − − −−Ξ ~ ~ ~1
13� � � � � �ω ω δ ω ω (48)

Also, the problem of re-orientating a rigid spacecraft with control constraints has been

executed using cascade-saturation control logic (see Ref. [23] for details).  Linearized equations

of motion can also be derived using the quaternion feedback (QF) control scheme shown in Ref.

[3], given by

δ
ω

δ�

~
x

I

k J A
x

p

=
− ×

−

�

�
�
�
�

�

�
�
�
�

×
−

1

2 3 3

1
22

(49)

where

A J J J k Jd22
1 1= − × + × −− −~ ~ω ω� � (50)

It can be easily shown that this system is unstable if kd = 0 .  Therefore, attitude-only tracking

cannot be implemented using this scheme.

A number of simulation studies have been performed comparing the quaternion feedback

scheme with the predictive controller.  The initial conditions for the simulations are set to zero

for both the attitude and rate terms.  For the predictive filter two cases are used.  The first one

uses the basic control law shown in Equation (21) with a saturator applied to the right hand side

for enforcement of the control bounds (i.e., a non-optimal solution).  The second case solves the

constrained predictive control problem using the iterative technique given by Equation (24).  The

two cases are in fact equivalent if the assumed inertia matrix is diagonal.  However, significant

differences arise even for small off-diagonal quantities.  This is shown in Figure 2, where the

angle of axis rotation error corresponds to the angle θ  in Equation (2) using the error quaternion.

Clearly, using the iterative scheme produces better performance.  This is also shown for the

control input comparison in Figure 3.  The iterative control scheme requires less switches and

control effort than constraining the control output directly.
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The next simulation study involves a comparison between the optimal predictive filter and an

optimal quaternion feedback scheme.  Gains for the quaternion feedback controller were found

by minimizing a quadratic cost function, similar to a linear-quadratic cost function.  Also, 5%

errors were introduced in the assumed inertia matrix.  A comparison plot of the quaternion

feedback and predictive controller eigenaxis-rotation angle error is shown in Figure 4.  Clearly,

the predictive filter outperforms the quaternion feedback controller.  Also, the steady-state errors

are reduced significantly with the predictive filter.  The quaternion feedback case produces a

steady-state pitch error of approximately 0.01°.  This error can only be reduced slightly by using

integral control.  It can be further reduced by using a feedforward acceleration term.  This

essentially determines an added torque to reduce the steady-state error.  However, this method

can be sensitive to modeling errors in the inertia matrix.  The predictive controller produced a

steady-state error that is significantly lower (θ ss ≈ × −1 10 4  deg) than the quaternion feedback

controller.  Also, the predictive controller requires less torque to achieve this performance, as

seen in Figure 5.  A plot of the predictive controller phase error portrait is shown in Figure 6.

Finally, a plot of the predictive filter with quaternion-tracking for a relatively small initial error is

shown in Figure 7.  This clearly shows that a quaternion-tracking predictive controller can

stabilize a spacecraft.

The next simulation case shows comparative results for disturbance rejection.  The dominant

source of disturbance for MAP is solar radiation pressure torque.  The instantaneous magnitude

of this torque is approximately 1 105× −  N-m.  The spacecraft symmetry and spin will decrease

the long-term average.  For simulation purposes a magnitude 10 times greater than the

approximate value is used.  The geometric figure of the spacecraft is assumed to be a plane.

Force and torque equations for this simple geometric figure are shown in Ref. [24].  A plot of the

tracking errors with a solar pressure disturbance is shown in Figure 8.  Clearly, the predictive

controller is able to reject disturbance torques more effectively than the quaternion feedback

controller.

Conclusions
In this paper, a new approach for the control of a spacecraft with large angle maneuvers was

presented.  The new approach was developed using a model-based strategy to predict control
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torques, so that a continuous minimization of the tracking errors is achieved.  Formulations were

presented which use either attitude and rate tracking or attitude tracking solely.  Also, the

robustness of the new controller for errors in the assumed inertia matrix was shown.  Next, a

simulation study was shown comparing the new controller with a more traditional proportional-

derivative type controller for the Microwave Anisotropy Probe spacecraft.  Results indicate that

the predictive controller converges to the desired values faster than the traditional controller, and

provides nearly unbiased tracking errors.

Acknowledgments
The first author’s work was partially supported by a National Research Council Postdoctoral

Fellowship tenured at NASA-Goddard Space Flight Center.  The author greatly appreciates this

support.  Also, the author wishes to thank Dr. Ping Lu of Iowa State University and Dr.

Panagiotis Tsiotras of the University of Virginia for many interesting and helpful discussions.

References
1Scrivener, S.L., and Thompson, R.C., “Survey of Time-Optimal Attitude Maneuvers,” Journal

of Guidance, Control and Dynamics, Vol. 17, No. 2, March-April 1994, pp. 225-233.

2Vadali, S.R., and Junkins, J.L., “Optimal Open-Loop and Stable Feedback Control of Rigid

Spacecraft Maneuvers,” The Journal of the Astronautical Sciences, Vol. 32, No. 2, April-June

1984, pp. 105-122.

3Wie, B., and Barba, P.M., “Quaternion Feedback for Spacecraft Large Angle Maneuvers,”

Journal of Guidance, Vol. 8, No. 3, May-June 1985, pp. 360-365.

4Tsiotras, P., “Stabilization and Optimality Results for the Attitude Control Problem,” Journal of

Guidance, Control and Dynamics, Vol. 19, No. 4, July-Aug, 1996, pp. 772-779.

5Shuster, M.D., “A Survey of Attitude Representations,” The Journal of the Astronautical

Sciences, Vol. 41, No. 4, Oct.-Dec. 1993, pp. 439-517.

6Slotine, J.J.E.,  and Li, W.,  Applied Nonlinear Control, Prentice Hall, NJ, 1991.



19

7Ramirez, H.S., and Dwyer, T.A.W., “Variable Structure Control of Spacecraft Reorientation

Maneuvers,” Proceedings of AIAA Guidance, Navigation, and Control Conference,

Williamsburg, VA, Aug. 1986, AIAA Paper #86-1987, pp. 88-96.

8Vadali, S.R., “Variable Structure Control of Spacecraft Large Angle Maneuvers,” Journal of

Guidance, Control and Dynamics, Vol. 9, No. 2, March-April 1986, pp. 235-239.

9Crassidis, J.L., and Markley, F.L., “Sliding Mode Control Using Modified Rodrigues

Parameters,” Journal of Guidance, Control and Dynamics, Vol. 19, No. 6, Nov.-Dec. 1996, pp.

1381-1383.

10Kang, W., “Nonlinear H∞ Control and Its Application to Rigid Spacecraft,” IEEE Transactions

on Automatic Control, Vol. 40, No. 7, July 1995, pp. 1281-1285.

11Schaub, H., Junkins, J.L., and Robinett, R.D., “Adaptive External Torque Estimation By Means

of Tracking a Lyapunov Function,” AAS/AIAA Space Flight Mechanics Meeting, Austin, TX,

Feb. 1996, AAS Paper #96-172.

12Chu, D., and Harvie, E., “Accuracy of the ERBS Definitive Attitude Determination System in

the Presence of Propagation Noise,” Proceedings of the Flight Mechanics/Estimation Theory

Symposium, NASA-Goddard Space Flight Center, Greenbelt, MD, 1990, pp. 97-114.

13Challa, M.S., Natanson, G.A., Baker, D.E., and Deutschmann, J.K., “Advantages of Estimating

Rate Corrections During Dynamic Propagation of Spacecraft Rates-Applications to Real-Time

Attitude Determination of SAMPEX,” Proceedings of the Flight Mechanics/Estimation Theory

Symposium, NASA-Goddard Space Flight Center, Greenbelt, MD, 1994, pp. 481-495.

14Crassidis, J.L., and Markley, F.L., “Predictive Filtering for Attitude Estimation Without Rate

Sensors,” Journal of Guidance, Control and Dynamics, Vol. 20, No. 3, May-June 1997, pp. 522-

527.

15Lizarralde, F., and Wen, J.T., “Attitude Control Without Angular Velocity Measurement: A

Passivity Approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 3, March 1996, pp.

468-472.

16Lu, P., “Nonlinear Predictive Controllers for Continuous Systems,” Journal of Guidance,

Control and Dynamics, Vol. 17, No. 3, May-June 1994, pp. 553-560.



20

17Lu, P., “Constrained Tracking Control of Nonlinear Systems,” System and Control Letters, Vol.

27, 1996, pp. 305-314.

18Khan, M.A., and Lu, P., “New Technique for Nonlinear Control of Aircraft,” Journal of

Guidance, Control and Dynamics, Vol. 17, No. 5, Sept.-Oct. 1994, pp. 1055-1060.

19Markley, F.L., “Equations of Motion,” Spacecraft Attitude Determination and Control, Wertz,

J.R., (editor), Kluwer Academic Publishers, Dordrecht, 1978, pp. 521-523.

20Shuster, M.D., “The Quaternion in the Kalman Filter,” AAS/AIAA Astrodymanics Specialist

Conference, Victoria, BC, Canada, Aug. 1993, AAS Paper #93-553.

21Horn, R.A., and Johnson, C.R., Matrix Analysis, Cambridge University Press, Cambridge, MA,

1991.

22Lefferts, E.J., Markley, F.L., and Shuster, M.D., “Kalman Filtering for Spacecraft Attitude

Estimation,” Journal of Guidance, Control and Dynamics, Vol. 5, No. 5, Sept.-Oct. 1982, pp.

417-429.

23Wie, B., and Jiambo, L., “Feedback Control Logic for Spacecraft Eigenaxis Rotations Under

Slew Rate and Control Constraints,” Proceedings of AIAA Guidance, Navigation, and Control

Conference, Scottsdale, AZ, Aug. 1994, AIAA Paper #94-3563, pp. 197-206.

24Spence, J.B., “Environmental Torques,” Spacecraft Attitude Determination and Control,

Wertz, J.R., (editor), Kluwer Academic Publishers, Dordrecht, 1978, pp. 570-573.



Fig. 1  MAP Spacecraft Specifications

Fig. 2  Optimal and Non-Optimal Predictive Control

Fig. 3  Optimal and Non-Optimal Predictive Control

Fig. 4  Quaternion and Optimal Predictive Control

Fig. 5  Quaternion and Optimal Predictive Control

Fig. 6  Phase Portrait Plot

Fig. 7  Quaternion-Tracking Predictive Control

Fig. 8  Disturbance Rejection Comparison
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