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Abstract

In this paper an observability analysis of the six degree of freedom attitude and position
determination problem using line-of-sight observations is shown. This analysis involves de-
compositions of the associated error covariance matrix, derived from maximum likelihood,
for a number of cases ranging from one vector observation to three or more vector observa-
tions. The covariance matrix is shown to be singular when one or two vector observations are
used, leading to an unobservable system. For the one vector case the observable quantities
involve a combination of both attitude and position information that cannot be decoupled.
For the two vector case the covariance matrix has rank four, but only one axis of attitude and
one axis of position is fully observable, with the other two observable quantities involving
coupled attitude/position information. When three or more vector observations are present
the covariance matrix has full rank, except for some special cases that are derived in this
paper. This observability analysis is useful for the design and analysis of estimators using

line-of-sight vector observations.
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Introduction

Both the attitude and the position of a vehicle can be determined from line-of-sight
(LOS) vector observations. One mechanism to accomplish this task involves a vision nav-
igation (VISNAV) system based on Position Sensing Diodes (PSDs) in the focal plane of
a camera, which allows the inherent centroiding of a LED beacon’s incident light.! Other
mechanisms may involve camera image measurements or laser reflector LOS measurements.
The fundamental approach used to determine the attitude and position from LOS observa-
tions involves an object to image projective transformation, achieved through the colinearity
equations.> These equations involve the angle of the body from the sensor boresight in two
mutually orthogonal planes, which can be reconstructed into unit vector form. The most
common approach to determine attitude and position using the colinearity equations involves
a Gaussian Least Squares Differential Corrections (GLSDC) process, while a new estimation
approach has been presented in Ref. [3] based on a predictive filter for nonlinear systems.

Determining attitude from LOS observations commonly involves finding a proper orthog-
onal matrix that minimizes the scalar weighted norm-error between sets of 3 x 1 body vector
observations and 3 x 1 known reference vectors mapped (via the attitude matrix) into the
body frame. This is known as Wahba’s problem.* If the reference vectors are known, then at
least two non-colinear unit vector observations are required to determine the attitude. Many
methods have been developed that solve this problem efficiently and accurately.’® Deter-
mining the position from LOS observations involves triangulation from known reference base
points. If the attitude is known, then at least two non-colinear unit vector observations are
required to establish a three-dimensional position. Determining both attitude and position
from LOS observations is more complex since more than two non-colinear unit vector obser-
vations are required (as will be demonstrated in this paper), and, unlike Wahba’s problem,
the unknown attitude and position are interlaced in a highly nonlinear fashion.

In this paper an analysis is performed to study the observability of the coupled attitude

and position determination problem from vector observations. In Ref. [3] an initial study has



been performed for the two vector observation case, which showed that only one axis of atti-
tude and one axis of position information can be determined for this case. Furthermore, an
observability analysis using two vector observations indicates that the beacon that is closest
to the target provides the most attitude information but has the least position information,
and the beacon that is farthest to the target provides the most position information but has
the least attitude information. This paper extends this initial result for the one and three
or more vector observation cases, and also more fully quantifies the two vector observation
case.

The organization of this paper proceeds as follows. First, a review of the colinearity
equations is shown. Then, a generalized loss function derived from maximum likelihood
for attitude and position determination is given. Next, the optimal estimate covariance is
derived, which gives the Cramér-Rao lower bound. Then, an observability analysis is shown
for cases involving one to three or more vector observations. This analysis is performed using
an eigenvalue/eigenvector decomposition of the information matrix (i.e., the inverse of the

covariance matrix). Finally, the trace and eigenvalues of the covariance matrix are studied.

The Colinearity Equations and Covariance

In this section the colinearity equations for attitude and position determination are
shown. First, the observation model is reviewed. Then, the estimate (attitude and posi-

tion) covariance matrix is derived using maximum likelihood.

Colinearity Equations

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic
images or LOS measurements. Photogrammetry can generally be divided into two categories:
far range photogrammetry with camera distance settings to infinity (commonly used in star
cameras’), and close range photogrammetry with camera distance settings to finite values.
In general close range photogrammetry can be used to determine both the position and atti-

tude of an object, while far range photogrammetry can only be used to determine attitude.



The relationship between the position/attitude and the observations used in photogram-
metry involves a set of colinearity equations, which are reviewed in this section. Figure 1
shows a schematic of the typical quantities involved in basic photogrammetry from LOS
measurements, derived from light beacons in this case. If we choose the z-axis of the sen-
sor coordinate system to be directed outward along the boresight, then given object space
(X,Y, Z) and image space (z,y, z) coordinate frames (see Fig. 1), the ideal object to image

space projective transformation (noiseless) can be written as follows:®

A (X — Xo) + Ap(Yi = Yo) + Ais(Z — Z.)
T = — , 1=1, 2, , N la
fA31(Xz — Xo)+ Ao(Y; = Yo) + Ass(Z; — Z0) (1a)

Ag (X — Xo) + Ao (Y = Ye) + Ags(Z; — Z)
;= — ., i=1, 2, , N 1b
Y fA31<Xz' — X))+ An(Y; = Y,) + Ass(Z — Z,) (1b)

where N is the total number of observations, (z;,y;) are the image space observations for the
i line-of-sight, (X;,Y;, Z;) are the known object space locations of the i*® beacon, (X, Yz, Z.)
are the unknown object space location of the sensor, f is the known focal length, and Aj;
are the unknown coefficients of the attitude matrix (A) associated to the orientation from
the object plane to the image plane. The goal of the inverse problem is given observations
(x;,y;) and object space locations (X;,Y;, Z;), for i« = 1,2, ..., N, determine the attitude
(A) and position (X, Y., Z.). This can be accomplished by using a GLSDC process or by
other methods.?

The observation can be reconstructed in unit vector form as

bi:AI'i, i:1,2,...,N (2)



where

—x;
1
b, = Y (3a)
VI ai+yl |
f
Xz - Xc
1
.= Y, —Y, 3b
VE =X+ Y+ 4 2P | o)
Zi— Ze.

When measurement noise is present, Shuster® has shown that nearly all the probability of
the errors is concentrated on a very small area about the direction of Ar;, so the sphere

containing that point can be approximated by a tangent plane, characterized by

b; = Ar; +v;, vl Ar; =0 (4)

where b; denotes the i measurement, and the sensor error v; is approximately Gaussian

which satisfies

E{v;}=0 (5a)

E{vw]} =0} [I — (Ar;)(Ar;)"] (5b)

and F{} denotes expectation. Equation (5b) makes the small field-of-view assumption
of Ref. [5]; however, for a large field-of-view lens with significant radial distortion, this

covariance model should be modified appropriately.

Maximum Likelihood Estimation and Covariance

Attitude and position determination using LOS measurements involves finding estimates

of the proper orthogonal matrix A and position vector p = [X, Y. Z,]7 that minimize the



following loss function:
N
A 1 P ~
J(A, P) = 52% *lb; — Af||? (6)
i=1

where A denotes estimate. An estimate error covariance can be derived from the loss function
in Eq. (6). This is accomplished by using results from maximum likelihood estimation.®?

The Fisher information matrix for a parameter vector x is given by

0
wa =F {WJ(X)}Xtrue (7)

where J(x) is the negative log-likelihood function, which is the loss function in this case

(neglecting terms independent of A and p). Asymptotically, the Fisher information matrix

tends to the inverse of the estimate error covariance so that lim F,, = P~!'. The true
—00

attitude matrix is approximated by
A=e B4~ (I3 — [dax]) A (8)

where da represents a small angle error and 343 is a 3 x 3 identity matrix. The 3 x 3 matrix

[dax] is referred to as a cross-product matrix because a x b = [ax]b, with

0 —das (05}
[ax]=la; 0 - (9)
—as aq 0
The parameter vector is now given by x = [da’ pT]?, and the covariance is defined by

P = E{xx"} - E{x} E{x}". Substituting Eq. (8) into Eq. (6), and after taking the



appropriate partials the following optimal error covariance can be derived:

- N - —1

S oPArx 3 0T A[rx]
=1

=1

N N
> 072G x|TAT =3 0,2 x)?
Li=1 =1

with obvious definition for F', and where
G= (X = X2+ (V= Yo+ (Zi— 27 (11)

The terms A and r; are evaluated at their respective true values (although in practice the
estimates are used). It should be noted that Eq. (10) gives the Cramér-Rao lower bound?
(any estimator whose error covariance is equivalent to Eq. (10) is an efficient, i.e. opti-
mal estimator). Also, Eq. (10) is directly used in the GLSDC process and predictive filter
solution.?

The matrix F'in Eq. (10) must have rank 6 in order for P to exist. The remainder of this
paper is devoted to the analysis of the matrix F' for a number of vector observation cases.
We first prove that the rank of F' is independent of the attitude matrix A. Since A is a

proper orthogonal matrix, then A AT = ATA = I53,5. Also, the following identity is helpful:
[Arx] = A[rx] AT (12)
Next, a similarity transformation is performed using the following orthogonal matrix:

A Oss
M= e (13)

O3xs  I3x3

where 033 is a 3 X 3 zero matrix. Defining F = MTF M, and using the identity in Eq. (12)



gives

—ZU{Q[I'Z-XP iéaﬁg[rix]
F = (14)

N N
>0 2G|t =3 0, ¢ e x]?
Li=1 =1

Since Rank(M) = 6, then Rank(F) = Rank(F), which indicates that the degree of ob-
servability (i.e., the rank of F') of the system is independent of the attitude matrix. This
intuitively makes sense since the orientation of the body with respect to the beacon LOS
sources does not affect the overall observability (it does however affect the relative degree of

observability of each axis component).

One Vector Observation Case

In this section the one vector case is analyzed. Although in practice one observation would
not be used, this case is worthy of study since as the range to multiple beacons becomes
large, the angular separation decreases and the beacons ultimately approach co-location. The
result is a geometric dilution of precision, and ultimately, a loss of observability analogous
to the one beacon case. The rank of the information matrix is first investigated. For this

case F is given by

Clrx]" —¢?[rx]?

with obvious definition for M. Using the following matrix

C[I'X]T I3y 3

N = (16)

Isyz  O3xs

we have

O3x3  O3x3

NTMN = (17)

03><3 —[I‘X]2



where the following identities were used for any unit vector r:

[rx]? = —[rx] (18a)

' = ~[ex]? (18)

Therefore, since Rank(N') = 6 then Rank(M), and ultimately the rank of F, is given by
the Rank(—[rx]?). The matrix —[rx|*> = I3x3 —rr” is the projection matrix onto the space
perpendicular to r and has rank 2. This indicates that only 2 pieces of information are given
using one vector observation.

The eigenvalues of M are given by solving the following equation:

)\[3><3 + [I‘X]z —Q[I'X]
det()\lgxg — M) = det =0 (19)
—C[I'X]T )\]3><3 +C2[I'X]2

Performing the matrix determinant operation gives

det(Msys — M) =det{(Msys + [rx]*)(Msx3 + ¢ [rx]?) + ¢ [rx]*}

(20)
=det{\I3,5 + A1 + (D) [rx]* + C rx]* 4+ Crx]?}
Next, using the identity in Eq. (18b) yields
det(Asx3 — M) = X3 det{\l5,3 + (1 + (?)[rx]*} (21)

Clearly three eigenvalues of M are zero. The eigenvalues of —(1 + ¢?)[rx]? are well known,
which are given by 0 and twice repeated (1 + ¢?). Therefore, the eigenvalues of F = o2M
are given by

M=d=X=M=0, ) =X=0 21+ (22)

Since the eigenvalues of a matrix are unaffected by a similarity transformation, Eq. (22) also



gives the eigenvalues of F.

In order to calculate the eigenvectors of F' we first state a well-known property of a
symmetric matrix. Let T be an n X n symmetric matrix. There exists an orthogonal
matrix Z such that ZTY Z = D, where D is a diagonal matrix with the characteristic
roots of Y. This also states that a symmetric matrix is similar to a diagonal matrix.'°
Note that if some eigenvalue has multiple-fold degeneracy (as in the present case), one
can find an orthogonal basis in the subspace spanned by its eigenvectors. Therefore, F =
Wdiag [A1 Ao A3 M\ As Ag] WT, where W = [w; wy W3 Wy W5 Wg] is an orthogonal matrix,
and w;, 7 =1, 2, ..., 6, are 6 x 1 orthogonal eigenvectors. We now calculate the eigenvectors
w5 and wg, which correspond to the eigenvalues A5 and \g in Eq. (22), respectively. For the

eigenvalue A5 we have

FW5 = )\5W5 = 0'72 (1 + C2) W5 (23)

From Eq. (15), F = 072M; hence, Mws = (1 + (*)ws. Let ws and wg be partitioned into

W51 We1
w5 = , Wg = (24)

W52 We2

where wy1, Wso, Wg1 and wgo are 3 x 1 partition vectors of ws and wg, respectively. From the
definition of M in Eq. (15) and using the partitioned eigenvector in Eq. (24), the following

two equations are given:

—[rx]Pws1 + Crx]wsy = (1 + ) ws; (25a)

—C[I'X]Wg)l — CZ[I'X]ZW52 = (1 -+ CZ)WE,Q (25b)

10



Simultaneously solving Egs. (25a) and (25b) gives

ws; Lr (26a)

Wy = —C[I'X]W51 (26b)

This states that both ws; and wss lie in the plane perpendicular to r. Also, clearly ws; L wis,
which means that the vectors ws;, wsy and r form an orthogonal set.

In order to determine the eigenvector ws, the vectors r and ws; are first given in compo-
nent form by r = [ry 75 73]7 and ws; = [ws; wse wss]”, respectively. At least one component
of r must be nonzero. We assume that r; # 0, but the argument goes through with only
minor modification for any nonzero component. Since wi r = 0, and assuming r; # 0, then
ws; = —(wsare + ws3rs)/r1. Next, without loss in generality we can assume that wss = 1
and wsz = 0, so ws; = [—ry/r1 1 0]T. Therefore, using Eq. (26b) the normalized vector for
w5 is given by

w; = a/|[al] (27)

where
T

a=|—ry/ry 1 0 (rs Crors/ri —((r3/r +71) (28)

In a similar fashion, using wlwg = 0 the normalized vector for wg is given by

we = b/||bl| (29)

where
T

b= \riry rirors —ri(r?2+123) C(rirg —(r? 0 (30)

If r; = 0 then other eigenvectors can be found by using the non-zero component values of r.
The next step involves determining the eigenvectors of F', which is decomposed as F' =

Vdiag [A\1 A2 A3 Ay A5 Xg] VT, where V' = [vy vy V3 v4 V5 V6] is an orthogonal matrix, and

11



vi, i =1,2,...,6, are 6 x 1 orthogonal eigenvectors. Using F' = M FMT, where M is
defined by Eq. (13), the eigenvectors vs and vg associated with the eigenvalues A5 and Ag,

respectively, are given by

v Aw

Vs = =M W5 = o (31a)
Vs2 W52
v Aw

Vg = “1 =M Wg = . (31b)
Vg2 We2

The vectors vs and vg give information of the observable components for attitude and po-
sition. Each vector is equally observable since the eigenvalues are repeated. Position and
attitude information cannot be decoupled since ||r|| = 1 # 0, which means that with one
observation no useful information can be provided. This is in sharp contrast to standard
attitude determination results using one vector observation, in which one vector observation
provides 2-axis attitude information.!' The analysis in this section also indicates that, for
the multiple-beacon case, as the angular separation of the beacons decreases (approaching

co-location) the physical meaning of the attitude and position results becomes skewed.

Two Vector Observation Case

In this section the two vector case is analyzed. We assume that the two vectors ry and ry
are non-colinear. Unlike the one vector case, the two vector case does provide some physical

insights that are useful for beacon location studies. For the case the matrix F in Eq. (14) is

given by
2
F=) F (32)
i=1
where F; is given by

12



with
—[rix]
L; = (34)

Gilrix]?

Re-arranging the partitioned elements of L; yields
F =0 ?LLT + 0,°L, LY =L L" (35)

with

—or'[rix]  —oy'[rax]

o7 Glrix]? oy Golrax]?
where the identities in Eq. (18) were used in the above quantities. Clearly, we now have
Rank(F) = Rank(L).

We now discuss the rank of the matrix L. Reference [12] shows that the rank of a ¢ x n

matrix C' (¢ > n) is n —m, where m is the maximum number of orthogonal vectors y that
satisfy C'y = 0. For the two vector case consider the conditions for LTy = 0, with y # 0,

to be satisfied. Using the partitioned elements of L yields

e x]y1 + Gi[rix]?y2 = 0 (37a)

[rax]y1 + Go[rax]?y2 = 0 (37b)

T
where y = [yT yQT] . The general relations for y; and y» that satisfy Eq. (37) are given

1
by

y1 = —Glrix]y: +ary (38a)

y1 = —Ca[rax]y2 + cora (38b)

13



where ¢; and ¢y are arbitrary constants. Subtracting (38a) from (38b) gives

(Gi[r1x] = Golrex]) y2 = e111 — cor (39)

We first consider the case where ¢;r; — coro = 0. Since it is assumed that r; and ry are

non-colinear then ¢; = ¢y = 0, so we have

y2 = i(Clrl - C21'2> (4())

Therefore, the vector y, is contained in the plane given by r; and ry. Next, we consider the
case where c¢ir; — cors # 0. From Eq. (39) the quantity ¢;r; — core must be perpendicular to

both ys and to ({1r7 — (ora). Therefore, another solution for ys, denoted by y, is given by

yy = — (Gi[r1x] = Go[rex]) (eir1 — cors) (41)

Note that y, and y/ are orthogonal vegicors. Equation (38) can be used to find y; and y].
Also, y and y’, where y’ = [y’{ yg] , are orthogonal vectors. Therefore, the maximum
number of orthogonal vectors y that satisfy LTy = 0 is 2. Hence, Rank(L) = Rank(F) =
6 — 2 = 4. Therefore, four quantities are observable using two vector observations.
Reference [3] shows that out of these four observable quantities one axis of attitude and
one axis of position information can be determined (the remaining two quantities must be
a combination of attitude and position). This states that two out of the four observable
eigenvectors of the matrix F' can be decoupled in attitude and position. The results are
summarized here for completeness. We first partition the information matrix F' into 3 x 3

sub-matrices as

Fn F Pl P
F—pl—| " "® p_ T TR (42)

FL  Fy P Po

with obvious definitions for Fii, Fio and Fyy from Eq. (10). The relationships between Py,

14



Pra, Paz and Fiq, Fia, Fyy are given by

P = (Fi1 — F12F2_21F1€)
P2 = FﬁlFu(Fl:gFﬁlFlz — Fy)

Py = (Fag — FLF Fio)

(43a)
(43b)

(43c)

The matrix Pq; corresponds to the attitude information, and the matrix Psy corresponds to

the position information. The matrix P;; can be shown to be given by

Pi = AGAT
where
1 T
Al
with
1/2
+{(0% + p2) — |22/ 7123
_ 1/2
g= |+ {02+ 03 — o>/}
1/2
+{(03 + p2) — |22/ |12
and

p=PB-0B

v =B1 %X B,

X, — X,
B;i=|Y,-Y.|, i1=12

Zi—Z,

Gl =[(X, = X))+ (Vi = Y) + (2 — Z2.)%] o}

(44)

(45)

(46)

(47a)

(47D)

(47¢)

i=1,2 (47d)

An eigenvalue/eigenvector decomposition of Eq. (44) can be used to assess the observabil-

15



ity. The eigenvalues of Eq. (44) are given by (0, 0, [67 4+ 53] 7||p||?), and the eigenvector
associated with the non-zero eigenvalue is given by v = Ag/||g||, which defines the axis of
rotation for the observable attitude angle. The eigenvector can easily be shown to lie in the
plane of the two body vector observations since v A(3; x B35) = 0. This vector is in essence

a weighted average of the body observations with
A8, cos ay = || ABy|| cos a (48)

where a; is the angle between A3, and v, and as is the angle between A3, and v, as shown
in Fig. 2 (a; + ay is the angle between AB3; and AB,). Equation (48) indicates that the
observable axis of rotation is closer to the vector with less length.
In a similar fashion, the position information matrix can be shown to be given by
1
2

o2+ o3

Paz = hh” (49)

with
+{(c3 + &3) — llel*v3/I19]2}"/?
h= |+ {(c? + ) — llol*93/9]*}""* (50)
+{(e2 + &) — llol*93/||92}"
and

0=01—10 (5la)
9 = 51 X 62 (51b>
0, = 187,/H/67,||27 1=1,2 (51c)

The eigenvalues of Eq. (49) are given by (0, 0, [¢3 + 03] 7! @]|?), and the eigenvector asso-
ciated with the non-zero eigenvalue is given by w = h/|/h||, which defines the observable

position axis. The eigenvector can be shown to lie in the plane of the two reference vectors

16



since w?'(3; x B,) = 0. The weighted average relationship for the observable position axis
is given by

1811/ cos ar = [|B,]|/cos a2 (52)

where o is the angle between 3, and w, and s is the angle between 8, and w (v + s is the
angle between 3, and (3,). Equation (52) indicates that the observable position axis is closer
to the vector with greater length, which intuitively makes sense because the position solution
is more sensitive to the magnitude of the vectors. A slight change in the largest vector
produces more change in the position than the same change in the smallest vector. Also, if
18, = 1Bal] or if BTB, = 0, then the cigenvector reduces to w = (3, + B,)/[18, + By
which is the bisector of the reference vectors. As before, the information given by the two
observation vectors is used to calculate the part of the attitude needed to compute the
observable position.

Comparing Eq. (48) to Eq. (52) indicates that the beacon that is closest to the target
provides the most attitude information, but has the least position information (this is due
to the inverse relationship between them). The converse is true as well, i.e., the beacon
that is farthest from the target provides the most position information, but has the least
attitude information (see Ref. [3] for more details). The covariance analysis can be useful
to trade off the relative importance between attitude and position requirements with two

vector observations.

Three Vector Observation Case

In this section the three vector case is analyzed. We assume that any two of the vectors
ri, ry or r3 are non-colinear. We will show that the covariance matrix in this case is full

rank for most cases. In the three vector case the matrix F from Eq. (14) is given by

F=LL" (53)

17



with
—oy'[rix]  —oy'[rox]  —og'[rsx]

L= (54)

aflgl[rl X]2 O';lgg[TQX]Q U§1C3[r3><]2
As before the rank of F, and ultimately the rank of F', can be determined by considering

the conditions for LTy = 0, with y # 0, to be satisfied. Using the partitioned elements of L

yields
e x]y1 + Girix )Py, = 0 (55a)
[rax]y1 + Co[rax]?y2 = 0 (55b)
[r3x]y1 + Grsx]%y2 = 0 (55¢)

T
where y = [le yg] . The general relations for y; and ys that satisfy Eq. (55) are given

by
y1 = —Glrix]y: +ary (56a)
y1 = —Carax]y2 + cora (56b)
y1 = —G[rsx]y2 + csr3 (56¢)

where ¢;, ¢o and ¢3 are arbitrary constants. Eq. (56) can be written in matrix form as

Dy =1z (57)

18



where

I3x3 Cl[h ><]

D=1 (lrax] (58a)
I3x3 CS[I‘3><]

I

Z = |corg (58b)

C3rg

A solution to Eq. (57) exists if and only if the rank of the coefficient matrix D is equal to
the rank of the augmented matrix [D z].'* From this theorem the following scenarios are

possible:

1. If Rank(D) = 6 and Rank(D) = Rank ([D z]), where z # 0, then a solution to Eq. (57)
exists, and a nonzero y can be found such that LTy = 0. Therefore, Rank(L) =

Rank(F) < 6.

2. If Rank(D) = 6 and Rank(D) # Rank([D z]), where z # 0, then a solution to
Eq. (57) cannot be determined, and a nonzero y cannot be found such that LTy = 0.

Therefore, Rank(L) = Rank(F') = 6.

3. If Rank(D) < 6, then certainly a nonzero y exists such that Eq. (57) is satisfied, and
Rank(L) = Rank(F') < 6.

We now discuss the properties of the matrix [D z]. Through elementary row operations

this matrix can be shown to be similar to

I3y3 Cl[rlx} 11
|:D Z:| ~ 103x3 [111X] 74 (59)

O3x3  [ugx]  my

19



where

wy = (ory — (114 (60a)
uy = (313 — (111 (60b)
7, = CoTy — 1T (60c)
Ny = C3T3 — 11 (60d)

Define the lower partition of matrix in Eq. (59) by

[wi <] my

Q

(61)
[uzx] m,
|

Also, let the following vectors be given in their components as u; = [uj; uig 3]’ , uy =

[uar u2o uas]™, My = [m1 ma msl” and My = (a1 Moz Mo3]”. Assuming iz # 0, ugs # 0 and
up oz — uztzy # 0 (if these conditions are not true then other nonzero elements can be

used, which is discussed later), the matrix ) can be shown to be similar to

|4 (ZvA]
Q~ (62)

O3x3 w2

20



where

0 —us Uy2
V= lug 0 —U11 (63a)
0 0 —ug + uprugs/ugs
1
w1 = M2 (63D)

Moo — U237712/U13

Up2U23 — U13U22 (

o1 — U237711/U13 + T2 — U237712/U13)

U11U23 — U13U21

w2 M3 + U212/ U1 + w1111 /U3 (63c)

M23 + U227}22/U23 + U217721/U23

If uis # 0 and wjgugg — uggug; # 0, then Rank(V) = 3. If oy = 0, then Rank(D) =
Rank ([D z]). Therefore, if a set of nonzero c¢;, ¢ and ¢z can be found such that zoy = 0,
then a nonzero y can be found such that LTy = 0 is true, so Rank(L) = Rank(F) < 6,
which states that full observability in attitude and position is not possible. Also, if a set of
nonzero ci, ¢ and cg cannot be found such that o, = 0, then a nonzero y cannot be found
such that LTy = 0 is true, so Rank(L) = Rank(F) = 6, which states that full observability
in attitude and position is possible.

The condition zo9 = 0 can be restated as:

where ¢ = [¢; ¢y ¢3]T and
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The quantities es;, e3s and ez3 are given by

e31 = (ugs — ur3)[(ur1tag — wisuar)rin + (Ur2Uas — UizUo2)T12) (66a)
€32 = —Uas|(U11Uog — U13Ua1 )To1 + (Uiolag — Uislog)Too] (66b)
e33 = Uis|(U11Uag — Ur3tor )31 + (Uioliog — UisUog)T30] (66¢)

Where r = [7’11 712 T13]T, ro = [7”21 T9292 T23]T and rs = [7"31 732 7’33]T. If rgul 7é 0 and r3Tu2 7é 0,

the following similarity condition can be obtained through elementary row operations:

—rTu; Ty 0

E ~ —rlTu2 0 rgu2 (67)
X 0 0
where
T T
=e3] + €30 + e 68
X 31 r2Tu1 32 r3Tu2 33 ( )

If x # 0 then Rank(E) = 3, and Eq. (64) can only be satisfied when ¢ = 0. Hence, Rank(L) =
Rank(F') = 6, which gives an observable system. After some algebraic manipulations x can

also be shown to be given by

X = {0 0 1} [(u; x uz) x v] (69)
where
T T
v = (ugz — u3)r1 — r2Tu1u23r2 + T, Ui3r3 (70)

Therefore, x = 0 when the third component of [(u; X uy) x v| is zero, which occurs when
uy, up and v lie in the same plane that is perpendicular to the object space plane given by
Z =0 (see Fig. 1). Hence, Rank(FE) < 3 and a nonzero c can be found that satisfies Eq. (64),

which means that the system is not observable since Rank(L) = Rank(F') < 6. From the
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matrix F in Eq. (65) the following cases can easily be proved:

1. If rfuy = 0 and e33 = 0, then Rank(F) < 6.

[\

. If rlu; = 0 and ez, = 0, then Rank(F') < 6.
3. If rf'u; = rluy = 0, then Rank(F) < 6.

4. If rTuy = rl'uy = 0, then Rank(F') < 6.

ot

. Ifrluy =0 and e3p # 0, with rluy # 0 and rfu; # 0, then Rank(F) = 6.

=}

. Ifrluy = 0 and es3 # 0, with rlu; # 0 and rTuy # 0, then Rank(F) = 6.

The first two conditions are physically interesting cases since they can be satisfied even if
the vectors ry, ry and rs are not coplanar (e.g., consider the vectors r; = [I — 2 1]7/v/6,
ry =[2 —21]7/3 and r3 = [3 — 1 1]7/y/11, which gives a rank deficient F). Also, the
third and fourth cases occur only when the three vectors (iry, (ory and (3r3 are parallel to
each other with equal magnitude, which violates the assumption made in this section. An
obvious rank deficient condition for @ in Eq. (61) exists when u; X us = 0, which occurs
when u; and uy are parallel.

In the previous derivations it has been assumed that w3 # 0, uss # 0 and uq ugz —
upzug; # 0. If these conditions are not true, then the other nonzero elements of u; and
uy can be used to derive similar conditions for unobservability. This yields a condition
of unobservability that occurs when the endpoints of the position vectors ((iry, (ore and
(3r3) can be connected by a straight line (e.g., consider the vectors r; = [1 2 1]7//6,
ry = [122]7/3 and r3 = [1 2 3]7//14, which gives a rank deficient F'). We should also note
that even though F' can be shown to have full rank using three vector observations under most
conditions, a unique attitude and position cannot be determined due to a sign ambiguity in
the solution. This is difficult to prove analytically, but can be shown by simulation. This

scenario is similar to attitude determination results using angle observations.'®
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More Than Three Observations

In the four vector case the matrix F from Eq. (14) is given by

F=LL" (71)

with

—or'[rix]  —oy'frax]  —o3l[rax]  —op[rax]

~
Il
—~
EN|
A\
~—

Ul_lgl[I'lX]z UQ_ICQ[rQX]Q 0'3_163[I'3><]2 0'4_1€4[I'4X]2
As before the rank of F, and ultimately the rank of F', can be determined by considering
the conditions for LTy = 0, with y # 0, to be satisfied. In a similar fashion as the three

vector case the conditions for LTy = 0 can be written as

Dy =z (73)

where

I3x3 Cl[h ><]

I3x3 CQ[I‘QX]

S
Il

(74a)
I3x3 Cs[l’:s ><]

_]3><3 C4[I‘4><]

Iy

Cal'g

zZ= (74b)

C3I'g

C4Ty

A condition for an unobservable system can be derived using the same procedure as in the
three vector case. Similar to the three vector case, the four vector case is unobservable when

the endpoints of the position vectors can be connected by a straight line. These results are
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also valid when more than four LOS vectors are used. Furthermore, a unique solution for the

attitude and position exists when four beacons are present and the system is observable.?

Trace and Eigenvalues of the Covariance Matrix

In this section the trace of the covariance matrix, given in Eq. (10), is analyzed. The trace
of this matrix is useful to quantify the overall performance of the solution for the attitude
and position (i.e., a lower trace provides a more overall accurate solution). The matrix F in

Eq. (14) can be written as

N
F=> F (75)
i=1
where
—o < ]? oG]
Fi = (76)

U{ZQ[riX]T —0'757261'2[I'l'><]2

The eigenvalues of F; are given by
M=X =X =2 =0, %=X =02 (1+(}) (77)

Then the trace of the information matrix F' is given by

N

tr(F):tr(}"):2Zai_2(1+Q2) (78)

i=1

where the invariance of the trace through a similarity transformation is used.

We now discuss the properties of the matrix P. First a useful theorem is shown. Given
two real n X n symmetric matrices, A and B, with A positive definite and B positive semi-
definite, there exists a nonsingular 7" such that A = TT7 and B = TYT?, where T is
a diagonal matrix with elements given by T = diag [u; po -+ fin].'® The matrix T can be
derived using the following procedure. Since A is symmetric and positive definite a singular

value decomposition can be performed so that A = U Q?U”, where U is an orthogonal
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matrix and () is a diagonal matrix of the square roots of the eigenvalues of A. Then,
compute C' = Q UTBU Q~!. Since C' is symmetric a singular value decomposition can be
performed so that C = VY VT. Then T = UQV. Let F3 = Zg’:l]-} have full rank, and
define Fy = Zle F; = F3+F, which also has full rank. Also, F3 and F, are positive definite
matrices, and Fy is positive semi-definite. This theorem can be shown to easily prove that
if F has full rank for three vector observations, then F has full rank for more than three
observations. Now let F3 = TTT = UQ?*UT and let C = Q" 'UTF,UQ ' =VYVT. So
Fi=TTYTT. Therefore, F, is given by

Fo=Fs+F =TT +TYTT"

= Tdiag[(1 + ) (1 +pa) -+ (1+pe)] TT "
After some algebraic manipulations ;' can be shown to be given by
Fil=F"'-AF (80)
where AF is a positive semi-definite matrix given by
AF=UQ Wdiag |-t HF2 0 _Ho | yro-1pyr (81)

T+ 1+ o 1+ pe

Using the fact that the trace of the sum of two matrices is given by sum of the trace of each
matrix individually, we have tr (]:"4_ 1) = tr (.7:"3_ 1) —tr (A]:" ) Therefore, since tr (A]-_" ) >0
then tr (F; ') < tr (F;'). Since the trace is invariant under a similarity transformation,
then the trace of the covariance matrix P in Eq. (10) with four vector observations is al-
ways less than the trace of the covariance using three vector observations, which intuitively
makes sense. This result can be further expanded to multiple observations (i.e., the trace
of the covariance using N observations is always less than the trace using any number of

observations less than V).
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We now discuss the properties of the eigenvalues of P. Consider the following decom-
position: Fzx; = \ix; and Fuy; = aiy; (i = 1,2, ..., 6), where ); is an eigenvalue of the
matrix F3, X; is the eigenvector of the matrix F3 corresponding to \;, a; is an eigenvalue of
the matrix Fy, and y; is the eigenvector of the matrix F; corresponding with ;. Since the

eigenvectors of a symmetric matrix are orthogonal Fsy; is related by
6
Fayi =Y _ ki, (82)
j=1

where the k;; are constants with Z?Zl kfj = 1. Also, F,y; is given by

6
Fayi =Y (i = A\kix; (83)

=1
Since the eigenvectors of F3 are orthogonal and since Fy is symmetric positive semi-definite,

then

6 6 6 6
(i = MK =i > k5 =D klA =i = Y kA >0 (84)
= j=1 j=1 j=1

7=1

Therefore, the following condition is true:
6
TED P (85)
j=1

Let Apim = min[A; Ay -+ Xg]. Then from Eq. (85) a; > Apin- We know that 1/); is an
eigenvalue of both F; ' and P using three observations, and 1/a; is an eigenvalue of both
F; ! and P using four observations. The eigenvalue analysis can be extended to the N vector
observation case, and indicates that each eigenvalue of P using N observations is less than
the maximum eigenvalue of the matrix with less than N observations. This proves that as
the number of vector observations (V) increases more information is provided, which again

intuitively makes sense.
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Examples

Observability examples using representative geometric scenarios are shown in this section.
We first consider the VISNAV system configuration, shown in Figure 1, with the following

3 beacon locations:

Xi=1m, Y;=2m, Z;=1m
Xo=1m, Y;=2m, Zy=2m

Xg=1m, Y;=2m, Z3=3m

The variances of the measurement error processes are assumed to be equal for each observa-
tion, which subsequently do not affect the observability analysis. Therefore all measurement
error variances can be set to 02 = 1 for i = 1, 2, 3. Also, the focal length can be set to
f = 1 without loss in generality. The true vehicle motion is given by X, = 30 exp[—(1/300)¢]
m, Y, = 30 — (30/1800)¢t m and Z, = 10 — (10/1800)¢ m. A 1,800 sec simulation has been
performed to generate the Fisher information matrix, i.e., the inverse of the covariance ma-
trix in Eq. (10). A plot of the eigenvalues of the Fisher information at each time is shown
in Figure 3. Two of the eigenvalues are nearly equal (the top line in the plot represents
these eigenvalues). For this example the Fisher information matrix is clearly rank deficient.
Thus, this configuration leads to an unobservable system. This is due to the fact that the
endpoints of the position vectors are connected by a straight line, as previously discussed.

For the second example we consider the following 3 beacon locations:

X1 =05m, Y;=0>5m, Z;=0.0m
Xy =0.5m, Y;=-0.5m, Z5=0.0m

X3=02m, Y3=00m, Z3=0.1m

A plot of the eigenvalues of the Fisher information at each time is shown in Figure 4. Once
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again two of the eigenvalues are nearly equal (the top line in the plot represents these
eigenvalues). For this example the Fisher information matrix is now full rank at all times.
Thus, this configuration leads to an observable system. A measure of the performance in the
estimation algorithm is given by the condition number (the ratio of the largest eigenvalue
of the information matrix to the smallest eigenvalue). For this example the performance
improves as the vehicle approaches the beacons, since they now more completely span the
focal place area. However as the vehicle moves past the beacons the performance degrades,
which is more clearly seen in Figure 3. This is directly related to the variances of the attitude
and position estimation errors (see Ref. [3] for more details). These examples indicate that
the analysis shown in this paper can help to understand and assess the observability of the

estimation process when using LOS measurements to determine attitude and position.

Conclusions

An observability analysis for six degree of freedom state determination using vector obser-
vations was performed. The observability analysis proved that when one vector observation
is used, two pieces of information can be inferred. However, the observable quantities involve
a combination of position and attitude information, which cannot be decoupled. When two
vector observations are used the rank of the covariance matrix is four. However, only one
axis of attitude and one axis of position can be determined physically while the other two
pieces of information involve coupled attitude/position information. When three or more
vector observations are used the covariance matrix has full rank in most cases, and a unique
solution for attitude and position exists for four or more vector observations. Finally, a
trace and eigenvalue analysis of the covariance matrix indicated that as the number of vec-
tor observations increases, more accurate attitude and position information is provided in

general.
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