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Abstract

In this paper an observability analysis of the six degree of freedom attitude and position

determination problem using line-of-sight observations is shown. This analysis involves de-

compositions of the associated error covariance matrix, derived from maximum likelihood,

for a number of cases ranging from one vector observation to three or more vector observa-

tions. The covariance matrix is shown to be singular when one or two vector observations are

used, leading to an unobservable system. For the one vector case the observable quantities

involve a combination of both attitude and position information that cannot be decoupled.

For the two vector case the covariance matrix has rank four, but only one axis of attitude and

one axis of position is fully observable, with the other two observable quantities involving

coupled attitude/position information. When three or more vector observations are present

the covariance matrix has full rank, except for some special cases that are derived in this

paper. This observability analysis is useful for the design and analysis of estimators using

line-of-sight vector observations.
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Introduction

Both the attitude and the position of a vehicle can be determined from line-of-sight

(LOS) vector observations. One mechanism to accomplish this task involves a vision nav-

igation (VISNAV) system based on Position Sensing Diodes (PSDs) in the focal plane of

a camera, which allows the inherent centroiding of a LED beacon’s incident light.1 Other

mechanisms may involve camera image measurements or laser reflector LOS measurements.

The fundamental approach used to determine the attitude and position from LOS observa-

tions involves an object to image projective transformation, achieved through the colinearity

equations.2 These equations involve the angle of the body from the sensor boresight in two

mutually orthogonal planes, which can be reconstructed into unit vector form. The most

common approach to determine attitude and position using the colinearity equations involves

a Gaussian Least Squares Differential Corrections (GLSDC) process, while a new estimation

approach has been presented in Ref. [3] based on a predictive filter for nonlinear systems.

Determining attitude from LOS observations commonly involves finding a proper orthog-

onal matrix that minimizes the scalar weighted norm-error between sets of 3×1 body vector

observations and 3 × 1 known reference vectors mapped (via the attitude matrix) into the

body frame. This is known as Wahba’s problem.4 If the reference vectors are known, then at

least two non-colinear unit vector observations are required to determine the attitude. Many

methods have been developed that solve this problem efficiently and accurately.5,6 Deter-

mining the position from LOS observations involves triangulation from known reference base

points. If the attitude is known, then at least two non-colinear unit vector observations are

required to establish a three-dimensional position. Determining both attitude and position

from LOS observations is more complex since more than two non-colinear unit vector obser-

vations are required (as will be demonstrated in this paper), and, unlike Wahba’s problem,

the unknown attitude and position are interlaced in a highly nonlinear fashion.

In this paper an analysis is performed to study the observability of the coupled attitude

and position determination problem from vector observations. In Ref. [3] an initial study has
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been performed for the two vector observation case, which showed that only one axis of atti-

tude and one axis of position information can be determined for this case. Furthermore, an

observability analysis using two vector observations indicates that the beacon that is closest

to the target provides the most attitude information but has the least position information,

and the beacon that is farthest to the target provides the most position information but has

the least attitude information. This paper extends this initial result for the one and three

or more vector observation cases, and also more fully quantifies the two vector observation

case.

The organization of this paper proceeds as follows. First, a review of the colinearity

equations is shown. Then, a generalized loss function derived from maximum likelihood

for attitude and position determination is given. Next, the optimal estimate covariance is

derived, which gives the Cramér-Rao lower bound. Then, an observability analysis is shown

for cases involving one to three or more vector observations. This analysis is performed using

an eigenvalue/eigenvector decomposition of the information matrix (i.e., the inverse of the

covariance matrix). Finally, the trace and eigenvalues of the covariance matrix are studied.

The Colinearity Equations and Covariance

In this section the colinearity equations for attitude and position determination are

shown. First, the observation model is reviewed. Then, the estimate (attitude and posi-

tion) covariance matrix is derived using maximum likelihood.

Colinearity Equations

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic

images or LOS measurements. Photogrammetry can generally be divided into two categories:

far range photogrammetry with camera distance settings to infinity (commonly used in star

cameras7), and close range photogrammetry with camera distance settings to finite values.

In general close range photogrammetry can be used to determine both the position and atti-

tude of an object, while far range photogrammetry can only be used to determine attitude.
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The relationship between the position/attitude and the observations used in photogram-

metry involves a set of colinearity equations, which are reviewed in this section. Figure 1

shows a schematic of the typical quantities involved in basic photogrammetry from LOS

measurements, derived from light beacons in this case. If we choose the z-axis of the sen-

sor coordinate system to be directed outward along the boresight, then given object space

(X,Y, Z) and image space (x, y, z) coordinate frames (see Fig. 1), the ideal object to image

space projective transformation (noiseless) can be written as follows:8

xi = −f
A11(Xi −Xc) + A12(Yi − Yc) + A13(Zi − Zc)

A31(Xi −Xc) + A32(Yi − Yc) + A33(Zi − Zc)
, i = 1, 2, . . . , N (1a)

yi = −f
A21(Xi −Xc) + A22(Yi − Yc) + A23(Zi − Zc)

A31(Xi −Xc) + A32(Yi − Yc) + A33(Zi − Zc)
, i = 1, 2, . . . , N (1b)

where N is the total number of observations, (xi, yi) are the image space observations for the

ith line-of-sight, (Xi, Yi, Zi) are the known object space locations of the ith beacon, (Xc, Yc, Zc)

are the unknown object space location of the sensor, f is the known focal length, and Ajk

are the unknown coefficients of the attitude matrix (A) associated to the orientation from

the object plane to the image plane. The goal of the inverse problem is given observations

(xi, yi) and object space locations (Xi, Yi, Zi), for i = 1, 2, . . . , N , determine the attitude

(A) and position (Xc, Yc, Zc). This can be accomplished by using a GLSDC process or by

other methods.3

The observation can be reconstructed in unit vector form as

bi = Ari, i = 1, 2, . . . , N (2)
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where

bi ≡
1

√

f 2 + x2
i + y2

i













−xi

−yi

f













(3a)

ri ≡
1

√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2













Xi −Xc

Yi − Yc

Zi − Zc













(3b)

When measurement noise is present, Shuster5 has shown that nearly all the probability of

the errors is concentrated on a very small area about the direction of Ari, so the sphere

containing that point can be approximated by a tangent plane, characterized by

b̃i = Ari + υi, υT
i Ari = 0 (4)

where b̃i denotes the ith measurement, and the sensor error υi is approximately Gaussian

which satisfies

E {υi} = 0 (5a)

E
{

υiυ
T
i

}

= σ2
i

[

I − (Ari)(Ari)
T
]

(5b)

and E { } denotes expectation. Equation (5b) makes the small field-of-view assumption

of Ref. [5]; however, for a large field-of-view lens with significant radial distortion, this

covariance model should be modified appropriately.

Maximum Likelihood Estimation and Covariance

Attitude and position determination using LOS measurements involves finding estimates

of the proper orthogonal matrix A and position vector p ≡ [Xc Yc Zc]
T that minimize the
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following loss function:

J(Â, p̂) =
1

2

N
∑

i=1

σ−2
i ‖b̃i − Âr̂i‖2 (6)

where ∧ denotes estimate. An estimate error covariance can be derived from the loss function

in Eq. (6). This is accomplished by using results from maximum likelihood estimation.5,9

The Fisher information matrix for a parameter vector x is given by

Fxx = E

{

∂

∂x ∂xT
J(x)

}

xtrue

(7)

where J(x) is the negative log-likelihood function, which is the loss function in this case

(neglecting terms independent of A and p). Asymptotically, the Fisher information matrix

tends to the inverse of the estimate error covariance so that lim
N→∞

Fxx = P−1. The true

attitude matrix is approximated by

A = e−[δα×]Â ≈ (I3×3 − [δα×]) Â (8)

where δα represents a small angle error and I3×3 is a 3×3 identity matrix. The 3×3 matrix

[δα×] is referred to as a cross-product matrix because a× b = [a×]b, with

[a×] ≡













0 −a3 a2

a3 0 −a1

−a2 a1 0













(9)

The parameter vector is now given by x = [δαT p̂T ]T , and the covariance is defined by

P = E
{

xxT
}

− E {x}E {x}T . Substituting Eq. (8) into Eq. (6), and after taking the
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appropriate partials the following optimal error covariance can be derived:

P =















−
N
∑

i=1

σ−2
i [A ri×]2

N
∑

i=1

σ−2
i ζiA [ri×]

N
∑

i=1

σ−2
i ζi[ri×]TAT −

N
∑

i=1

σ−2
i ζ2

i [ri×]2















−1

≡ F−1 (10)

with obvious definition for F , and where

ζi ≡
[

(Xi −Xc)
2 + (Yi − Yc)

2 + (Zi − Zc)
2
]−1/2

(11)

The terms A and ri are evaluated at their respective true values (although in practice the

estimates are used). It should be noted that Eq. (10) gives the Cramér-Rao lower bound9

(any estimator whose error covariance is equivalent to Eq. (10) is an efficient, i.e. opti-

mal estimator). Also, Eq. (10) is directly used in the GLSDC process and predictive filter

solution.3

The matrix F in Eq. (10) must have rank 6 in order for P to exist. The remainder of this

paper is devoted to the analysis of the matrix F for a number of vector observation cases.

We first prove that the rank of F is independent of the attitude matrix A. Since A is a

proper orthogonal matrix, then AAT = ATA = I3×3. Also, the following identity is helpful:

[Ar×] = A [r×]AT (12)

Next, a similarity transformation is performed using the following orthogonal matrix:

M =







A 03×3

03×3 I3×3






(13)

where 03×3 is a 3×3 zero matrix. Defining F ≡MTFM, and using the identity in Eq. (12)
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gives

F =















−
N
∑

i=1

σ−2
i [ri×]2

N
∑

i=1

σ−2
i ζi[ri×]

N
∑

i=1

σ−2
i ζi[ri×]T −

N
∑

i=1

σ−2
i ζ2

i [ri×]2















(14)

Since Rank(M) = 6, then Rank(F ) = Rank(F), which indicates that the degree of ob-

servability (i.e., the rank of F ) of the system is independent of the attitude matrix. This

intuitively makes sense since the orientation of the body with respect to the beacon LOS

sources does not affect the overall observability (it does however affect the relative degree of

observability of each axis component).

One Vector Observation Case

In this section the one vector case is analyzed. Although in practice one observation would

not be used, this case is worthy of study since as the range to multiple beacons becomes

large, the angular separation decreases and the beacons ultimately approach co-location. The

result is a geometric dilution of precision, and ultimately, a loss of observability analogous

to the one beacon case. The rank of the information matrix is first investigated. For this

case F is given by

F = σ−2













−[r×]2 ζ[r×]

ζ[r×]T −ζ2[r×]2













≡ σ−2M (15)

with obvious definition for M . Using the following matrix

N =







ζ[r×]T I3×3

I3×3 03×3






(16)

we have

N TM N =







03×3 03×3

03×3 −[r×]2






(17)
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where the following identities were used for any unit vector r:

[r×]3 = −[r×] (18a)

[r×]4 = −[r×]2 (18b)

Therefore, since Rank(N ) = 6 then Rank(M), and ultimately the rank of F , is given by

the Rank(−[r×]2). The matrix −[r×]2 = I3×3− r rT is the projection matrix onto the space

perpendicular to r and has rank 2. This indicates that only 2 pieces of information are given

using one vector observation.

The eigenvalues of M are given by solving the following equation:

det(λI3×3 −M) = det









λI3×3 + [r×]2 −ζ[r×]

−ζ[r×]T λI3×3 + ζ2[r×]2









= 0 (19)

Performing the matrix determinant operation gives

det(λI3×3 −M) =det{(λI3×3 + [r×]2)(λI3×3 + ζ2 [r×]2) + ζ2 [r×]2}

=det{λ2I3×3 + λ(1 + ζ2) [r×]2 + ζ2 [r×]4 + ζ2 [r×]2}
(20)

Next, using the identity in Eq. (18b) yields

det(λI3×3 −M) = λ3 det{λI3×3 + (1 + ζ2)[r×]2} (21)

Clearly three eigenvalues of M are zero. The eigenvalues of −(1 + ζ2)[r×]2 are well known,

which are given by 0 and twice repeated (1 + ζ2). Therefore, the eigenvalues of F = σ−2M

are given by

λ1 = λ2 = λ3 = λ4 = 0, λ5 = λ6 = σ−2(1 + ζ2) (22)

Since the eigenvalues of a matrix are unaffected by a similarity transformation, Eq. (22) also
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gives the eigenvalues of F .

In order to calculate the eigenvectors of F we first state a well-known property of a

symmetric matrix. Let Υ be an n × n symmetric matrix. There exists an orthogonal

matrix Z such that ZTΥZ = D, where D is a diagonal matrix with the characteristic

roots of Υ. This also states that a symmetric matrix is similar to a diagonal matrix.10

Note that if some eigenvalue has multiple-fold degeneracy (as in the present case), one

can find an orthogonal basis in the subspace spanned by its eigenvectors. Therefore, F =

Wdiag [λ1 λ2 λ3 λ4 λ5 λ6]W
T , where W = [w1 w2 w3 w4 w5 w6] is an orthogonal matrix,

and wi, i = 1, 2, . . . , 6, are 6×1 orthogonal eigenvectors. We now calculate the eigenvectors

w5 and w6, which correspond to the eigenvalues λ5 and λ6 in Eq. (22), respectively. For the

eigenvalue λ5 we have

Fw5 = λ5w5 = σ−2
(

1 + ζ2
)

w5 (23)

From Eq. (15), F = σ−2M ; hence, Mw5 = (1 + ζ2)w5. Let w5 and w6 be partitioned into

w5 ≡







w51

w52






, w6 ≡







w61

w62






(24)

where w51, w52, w61 and w62 are 3×1 partition vectors of w5 and w6, respectively. From the

definition of M in Eq. (15) and using the partitioned eigenvector in Eq. (24), the following

two equations are given:

−[r×]2w51 + ζ[r×]w52 = (1 + ζ2)w51 (25a)

−ζ[r×]w51 − ζ2[r×]2w52 = (1 + ζ2)w52 (25b)
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Simultaneously solving Eqs. (25a) and (25b) gives

w51⊥ r (26a)

w52 = −ζ[r×]w51 (26b)

This states that both w51 and w52 lie in the plane perpendicular to r. Also, clearly w51⊥w52,

which means that the vectors w51, w52 and r form an orthogonal set.

In order to determine the eigenvector w5, the vectors r and w51 are first given in compo-

nent form by r = [r1 r2 r3]
T and w51 = [w51 w52 w53]

T , respectively. At least one component

of r must be nonzero. We assume that r1 6= 0, but the argument goes through with only

minor modification for any nonzero component. Since wT
51r = 0, and assuming r1 6= 0, then

w51 = −(w52r2 + w53r3)/r1. Next, without loss in generality we can assume that w52 = 1

and w53 = 0, so w51 = [−r2/r1 1 0]T . Therefore, using Eq. (26b) the normalized vector for

w5 is given by

w5 = a/||a|| (27)

where

a ≡
[

−r2/r1 1 0 ζr3 ζr2r3/r1 −ζ(r2
2/r1 + r1)

]T

(28)

In a similar fashion, using wT
5 w6 = 0 the normalized vector for w6 is given by

w6 = b/||b|| (29)

where

b ≡
[

r2
1r3 r1r2r3 −r1(r2

1 + r2
2) ζr1r2 −ζr2

1 0

]T

(30)

If r1 = 0 then other eigenvectors can be found by using the non-zero component values of r.

The next step involves determining the eigenvectors of F , which is decomposed as F =

V diag [λ1 λ2 λ3 λ4 λ5 λ6]V
T , where V = [v1 v2 v3 v4 v5 v6] is an orthogonal matrix, and

11



vi, i = 1, 2, . . . , 6, are 6 × 1 orthogonal eigenvectors. Using F = MFMT , where M is

defined by Eq. (13), the eigenvectors v5 and v6 associated with the eigenvalues λ5 and λ6,

respectively, are given by

v5 ≡







v51

v52






=Mw5 =







Aw51

w52






(31a)

v6 ≡







v61

v62






=Mw6 =







Aw61

w62






(31b)

The vectors v5 and v6 give information of the observable components for attitude and po-

sition. Each vector is equally observable since the eigenvalues are repeated. Position and

attitude information cannot be decoupled since ||r|| = 1 6= 0, which means that with one

observation no useful information can be provided. This is in sharp contrast to standard

attitude determination results using one vector observation, in which one vector observation

provides 2-axis attitude information.11 The analysis in this section also indicates that, for

the multiple-beacon case, as the angular separation of the beacons decreases (approaching

co-location) the physical meaning of the attitude and position results becomes skewed.

Two Vector Observation Case

In this section the two vector case is analyzed. We assume that the two vectors r1 and r2

are non-colinear. Unlike the one vector case, the two vector case does provide some physical

insights that are useful for beacon location studies. For the case the matrix F in Eq. (14) is

given by

F =
2
∑

i=1

Fi (32)

where Fi is given by

Fi = σ−2
i LiL

T
i (33)
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with

Li ≡









−[ri×]

ζi[ri×]2









(34)

Re-arranging the partitioned elements of Li yields

F = σ−2
1 L1L

T
1 + σ−2

2 L2L
T
2 ≡ LLT (35)

with

L ≡









−σ−1
1 [r1×] −σ−1

2 [r2×]

σ−1
1 ζ1[r1×]2 σ−1

2 ζ2[r2×]2









(36)

where the identities in Eq. (18) were used in the above quantities. Clearly, we now have

Rank(F) = Rank(L).

We now discuss the rank of the matrix L. Reference [12] shows that the rank of a q × n

matrix C (q ≥ n) is n−m, where m is the maximum number of orthogonal vectors y that

satisfy Cy = 0. For the two vector case consider the conditions for LTy = 0, with y 6= 0,

to be satisfied. Using the partitioned elements of L yields

[r1×]y1 + ζ1[r1×]2y2 = 0 (37a)

[r2×]y1 + ζ2[r2×]2y2 = 0 (37b)

where y ≡
[

yT
1 yT

2

]T

. The general relations for y1 and y2 that satisfy Eq. (37) are given

by

y1 = −ζ1[r1×]y2 + c1r1 (38a)

y1 = −ζ2[r2×]y2 + c2r2 (38b)
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where c1 and c2 are arbitrary constants. Subtracting (38a) from (38b) gives

(ζ1[r1×]− ζ2[r2×])y2 = c1r1 − c2r2 (39)

We first consider the case where c1r1 − c2r2 = 0. Since it is assumed that r1 and r2 are

non-colinear then c1 = c2 = 0, so we have

y2 = ±(ζ1r1 − ζ2r2) (40)

Therefore, the vector y2 is contained in the plane given by r1 and r2. Next, we consider the

case where c1r1− c2r2 6= 0. From Eq. (39) the quantity c1r1− c2r2 must be perpendicular to

both y2 and to (ζ1r1 − ζ2r2). Therefore, another solution for y2, denoted by y′2, is given by

y′2 = − (ζ1[r1×]− ζ2[r2×]) (c1r1 − c2r2) (41)

Note that y2 and y′2 are orthogonal vectors. Equation (38) can be used to find y1 and y′1.

Also, y and y′, where y′ ≡
[

y′
T
1 y′

T
2

]T

, are orthogonal vectors. Therefore, the maximum

number of orthogonal vectors y that satisfy LTy = 0 is 2. Hence, Rank(L) = Rank(F ) =

6− 2 = 4. Therefore, four quantities are observable using two vector observations.

Reference [3] shows that out of these four observable quantities one axis of attitude and

one axis of position information can be determined (the remaining two quantities must be

a combination of attitude and position). This states that two out of the four observable

eigenvectors of the matrix F can be decoupled in attitude and position. The results are

summarized here for completeness. We first partition the information matrix F into 3 × 3

sub-matrices as

F = P−1 =







F11 F12

F T
12 F22






, P =







P−1
11 P−1

12

P−T
12 P−1

22






(42)

with obvious definitions for F11, F12 and F22 from Eq. (10). The relationships between P11,
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P12, P22 and F11, F12, F22 are given by13

P11 = (F11 − F12F
−1
22 F

T
12) (43a)

P12 = F−1
11 F12(F

T
12F

−1
11 F12 − F22) (43b)

P22 = (F22 − F T
12F

−1
11 F12) (43c)

The matrix P11 corresponds to the attitude information, and the matrix P22 corresponds to

the position information. The matrix P11 can be shown to be given by

P11 = AGAT (44)

where

G =
1

σ̃2
1 + σ̃2

2

g gT (45)

with

g =













±{(ρ2
2 + ρ2

3)− ‖ρ‖2γ2
1/‖γ‖2}1/2

±{(ρ2
1 + ρ2

3)− ‖ρ‖2γ2
2/‖γ‖2}1/2

±{(ρ2
1 + ρ2

2)− ‖ρ‖2γ2
3/‖γ‖2}1/2













(46)

and

ρ = β1 − β2 (47a)

γ = β1 × β2 (47b)

βi ≡













Xi −Xc

Yi − Yc

Zi − Zc













, i = 1, 2 (47c)

σ̃2
i ≡

[

(Xi −Xc)
2 + (Yi − Yc)

2 + (Zi − Zc)
2
]

σ2
i , i = 1, 2 (47d)

An eigenvalue/eigenvector decomposition of Eq. (44) can be used to assess the observabil-

15



ity. The eigenvalues of Eq. (44) are given by (0, 0, [σ̃2
1 + σ̃2

2]
−1‖ρ‖2), and the eigenvector

associated with the non-zero eigenvalue is given by v = Ag/‖g‖, which defines the axis of

rotation for the observable attitude angle. The eigenvector can easily be shown to lie in the

plane of the two body vector observations since vTA(β1×β2) = 0. This vector is in essence

a weighted average of the body observations with

‖Aβ1‖ cos a1 = ‖Aβ2‖ cos a2 (48)

where a1 is the angle between Aβ1 and v, and a2 is the angle between Aβ2 and v, as shown

in Fig. 2 (a1 + a2 is the angle between Aβ1 and Aβ2). Equation (48) indicates that the

observable axis of rotation is closer to the vector with less length.

In a similar fashion, the position information matrix can be shown to be given by

P22 =
1

σ2
1 + σ2

2

hhT (49)

with

h =













±{(%2
2 + %2

3)− ‖%‖2ϑ2
1/‖ϑ‖2}1/2

±{(%2
1 + %2

3)− ‖%‖2ϑ2
2/‖ϑ‖2}1/2

±{(%2
1 + %2

2)− ‖%‖2ϑ2
3/‖ϑ‖2}1/2













(50)

and

% = δ1 − δ2 (51a)

ϑ = δ1 × δ2 (51b)

δi = βi/‖βi‖2, i = 1, 2 (51c)

The eigenvalues of Eq. (49) are given by (0, 0, [σ2
1 + σ2

2]
−1‖%‖2), and the eigenvector asso-

ciated with the non-zero eigenvalue is given by w = h/‖h‖, which defines the observable

position axis. The eigenvector can be shown to lie in the plane of the two reference vectors
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since wT (β1 × β2) = 0. The weighted average relationship for the observable position axis

is given by

‖β1‖/cosα1 = ‖β2‖/cosα2 (52)

where α1 is the angle between β1 and w, and α2 is the angle between β2 and w (α1+α2 is the

angle between β1 and β2). Equation (52) indicates that the observable position axis is closer

to the vector with greater length, which intuitively makes sense because the position solution

is more sensitive to the magnitude of the vectors. A slight change in the largest vector

produces more change in the position than the same change in the smallest vector. Also, if

‖β1‖ = ‖β2‖ or if βT
1 β2 = 0, then the eigenvector reduces to w = ±(β1 + β2)/‖β1 + β2‖,

which is the bisector of the reference vectors. As before, the information given by the two

observation vectors is used to calculate the part of the attitude needed to compute the

observable position.

Comparing Eq. (48) to Eq. (52) indicates that the beacon that is closest to the target

provides the most attitude information, but has the least position information (this is due

to the inverse relationship between them). The converse is true as well, i.e., the beacon

that is farthest from the target provides the most position information, but has the least

attitude information (see Ref. [3] for more details). The covariance analysis can be useful

to trade off the relative importance between attitude and position requirements with two

vector observations.

Three Vector Observation Case

In this section the three vector case is analyzed. We assume that any two of the vectors

r1, r2 or r3 are non-colinear. We will show that the covariance matrix in this case is full

rank for most cases. In the three vector case the matrix F from Eq. (14) is given by

F = LLT (53)
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with

L ≡









−σ−1
1 [r1×] −σ−1

2 [r2×] −σ−1
3 [r3×]

σ−1
1 ζ1[r1×]2 σ−1

2 ζ2[r2×]2 σ−1
3 ζ3[r3×]2









(54)

As before the rank of F , and ultimately the rank of F , can be determined by considering

the conditions for LTy = 0, with y 6= 0, to be satisfied. Using the partitioned elements of L

yields

[r1×]y1 + ζ1[r1×]2y2 = 0 (55a)

[r2×]y1 + ζ2[r2×]2y2 = 0 (55b)

[r3×]y1 + ζ3[r3×]2y2 = 0 (55c)

where y ≡
[

yT
1 yT

2

]T

. The general relations for y1 and y2 that satisfy Eq. (55) are given

by

y1 = −ζ1[r1×]y2 + c1r1 (56a)

y1 = −ζ2[r2×]y2 + c2r2 (56b)

y1 = −ζ3[r3×]y2 + c3r3 (56c)

where c1, c2 and c3 are arbitrary constants. Eq. (56) can be written in matrix form as

Dy = z (57)
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where

D ≡













I3×3 ζ1[r1×]

I3×3 ζ2[r2×]

I3×3 ζ3[r3×]













(58a)

z =













c1r1

c2r2

c3r3













(58b)

A solution to Eq. (57) exists if and only if the rank of the coefficient matrix D is equal to

the rank of the augmented matrix [D z].14 From this theorem the following scenarios are

possible:

1. If Rank(D) = 6 and Rank(D) = Rank ([D z]), where z 6= 0, then a solution to Eq. (57)

exists, and a nonzero y can be found such that LTy = 0. Therefore, Rank(L) =

Rank(F ) < 6.

2. If Rank(D) = 6 and Rank(D) 6= Rank ([D z]), where z 6= 0, then a solution to

Eq. (57) cannot be determined, and a nonzero y cannot be found such that LTy = 0.

Therefore, Rank(L) = Rank(F ) = 6.

3. If Rank(D) < 6, then certainly a nonzero y exists such that Eq. (57) is satisfied, and

Rank(L) = Rank(F ) < 6.

We now discuss the properties of the matrix [D z]. Through elementary row operations

this matrix can be shown to be similar to

[

D z

]

∼













I3×3 ζ1[r1×] c1r1

03×3 [u1×] η1

03×3 [u2×] η2













(59)
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where

u1 ≡ ζ2r2 − ζ1r1 (60a)

u2 ≡ ζ3r3 − ζ1r1 (60b)

η1 ≡ c2r2 − c1r1 (60c)

η2 ≡ c3r3 − c1r1 (60d)

Define the lower partition of matrix in Eq. (59) by

Q ≡







[u1×] η1

[u2×] η2






(61)

Also, let the following vectors be given in their components as u1 = [u11 u12 u13]
T , u2 =

[u21 u22 u23]
T , η1 = [η11 η12 η13]

T and η2 = [η21 η22 η23]
T . Assuming u13 6= 0, u23 6= 0 and

u11u23 − u13u21 6= 0 (if these conditions are not true then other nonzero elements can be

used, which is discussed later), the matrix Q can be shown to be similar to

Q ∼







V $1

03×3 $2






(62)
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where

V ≡













0 −u13 u12

u13 0 −u11

0 0 −u21 + u11u23/u13













(63a)

$1 ≡













η11

η12

η22 − u23η12/u13













(63b)

$2 ≡













η21 − u23η11/u13 +
u12u23 − u13u22

u11u23 − u13u21

(η22 − u23η12/u13)

η13 + u12η12/u13 + u11η11/u13

η23 + u22η22/u23 + u21η21/u23













(63c)

If u13 6= 0 and u11u23 − u13u21 6= 0, then Rank(V ) = 3. If $2 = 0, then Rank(D) =

Rank ([D z]). Therefore, if a set of nonzero c1, c2 and c3 can be found such that $2 = 0,

then a nonzero y can be found such that LTy = 0 is true, so Rank(L) = Rank(F ) < 6,

which states that full observability in attitude and position is not possible. Also, if a set of

nonzero c1, c2 and c3 cannot be found such that $2 = 0, then a nonzero y cannot be found

such that LTy = 0 is true, so Rank(L) = Rank(F ) = 6, which states that full observability

in attitude and position is possible.

The condition $2 = 0 can be restated as:

Ec = 0 (64)

where c = [c1 c2 c3]
T and

E =













−rT
1 u1 rT

2 u1 0

−rT
1 u2 0 rT

3 u2

e31 e32 e33













(65)
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The quantities e31, e32 and e33 are given by

e31 = (u23 − u13)[(u11u23 − u13u21)r11 + (u12u23 − u13u22)r12] (66a)

e32 = −u23[(u11u23 − u13u21)r21 + (u12u23 − u13u22)r22] (66b)

e33 = u13[(u11u23 − u13u21)r31 + (u12u23 − u13u22)r32] (66c)

where r1 = [r11 r12 r13]
T , r2 = [r21 r22 r23]

T and r3 = [r31 r32 r33]
T . If rT

2 u1 6= 0 and rT
3 u2 6= 0,

the following similarity condition can be obtained through elementary row operations:

E ∼













−rT
1 u1 rT

2 u1 0

−rT
1 u2 0 rT

3 u2

χ 0 0













(67)

where

χ = e31 +
rT
1 u1

rT
2 u1

e32 +
rT
1 u2

rT
3 u2

e33 (68)

If χ 6= 0 then Rank(E) = 3, and Eq. (64) can only be satisfied when c = 0. Hence, Rank(L) =

Rank(F ) = 6, which gives an observable system. After some algebraic manipulations χ can

also be shown to be given by

χ =

[

0 0 1

]

[(u1 × u2)× v] (69)

where

v ≡ (u23 − u13)r1 −
rT
1 u1

rT
2 u1

u23r2 +
rT
1 u2

rT
3 u2

u13r3 (70)

Therefore, χ = 0 when the third component of [(u1 × u2)× v] is zero, which occurs when

u1, u2 and v lie in the same plane that is perpendicular to the object space plane given by

Z = 0 (see Fig. 1). Hence, Rank(E) < 3 and a nonzero c can be found that satisfies Eq. (64),

which means that the system is not observable since Rank(L) = Rank(F ) < 6. From the
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matrix E in Eq. (65) the following cases can easily be proved:

1. If rT
3 u2 = 0 and e33 = 0, then Rank(F ) < 6.

2. If rT
2 u1 = 0 and e32 = 0, then Rank(F ) < 6.

3. If rT
1 u1 = rT

2 u1 = 0, then Rank(F ) < 6.

4. If rT
1 u2 = rT

3 u2 = 0, then Rank(F ) < 6.

5. If rT
2 u1 = 0 and e32 6= 0, with rT

3 u2 6= 0 and rT
1 u1 6= 0, then Rank(F ) = 6.

6. If rT
3 u2 = 0 and e33 6= 0, with rT

2 u1 6= 0 and rT
1 u2 6= 0, then Rank(F ) = 6.

The first two conditions are physically interesting cases since they can be satisfied even if

the vectors r1, r2 and r3 are not coplanar (e.g., consider the vectors r1 = [1 − 2 1]T/
√
6,

r2 = [2 − 2 1]T/3 and r3 = [3 − 1 1]T/
√
11, which gives a rank deficient F ). Also, the

third and fourth cases occur only when the three vectors ζ1r1, ζ2r2 and ζ3r3 are parallel to

each other with equal magnitude, which violates the assumption made in this section. An

obvious rank deficient condition for Q in Eq. (61) exists when u1 × u2 = 0, which occurs

when u1 and u2 are parallel.

In the previous derivations it has been assumed that u13 6= 0, u23 6= 0 and u11u23 −

u13u21 6= 0. If these conditions are not true, then the other nonzero elements of u1 and

u2 can be used to derive similar conditions for unobservability. This yields a condition

of unobservability that occurs when the endpoints of the position vectors (ζ1r1, ζ2r2 and

ζ3r3) can be connected by a straight line (e.g., consider the vectors r1 = [1 2 1]T/
√
6,

r2 = [1 2 2]T/3 and r3 = [1 2 3]T/
√
14, which gives a rank deficient F ). We should also note

that even though F can be shown to have full rank using three vector observations under most

conditions, a unique attitude and position cannot be determined due to a sign ambiguity in

the solution. This is difficult to prove analytically, but can be shown by simulation. This

scenario is similar to attitude determination results using angle observations.15
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More Than Three Observations

In the four vector case the matrix F from Eq. (14) is given by

F = LLT (71)

with

L ≡









−σ−1
1 [r1×] −σ−1

2 [r2×] −σ−1
3 [r3×] −σ−1

4 [r4×]

σ−1
1 ζ1[r1×]2 σ−1

2 ζ2[r2×]2 σ−1
3 ζ3[r3×]2 σ−1

4 ζ4[r4×]2









(72)

As before the rank of F , and ultimately the rank of F , can be determined by considering

the conditions for LTy = 0, with y 6= 0, to be satisfied. In a similar fashion as the three

vector case the conditions for LTy = 0 can be written as

Dy = z (73)

where

D ≡



















I3×3 ζ1[r1×]

I3×3 ζ2[r2×]

I3×3 ζ3[r3×]

I3×3 ζ4[r4×]



















(74a)

z =



















c1r1

c2r2

c3r3

c4r4



















(74b)

A condition for an unobservable system can be derived using the same procedure as in the

three vector case. Similar to the three vector case, the four vector case is unobservable when

the endpoints of the position vectors can be connected by a straight line. These results are
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also valid when more than four LOS vectors are used. Furthermore, a unique solution for the

attitude and position exists when four beacons are present and the system is observable.3

Trace and Eigenvalues of the Covariance Matrix

In this section the trace of the covariance matrix, given in Eq. (10), is analyzed. The trace

of this matrix is useful to quantify the overall performance of the solution for the attitude

and position (i.e., a lower trace provides a more overall accurate solution). The matrix F in

Eq. (14) can be written as

F =
N
∑

i=1

Fi (75)

where

Fi =













−σ−2
i [ri×]2 σ−2

i ζi[ri×]

σ−2
i ζi[ri×]T −σ−2

i ζi
2[ri×]2













(76)

The eigenvalues of Fi are given by

λ1 = λ2 = λ3 = λ4 = 0, λ5 = λ6 = σ−2
i (1 + ζ2

i ) (77)

Then the trace of the information matrix F is given by

tr (F ) = tr (F) = 2
N
∑

i=1

σ−2
i (1 + ζ2

i ) (78)

where the invariance of the trace through a similarity transformation is used.

We now discuss the properties of the matrix P . First a useful theorem is shown. Given

two real n× n symmetric matrices, A and B, with A positive definite and B positive semi-

definite, there exists a nonsingular T such that A = T T T and B = T ΥT T , where Υ is

a diagonal matrix with elements given by Υ = diag [µ1 µ2 · · · µn].
16 The matrix T can be

derived using the following procedure. Since A is symmetric and positive definite a singular

value decomposition can be performed so that A = U Q2UT , where U is an orthogonal
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matrix and Q is a diagonal matrix of the square roots of the eigenvalues of A. Then,

compute C = Q−1UTB U Q−1. Since C is symmetric a singular value decomposition can be

performed so that C = V ΥV T . Then T = U QV . Let F̄3 ≡
∑3

i=1Fi have full rank, and

define F̄4 ≡
∑4

i=1Fi = F̄3+F4 which also has full rank. Also, F̄3 and F̄4 are positive definite

matrices, and F4 is positive semi-definite. This theorem can be shown to easily prove that

if F has full rank for three vector observations, then F has full rank for more than three

observations. Now let F̄3 = T T T = U Q2UT and let C = Q−1UTF4U Q−1 = V ΥV T . So

F4 = T ΥT T . Therefore, F̄4 is given by

F̄4 = F̄3 + F4 = T T T + T ΥT T

= T diag [(1 + µ1) (1 + µ2) · · · (1 + µ6)] T
T

(79)

After some algebraic manipulations F̄−1
4 can be shown to be given by

F̄−1
4 = F̄−1

3 −∆F̄ (80)

where ∆F̄ is a positive semi-definite matrix given by

∆F̄ = U Q−1V diag

[

µ1

1 + µ1

µ2

1 + µ2

· · · µ6

1 + µ6

]

V TQ−1UT (81)

Using the fact that the trace of the sum of two matrices is given by sum of the trace of each

matrix individually, we have tr
(

F̄−1
4

)

= tr
(

F̄−1
3

)

− tr
(

∆F̄
)

. Therefore, since tr
(

∆F̄
)

> 0

then tr
(

F̄−1
4

)

< tr
(

F̄−1
3

)

. Since the trace is invariant under a similarity transformation,

then the trace of the covariance matrix P in Eq. (10) with four vector observations is al-

ways less than the trace of the covariance using three vector observations, which intuitively

makes sense. This result can be further expanded to multiple observations (i.e., the trace

of the covariance using N observations is always less than the trace using any number of

observations less than N).
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We now discuss the properties of the eigenvalues of P . Consider the following decom-

position: F̄3xi = λixi and F̄4yi = αiyi (i = 1, 2, . . . , 6), where λi is an eigenvalue of the

matrix F̄3, xi is the eigenvector of the matrix F̄3 corresponding to λi, αi is an eigenvalue of

the matrix F̄4, and yi is the eigenvector of the matrix F̄4 corresponding with αi. Since the

eigenvectors of a symmetric matrix are orthogonal F̄3yi is related by

F̄3yi =
6
∑

j=1

kijλjxj (82)

where the kij are constants with
∑6

j=1 k
2
ij = 1. Also, F4yi is given by

F4yi =
6
∑

j=1

(αi − λj)kijxj (83)

Since the eigenvectors of F̄3 are orthogonal and since F4 is symmetric positive semi-definite,

then
6
∑

j=1

(αi − λj)k
2
ij = αi

6
∑

j=1

k2
ij −

6
∑

j=1

k2
ijλj = αi −

6
∑

j=1

k2
ijλj ≥ 0 (84)

Therefore, the following condition is true:

αi ≥
6
∑

j=1

k2
ijλj (85)

Let λmin = min [λ1 λ2 · · · λ6]. Then from Eq. (85) αi > λmin. We know that 1/λi is an

eigenvalue of both F̄−1
3 and P using three observations, and 1/αi is an eigenvalue of both

F̄−1
4 and P using four observations. The eigenvalue analysis can be extended to the N vector

observation case, and indicates that each eigenvalue of P using N observations is less than

the maximum eigenvalue of the matrix with less than N observations. This proves that as

the number of vector observations (N) increases more information is provided, which again

intuitively makes sense.

27



Examples

Observability examples using representative geometric scenarios are shown in this section.

We first consider the VISNAV system configuration, shown in Figure 1, with the following

3 beacon locations:

X1 = 1m, Y1 = 2m, Z1 = 1m

X2 = 1m, Y2 = 2m, Z2 = 2m

X3 = 1m, Y3 = 2m, Z3 = 3m

The variances of the measurement error processes are assumed to be equal for each observa-

tion, which subsequently do not affect the observability analysis. Therefore all measurement

error variances can be set to σ2
i = 1 for i = 1, 2, 3. Also, the focal length can be set to

f = 1 without loss in generality. The true vehicle motion is given by Xc = 30 exp[−(1/300)t]

m, Yc = 30 − (30/1800)t m and Zc = 10 − (10/1800)t m. A 1, 800 sec simulation has been

performed to generate the Fisher information matrix, i.e., the inverse of the covariance ma-

trix in Eq. (10). A plot of the eigenvalues of the Fisher information at each time is shown

in Figure 3. Two of the eigenvalues are nearly equal (the top line in the plot represents

these eigenvalues). For this example the Fisher information matrix is clearly rank deficient.

Thus, this configuration leads to an unobservable system. This is due to the fact that the

endpoints of the position vectors are connected by a straight line, as previously discussed.

For the second example we consider the following 3 beacon locations:

X1 = 0.5m, Y1 = 0.5m, Z1 = 0.0m

X2 = 0.5m, Y2 = −0.5m, Z2 = 0.0m

X3 = 0.2m, Y3 = 0.0m, Z3 = 0.1m

A plot of the eigenvalues of the Fisher information at each time is shown in Figure 4. Once
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again two of the eigenvalues are nearly equal (the top line in the plot represents these

eigenvalues). For this example the Fisher information matrix is now full rank at all times.

Thus, this configuration leads to an observable system. A measure of the performance in the

estimation algorithm is given by the condition number (the ratio of the largest eigenvalue

of the information matrix to the smallest eigenvalue). For this example the performance

improves as the vehicle approaches the beacons, since they now more completely span the

focal place area. However as the vehicle moves past the beacons the performance degrades,

which is more clearly seen in Figure 3. This is directly related to the variances of the attitude

and position estimation errors (see Ref. [3] for more details). These examples indicate that

the analysis shown in this paper can help to understand and assess the observability of the

estimation process when using LOS measurements to determine attitude and position.

Conclusions

An observability analysis for six degree of freedom state determination using vector obser-

vations was performed. The observability analysis proved that when one vector observation

is used, two pieces of information can be inferred. However, the observable quantities involve

a combination of position and attitude information, which cannot be decoupled. When two

vector observations are used the rank of the covariance matrix is four. However, only one

axis of attitude and one axis of position can be determined physically while the other two

pieces of information involve coupled attitude/position information. When three or more

vector observations are used the covariance matrix has full rank in most cases, and a unique

solution for attitude and position exists for four or more vector observations. Finally, a

trace and eigenvalue analysis of the covariance matrix indicated that as the number of vec-

tor observations increases, more accurate attitude and position information is provided in

general.
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Figure 1: Vision Navigation System

Figure 2: Weighted Average Relation for Attitude Observability

Figure 3: Eigenvalues of the Information Matrix for an Unobservable Case
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