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Abstract
In this paper, an optimal batch estimator and smoother based on the Minimum Model Error

(MME) approach is developed for three-axis stabilized spacecraft. The formulation described in
this paper is shown using only attitude sensors (e.g., three-axis magnetometers, sun sensors, star
trackers, etc). This algorithm accurately estimates the attitude of a spacecraft, and substantially
smoothes noise associated with attitude sensor measurements. The general functional form of
the optimal estimation approach involves the solution of a nonlinear two-point-boundary-value-
problem that can only be solved using computational intense methods. A linearized solution is
also shown that is computationally more efficient than methods which solve the general form.
The linearized solution is useful when an a priori estimate of the angular velocity is already
known, which may be obtained from a finite difference of a determined attitude, or from
propagation of a dynamics model. Results using this new algorithm indicate that an MME-based
approach accurately estimates the attitude of an actual spacecraft with the sole use of

magnetometer sensor measurements.
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Introduction
The attitude of a spacecraft can be determined by either deterministic methods or by utilizing

algorithms which combine dynamic and/or kinematic models with sensor data. Three-axis
deterministic methods, such as TRIAD [1], QUEST [2], and FOAM [3], require at least two sets
of vector measurements to determine the attitude. An advantage of both the QUEST and FOAM
algorithms is that the attitude of a spacecraft can be estimated using more than two sets of
measurements. This is accomplished by minimizing a quadratic loss function first posed by
Wahba [4]. However, all deterministic methods fail when only one set of vector measurements
is available, (e.g., magnetometer data only). Estimation algorithms utilize dynamic and/or
kinematic models, and subsequently can (in theory) estimate the attitude of a spacecraft using
only one set of vector measurements. Although all spacecraft in use today have at least two on-
board attitude sensors, estimation techniques can be used to determine the attitude during

anomalous periods, such as solar eclipse and/or sensor co-alignment.

The most commonly used technique for attitude estimation is the Kalman filter [5]. The
Kalman filter utilizes state-space representations to both estimate plant dynamics and also filter
noisy data. Errors in the dynamical model and measurement process are assumed to be modeled
by a zero-mean Gaussian process with known covariance. The optimality criterion in the
Kalman filter minimizes the trace error covariance between estimated responses and model
responses. Smoothing algorithms further refine state estimates by utilizing both a “forward
filter” and a “backward filter” [6]. An advantage of smoothing algorithms is that the error
covariance is always less than or equal to either the forward or backward filter alone. A
disadvantage of smoothing algorithms is that they cannot be implemented in sequential (real-

time) estimation.

Early practical applications of Kalman filtering for attitude estimation are given by Pauling et
al. [7] and Toda et al. [8], for the Space Precision Attitude Reference System (SPARS). In
particular, Pauling et al. [7] used the now familiar quaternion representation for model prediction
in the filter design. Since the quaternion representation is free of singularities (thus avoiding the
“gimbal-lock” situation), and since the attitude matrix is algebraic in the quaternion components,

this representation is most frequently used in attitude determination and estimation algorithms.



A more complete survey of other attitude representations is given by Shuster [9]. Also, a more
complete survey of early Kalman filtering techniques for attitude estimation is given by Lefferts
et al [10].

More recent studies using Kalman filtering techniques have been performed for the Earth
Radiation Budget Satellite (ERBS) [11], [12], the Upper Atmospheric Research Satellite (UARS)
[13], the Extreme Ultra Violet Explorer (EUVE) [14], and the Solar Anomalous Magnetospheric
Particle Explorer (SAMPEX) [15], [16]. In particular, studies of the EUVE spacecraft involved
the application of a smoothing algorithm to further reduce errors in the estimated attitudes using
both attitude sensors and gyro data. Also, studies of both the ERBS and SAMPEX spacecraft
used Kalman filtering techniques for attitude estimation which involved gyro degradation or gyro
omission. The thrust of all of these investigations is to improve attitude estimates through the
use of optimally tuned filter parameters, thereby providing the means for reliable backup attitude

estimation schemes.

For spacecraft attitude estimation, the Kalman filter is most applicable to spacecraft equipped
with three-axis gyros as well as attitude sensors [10]. However, gyros are generally expensive
and are often prone to degradation or failure. Therefore, in recent years gyros have been omitted
(e.g., in Small Explorer (SMEX) spacecraft, such as SAMPEX). To circumvent the problem of
gyro omission or failure, analytical models of rate motion can be used. This approach has been
successfully used in a Real-Time Sequential Filter (RTSF) algorithm which propagates state
estimates and error covariances using dynamic models [16]. The estimation of dynamic rates by
the RTSF is accomplished from angular momentum model propagation, and then correcting for
these rates by using a “gyro bias” component in the filter design. A clear advantage of using
dynamic models is shown for the case of near co-alignment of the spacecraft-to-sun and magnetic
field vectors. For this case, deterministic algorithms, such as TRIAD and QUEST, show
anomalous behaviors with extreme deviations in determined attitudes. Since the RTSF
propagates an analytical model of motion, attitude estimates are available even when data from
only one attitude sensor is available. However, fairly accurate models of control and disturbance

torques were required in order to obtain accurate estimates [16].



Although the quaternion representation is the most commonly used for attitude estimation,
the problem of maintaining proper normalization exists. This constraint leads to a singularity in
the covariance matrix which in actual practice is difficult to maintain due to linearization and/or
computer round-off error. Three solutions (two of which yield identical results) to this problem
are summarized by Lefferts et al. [10]. The first approach uses the transition matrix of the state-
error vector to obtain a reduced order representation of the error covariance. The second
approach deletes one of the quaternion components in order to obtain a truncated error
covariance expression. The third approach uses an incremental quaternion error which results in
a representation that is identical to the first approach. This approach is most commonly used to

maintain normalization for the estimated quaternion.

Bar-ltzhack and Deutschmann [12] show two further approaches to quaternion normalization.
The first approach represents the state vector by additive corrections to the quaternion estimated
by the Kalman filter. However, this approach does not maintain the normalization constraint
unless it converges to the correct quaternion [12]. Re-normalization is carried out externally to
the Kalman filter. This approach can be useful in obtaining a faster convergence, but lacks
physical sense in the filter's state propagation. The second approach uses the normalized
guaternion as a “pseudo-measurement.” The re-normalization is subsequently carried out by
performing a measurement update with ideally zero noise on the “pseudo-measurement,” thereby
forcing the estimated quaternion to the normalized quaternion. However, attitude solutions

converge to incorrect values when noise levels are high [12].

In this paper, an optimal attitude estimation and smoothing algorithm is developed which is
capable of accurate state estimation for spacecraft lacking accurate or any gyro measurements
and/or accurate dynamic models. This algorithm is based on the Minimum Model Error (MME)
[17] batch-estimation approach. The advantages of the MME estimator over conventional
Kalman strategies include: (i) no a priori statistics on the form of the model error are required,
(i) the actual model error is determined as part of the solution, and (iii) the states estimates are
always free of jump discontinuities. For quaternion estimation, the MME nonlinear estimator
has the additional advantage that quaternion normalization is maintained as an inherent feature of
the process. The MME estimation approach has been successfully applied to numerous poorly-

modeled dynamic systems which exhibit highly nonlinear behaviors (e.g., see [18], [19]).



Initial results using an MME approach to estimate the attitude and angular rates of SAMPEX
utilized TRIAD determined attitudes as measurements [20], [21]. The formulation developed in
this paper expands upon this technique to use attitude sensors, such as three-axis magnetometers
(TAM), fine sun sensors (FSS), star trackers, etc. The general functional form of the optimal
estimation approach involves the solution of a nonlinear two-point-boundary-value-problem
(TPBVP). This problem has been previously solved by using gradient based techniques [22].
However, gradient based techniques can be computationally intense. The MME-based approach
presented in this paper utilizes a linearization technique similar to Ref. [10] with a Riccati
transformation. This leads to an algorithm which is easy to design and implement in actual

practice.

The organization of this paper proceeds as follows. First, a summary of the spacecraft
attitude kinematics, dynamics, and sensor models is shown. Then, a brief review of the MME
estimator for nonlinear systems is shown. Next, a MME-based estimator is developed for the
purpose of attitude estimation. A general attitude estimation formulation is shown which uses
the nonlinear kinematics and dynamics model. Then, a linearization technique with a Riccati
transformation is derived in order to provide a computationally efficient algorithm. Finally, the
MME estimator is used to estimate the attitude of SAMPEX in order to demonstrate the

usefulness of this algorithm.

Attitude Kinematics and Dynamics
In this section, a brief review of the kinematic and dynamic equations of motion for a three-

axis stabilized spacecraft is shown. The attitude is assumed to be represented by the quaternion,

defined as
q
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wheren is a unit vector corresponding to the axis of rotation @nd the angle of rotation. The

guaternion kinematic equations of motion are derived by using the spacecraft’'s angular velocity

(@), given by
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The 3x 3dimensional matriceﬁrg ><] and[g13 X] are referred to as cross product matrices since
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The quaternion obeys the following normalization constraint
q' 9= of30 5+ G =1 (6)
Also, the matrixE(g) obeys the following helpful relations
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="(q)A=-=T(A)q for anyA (7d)
The measurement model is assumed to be of the form given by

Bg = A(q)B, ®)

where B, is a 3x ldimensional vector of some reference object (e.g., a vector to the sun or to a
star, or the Earth’'s magnetic field vector) in a reference coordinate syBigms a 3 1
dimensional vector defining the components of the corresponding reference vector measured in

the spacecraft body frame, amﬂg) is given by

Ag)= (0‘% - 913913) b3+ 2 G5 1= 2 q[ﬂ?, X] (©)

which is the ¥ 3dimensional (orthogonal) attitude matrix.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft

are given by [23]
L(t)= N(t)-(t)x L(1) (10)

where L is the total angular momentunlN is the total external torque (which includes, e.g.,

control torques, aerodynamic drag torques, solar pressure torques, etc), ianthe inertia
matrix of the spacecraft. If reaction or momentum wheels are used on the spacecraft, the total

angular momentum is given by
L(t)=Ja(t)+h(t) (12)

whereh is the total angular momentum due to the wheels. Thus, Equation (10) can be re-written

as

L(t) = N() {37y~ h()]}x (Y (12)

Also, from Equations (10) and (11) the following angular velocity form of Euler’'s equation can

be used

Ja(t) = N(t)~ H(t) = (1) x [ Joo( §) + K ] (13)



which involves the derivative of the wheel angular momentum.

Minimum Model Error Estimation
In this section, a brief review of the Minimum Model Error (MME) estimation algorithm is

shown. The essential feature of this batch estimator is that actual model error trajectories are
determined during the estimation process, unlike most filter/smoother algorithms which assume
that the model error is a stochastic process with known properties. The MME algorithm
determines the correction added to the assumed model which yields an accurate representation of
the system’s behavior. This is accomplished by solving an optimality condition using an output
residual constraint. Therefore, accurate state estimates can be determined without the use of

precise system representations in the assumed model.

The MME algorithm assumes that the state estimates are given by a preliminary model and a

to-be-determined model error vector, given by

X(t) = F[X(t), (9, A9, (14a)

9(t)= 4 (1. (14b)

where f is annx1 model vectorX(t) is annx1 state estimate vectau(t) is a px1 vector of
known inputs, andi(t) is anlx1 model error vectorg is a qx1 measurement vector, and

J(t) is aqx1 estimated output vector. State-observable discrete measurements are assumed for

Equation (14b) in the following form
(%) = g [ X ). ]+ % (15)

where z(tk) is a gx1 measurement vector at timg, and v, is a qx1 measurement noise
vector which is assumed to be a zero-mean, Gaussian distributed process with known covariance.
In the MME algorithm, the optimal state estimates are determined on the basis that the

measurement-minus-estimate error covariance matrix must match the measurement-minus-truth

error covariance matrix. This condition is referred to as the “covariance constraint,” shown as



{9(60) - 9 [%(0). & X 1) - g [ X ). k]}T = R (16)

where R, is the element-by-element (known) measurement error covariance. However,

problems may arise using Equation (16) which are attributed to “small sample” statistics [24].
Therefore, in the typical case where the measurement error process is stationary, the average

covariance can be used, given by

m
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wherem is the total number of measurements.

Next, the following cost function is minimized with respecti(@)
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where W is an nxn positive-definite weighting matrix. The necessary conditions for the

minimization of J lead to the following TPBVP [17]
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where A(t) is an nx1 co-state vector which is updated at each measurement point using

Equation (19d). The boundary conditions are selected such that g(lﬂ@rzg or X(to) 15

specified at the initial time and eithg(t?) =0 or X(tf ) is specified at the final time.

Attitude Estimation
In this section, the MME estimator is derived for spacecraft which lack any rate information.

First, a general MME-based algorithm using the nonlinear kinematics and dynamics equations of
motion is shown. Next, a linearized algorithm with a Riccati-type transformation is derived
using an a priori estimate of the angular velocity.
General Formulation

The general formulation is based upon using Euler's equation for modeling the angular
momentum, and the quaternion kinematics equation for the attitude. The MME problem for this

case minimizes the following cost function

1= {Be-A98) | RY{B- Ausl 2] 30 wa) © o)
k=1 b <7y
subject to
1
d(n)]_| 29D Oaxs {gm} O3 O3 F(tﬂ:g
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where

w=3""{L-h} (22)

E is the measured angular momentum due to the wheels3 atehotes the body measurement.
Note that the model error terch acts as a torque model correction to the dynamics. Minimizing

Equation (20) leads to the TPBVP given by Equation (21) and the following

10



d(t)+wA (9=0 (23a)
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with discrete jumps in the co-states given by

Aq(t) = Aq(tc) +HTOR™{Be - AGBY . Aq()=0 (24)
The matrixH in Equation (24) can be derived to be
H(1)=2="() (25)
where
1=w(d)B (26a)
-Q4|3x3+[913 "]
w(g) o I (26b)
qT
13

The TPBVP given by Equations (21) and (23) can be solved by using a simple gradient-based
search technique. The extension to multiple attitude sensors is accomplished by using a

partitioned residual output and sensitivity matrix, given by
{Be, - A(9)B,}
{E Bmtot - A(g)_BI ”tot}

wherem,, is the total number of vector observations. It is important to note that the MME state

H - HT] 27)

Mot

estimate in Equation (21) is free of jump discontinuities, unlike traditional smoothing algorithms

such as the Kalman smoother.

The co-state update in Equation (24) shows a nonlinear relationship with respect to the

guaternion estimate. However, this nonlinearity can be reduced tdimeaafunction if the

11



guaternions obey normalization and the measurement errors are assumed isotropic (i.e., equal for

each axis so thaR = rlz«3, Wherer is a scalar ). This can be shown by deriving the co-state

update using

o5 - Be-Aam] (B 491]) 28)

In order to determine the partial derivative in Equation (28), the following identities and

definitions are used

B x| ¢ -B
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Equation (28) can now be re-written as
10 ~ N T A2

2 5 |BoBa 20" 0( Be)e(8) (6 8)( ¥ 30)

The partial derivative in Equation (30) is given by

2 ~ N T AT A ~
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Hence, if the quaternions obey normalization the following identity is true

=(){Bs - A(Q) B} ={2Be)E(B)-(H B) hxa} (32)

Therefore, if the sensor measurement errors are isotropic, the co-state update in Equation (24) is

linear with respect to the quaternion estimate. Equation (32) also leads to another useful identity

=(1)=E(B)Z(a) (33)
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Linearized Formulation

The linearized method involves a two-step process. The first determines the angular velocity

using a simplified MME cost function and a nominal angular velocity input. The second uses the

MME-determined angular velocity to determine a torque model error correction. Although the

second step is not required for an attitude solution, it may be useful in providing a correction to

the dynamics model for linear and/or nonlinear identification [21]. The MME attitude angular

velocity estimation formulation minimizes the following cost function

R'l{ B- Ac)Lﬁs J d(r) o (34)

subject to

q(1) —9[0| +d9)yd Ub)=7 (35)

where d,, is an a priori estimate of the angular velocity. The model emdri§¢ now a

correction to the nominal angular velocity. The TPBVP for this problem is given by

60 =200dn(0+ A5 49 qb)=7 (362)
d(t)= —%W‘lzT( YA (36b)
A(0) = > 0[dn(t) +d(9] A(Y (360)
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A[t) =A(tk )+ HT (R ™{Bs -~ A4 B |,

A linearized solution can be derived by using error quaternion multiplication (this approach is

similar to the linear equations used in [10]). First, define an error quaternion given by (dropping

the (t) notation for now)

54=q0q" (37)

13



where 6§ is the error quaternion, artqzln is a nominal quaternion determined usihg. The

inverse quaternion is determined by taking the negative of the first three components. The

quaternion product is defined as

0,00,=[=(a,) | g, (38)

Taking the time derivative of Equation (37) yields

54 =40 9;1+ o0 _q;l (39)

Substituting the quaternion kinematic equations into Equation (39) gives
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Equation (40) can be re-written as
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where
od=d-d, (42)

If 5g4 =1 then second order terms in Equation (41) are negligible and the fourth derivative error
component is zero, which leads to

5 . 1
50, =-{d, x]50,,+ 50 43)
with
36,,=="(q,)q (44)

In order to determinédd the cost function in Equation (34) is minimized subject to the equality

constraint in Equation (43). This minimization leads to the following TPBVP
A _ N 1 1 1 . 3
5913(t) = ~dn(1) x]5913( 0 Egn( ! 2 W=A( D, 5794 6)=0 (45a)
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The TPBVP in Equation (45) can be decoupled by introducing a time-varying Riccati

A t)=0(450)

transformation [25]. This leads to the following set of equations

= P(O[n( ] +[ch(9-]" R+ RY W R} (46)

Pi) = A(t)-4[ M) & | R Ag) pE)=0 (46b)
A)= {5 FOW (0]} £)+5 RYA(x (460
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Therefore, the Riccati trajectories in Equation (46a) are integrated backwards in time with
discrete updates given at the measurement time by Equation (46b). Also, the inhomogeneous
trajectories in Equation (46c¢) are integrated backwards in time accounting for discrete jumps
using Equation (46d). Then, the error quaternion trajectories can be solved by integrating the

following equation forward in time
54 () =-I[d ()x]+IW IR Sy (4-S d()-S Wier  &'a(dH=0 (@7
6,50 = [0n(>]+ W R Do (1= d()-5 Wik o'g(d)=0 @7
The estimated quaternion trajectories can then be constructed by using
(48)

The MME angular rate trajectories=d, + d in Equation (35) can now be used to estimate

model error torques. First, a “measured” angular momentum vector is determined by

1=

EZJ(L)"- (49)

In general the angular momentum measurements in Equation (49) will be noisy due to the

measurements of the wheel speed. However, this noise can be smoothed by another simple linear
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MME estimator [22]. The MME problem for determining the errors in the torque input of

Euler’s equation minimizes the following cost function

1m
A

L~ Lo, +3 [ d70) war) @ (50)

subject to

L(t) = ~{e(t) ]L(t) + N(t) +d(t) )= 1, (51)

The matrix R in Equation (50) now represents the covariance of the noise associateﬂ with

Minimizing Equation (50) leads to the following TPBVP
L(t) = a(t) <JLM) + N -WA(Y,  Lb)= 1o (52a)

A(t) = {e(t) <JA(t) (52b)
t,f) =0 (52¢)

The solution to the TPBVP in Equation (52) can also be found by using a Riccati transformation,

which leads to the following equations

)= P(O[a(t)x]+ YW R §+[w( )] R ) (53a)
P(tc) = P(t)+ RS, H)=0 (53b)
A)={ OW™[w(9x]} £)- R} N} (53¢)
i)=&+ RIL . fi)=0 (53d)

Lo ={Ha)]-w RO UY-W£3+ N} (g=T6  (53)

Therefore, the Riccati and inhomogeneous trajectories are solved backwards in time using
Equations (53a) and (53c), accounting for discrete jumps by Equations (53b) and (53d). Then,

the angular momentum estimates are determined by integrating Equation (53e) forwards in time.
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Attitude Estimation of an Actual Spacecraft
In this section, the MME attitude estimation algorithm previously developed is used to

estimate the attitude, rates, and torque modeling errors of the SAMPEX spacecraft with
magnetometer data only. The spacecraft is three-axis stabilized in a 550 by 675 km elliptical
orbit with an 82 inclination. A schematic of the spacecraft with axis definitions is shown in
Figure 1. The spacecraft is nominally controlled to rotate about the y-axis at some constant rate,
while the other axis rates are controlled to near zero. The attitude control hardware consists of a
magnetic torquer assembly (MTA) and a single reaction wheel. The attitude determination
hardware consists of five coarse Sun sensors (CSS) (primarily for Sun-acquisition), one fine Sun
sensor (FSS), and a three-axis magnetometer (TAM). No rate gyroscopic instruments are present

on the spacecratft.

The onboard computer routine to determine attitude is based upon the TRIAD [1]
deterministic method. The spacecraft is controlled by the MTA to maintain the fixed solar arrays
perpendicular to the sun-line. The reaction wheel is used to point the instrument boresight axis
as required by the scientific mission. During eclipse no sun measurements are available from the
FSS. Attitude control is maintained by using a constant sun-line vector as a “pseudo-
measurement.” The MTA is turned off in eclipse, but the reaction wheel is still used to control
pitch. During vector co-alignment, the spacecraft is placed in a “coast” mode in which neither
the MTA nor the reaction wheel is used (see [26] for more details). The required nominal
attitude determination accuracy 2°. During anomalous conditions (eclipse and/or
measurement vector co-alignment) an accurate attitude cannot be determined by deterministic
methods such as TRIAD. The MME algorithm presented here can determine the attitude using
TAM measurements only, so that attitude accuracy may be checked for any deviations from

nominal performance.

The inertial magnetic field is obtained by using a 8th order spherical harmonic model of the
Earth’s magnetic field with International Geomagnetic Reference Field (IGRF) coefficients.
Magnetometer measurements by the TAM are known to be extremely accurate (within 0.3mG).
However, experience has shown that errors in the magnetic field model have a standard deviation
of about 3mG [16]. Therefore, 9@ chosen for the diagonal elements of the measurement

covariance matrix.
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A plot of the angular velocities determined from taking finite differences of the TRIAD
attitude solutions is shown in Figure 2. These rates are extremely noisy, which is due to the large
digitization noise associated with the FSS measurements. Also, the large errors at the beginning
are due to a TAM outage or loss of signal. In order to demonstrate the MME capabilities a test
case was run using only TAM measurements to estimate the attitude and angular rates. The
linearized MME estimator is implemented using Equations (46)-(48) with the angular velocities
shown in Figure 2 as the nominal estimates. The weighting matrix is determined by using a
simple parameter optimization scheme with a quadratic form of the covariance constraint as a
cost function. A plot of the MME determined angular velocities is shown in Figure 3. This plot
clearly shows a rotation about the spacecraft y-axis, which is the desired control motion. Also, a
noticeable motion in the x and z axes is evident, which is not easily seen in Figure 2. This
motion may be due to the MTA not fully damping spacecraft nutation. Although this is not
relevant for the SAMPEX spacecraft (since requirements are not stringent), this clearly shows the
capability of the MME estimator to significantly smooth the noise associated with the available
sensor complement. A plot of the error between the estimated MME attitudes using TAM data
only and the attitudes determined by TRIAD is shown in Figure 4. A slight hangoff is seen in the
pitch axis. This may be due to nonlinear effects in the magnetic field model. Although the
accuracy using TAM cannot be fully known for this system, the methodology of the MME
approach seems to provide a reasonable method for attitude estimation, while performing

substantial smoothing of noisy measurements.

Finally, the MME estimator is used to estimate the torque modeling error using Equation
(53). This is important for purposes of updating the dynamics model using linear or nonlinear
identification techniques [21]. Since the angular velocity estimates have been significantly
smoothed using Equations (46)-(48), the MME estimator for the torque case was implemented
with W=0, so that the estimated angular momentum matches the “measured” angular
momentum exactly for anyR. Therefore, no tuning of the MME estimator parameters is
required. Also, no modeling of disturbance torques or control torques is used in the MME

estimator (i.e.,N =0). A plot of the determined torque modeling errors is shown in Figure 5.

This corresponds to the torque modeling errors determined using the full nonlinear solution of
the TPBVP shown in Equations (21) and (23). Therefore, the linearized MME approach
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provides accurate solutions without using computational expensive methods (such as a gradient
search) for the full nonlinear solution. Also, the MME estimator is able to easily estimate the
required torque error using no modeling of disturbance torques, unlike a Kalman filter which

required extensive modeling of disturbance torques (useld )irand intensive tuning of filter

parameters [16].

Conclusions
In this paper, a Minimum Model Error algorithm was presented for use in attitude estimation.

This algorithm was developed for spacecraft which do not possess angular rate sensing
equipment. A general form of the optimal estimation approach was shown that involves a
nonlinear two-point-boundary-value-problem, which can only be solved using computationally
intense methods. A linearized solution was also shown that is more efficient than methods which
solve the general form. Both solutions can determine the torque modeling error input in the
dynamics equation, which may be used for identification purposes. The MME-based attitude
estimator was then applied to determine the attitude of an actual spacecraft. Results indicated
that an MME-based approach provides a viable approach which can be used to determine the
attitude of a spacecraft from magnetometer measurements only, while providing substantial

smoothing of noisy measurement data.
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Figure 1 Solar, Anomalous, Magnetospheric, Particle Explorer Spacecraft

Figure 2 Plot of TRIAD Determined Angular Velocities

Figure 3 Plot of the Minimum Model Error Determined Angular Velocities

Figure 4 Plot of Attitude Errors Between the TRIAD

Solution and Minimum Model Error Magnetometer-Only Solution

Figure 5 Plot of Minimum Model Error Determined Torque Modeling Errors
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