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Abstract
In this paper, an optimal batch estimator and smoother based on the Minimum Model Error

(MME) approach is developed for three-axis stabilized spacecraft.  The formulation described in

this paper is shown using only attitude sensors (e.g., three-axis magnetometers, sun sensors, star

trackers, etc).  This algorithm accurately estimates the attitude of a spacecraft, and substantially

smoothes noise associated with attitude sensor measurements.  The general functional form of

the optimal estimation approach involves the solution of a nonlinear two-point-boundary-value-

problem that can only be solved using computational intense methods.  A linearized solution is

also shown that is computationally more efficient than methods which solve the general form.

The linearized solution is useful when an a priori estimate of the angular velocity is already

known, which may be obtained from a finite difference of a determined attitude, or from

propagation of a dynamics model.  Results using this new algorithm indicate that an MME-based

approach accurately estimates the attitude of an actual spacecraft with the sole use of

magnetometer sensor measurements.
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Introduction
The attitude of a spacecraft can be determined by either deterministic methods or by utilizing

algorithms which combine dynamic and/or kinematic models with sensor data.  Three-axis

deterministic methods, such as TRIAD [1], QUEST [2], and FOAM [3], require at least two sets

of vector measurements to determine the attitude.  An advantage of both the QUEST and FOAM

algorithms is that the attitude of a spacecraft can be estimated using more than two sets of

measurements.  This is accomplished by minimizing a quadratic loss function first posed by

Wahba [4].  However, all deterministic methods fail when only one set of vector measurements

is available, (e.g., magnetometer data only).  Estimation algorithms utilize dynamic and/or

kinematic models, and subsequently can (in theory) estimate the attitude of a spacecraft using

only one set of vector measurements.  Although all spacecraft in use today have at least two on-

board attitude sensors, estimation techniques can be used to determine the attitude during

anomalous periods, such as solar eclipse and/or sensor co-alignment.

The most commonly used technique for attitude estimation is the Kalman filter [5].  The

Kalman filter utilizes state-space representations to both estimate plant dynamics and also filter

noisy data.  Errors in the dynamical model and measurement process are assumed to be modeled

by a zero-mean Gaussian process with known covariance.  The optimality criterion in the

Kalman filter minimizes the trace error covariance between estimated responses and model

responses.  Smoothing algorithms further refine state estimates by utilizing both a “forward

filter” and a “backward filter” [6].  An advantage of smoothing algorithms is that the error

covariance is always less than or equal to either the forward or backward filter alone.  A

disadvantage of smoothing algorithms is that they cannot be implemented in sequential (real-

time) estimation.

Early practical applications of Kalman filtering for attitude estimation are given by Pauling et

al. [7] and Toda et al. [8], for the Space Precision Attitude Reference System (SPARS).  In

particular, Pauling et al. [7] used the now familiar quaternion representation for model prediction

in the filter design.  Since the quaternion representation is free of singularities (thus avoiding the

“gimbal-lock” situation), and since the attitude matrix is algebraic in the quaternion components,

this representation is most frequently used in attitude determination and estimation algorithms.
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A more complete survey of other attitude representations is given by Shuster [9]. Also, a more

complete survey of early Kalman filtering techniques for attitude estimation is given by Lefferts

et al [10].

More recent studies using Kalman filtering techniques have been performed for the Earth

Radiation Budget Satellite (ERBS) [11], [12], the Upper Atmospheric Research Satellite (UARS)

[13], the Extreme Ultra Violet Explorer (EUVE) [14], and the Solar Anomalous Magnetospheric

Particle Explorer (SAMPEX) [15], [16].  In particular, studies of the EUVE spacecraft involved

the application of a smoothing algorithm to further reduce errors in the estimated attitudes using

both attitude sensors and gyro data.  Also, studies of both the ERBS and SAMPEX spacecraft

used Kalman filtering techniques for attitude estimation which involved gyro degradation or gyro

omission.  The thrust of all of these investigations is to improve attitude estimates through the

use of optimally tuned filter parameters, thereby providing the means for reliable backup attitude

estimation schemes.

For spacecraft attitude estimation, the Kalman filter is most applicable to spacecraft equipped

with three-axis gyros as well as attitude sensors [10].  However, gyros are generally expensive

and are often prone to degradation or failure.  Therefore, in recent years gyros have been omitted

(e.g., in Small Explorer (SMEX) spacecraft, such as SAMPEX).  To circumvent the problem of

gyro omission or failure, analytical models of rate motion can be used.  This approach has been

successfully used in a Real-Time Sequential Filter (RTSF) algorithm which propagates state

estimates and error covariances using dynamic models [16].  The estimation of dynamic rates by

the RTSF is accomplished from angular momentum model propagation, and then correcting for

these rates by using a “gyro bias” component in the filter design.  A clear advantage of using

dynamic models is shown for the case of near co-alignment of the spacecraft-to-sun and magnetic

field vectors.  For this case, deterministic algorithms, such as TRIAD and QUEST, show

anomalous behaviors with extreme deviations in determined attitudes.  Since the RTSF

propagates an analytical model of motion, attitude estimates are available even when data from

only one attitude sensor is available.  However, fairly accurate models of control and disturbance

torques were required in order to obtain accurate estimates [16].
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Although the quaternion representation is the most commonly used for attitude estimation,

the problem of maintaining proper normalization exists.  This constraint leads to a singularity in

the covariance matrix which in actual practice is difficult to maintain due to linearization and/or

computer round-off error.  Three solutions (two of which yield identical results) to this problem

are summarized by Lefferts et al. [10].  The first approach uses the transition matrix of the state-

error vector to obtain a reduced order representation of the error covariance.  The second

approach deletes one of the quaternion components in order to obtain a truncated error

covariance expression.  The third approach uses an incremental quaternion error which results in

a representation that is identical to the first approach.  This approach is most commonly used to

maintain normalization for the estimated quaternion.

Bar-Itzhack and Deutschmann [12] show two further approaches to quaternion normalization.

The first approach represents the state vector by additive corrections to the quaternion estimated

by the Kalman filter.  However, this approach does not maintain the normalization constraint

unless it converges to the correct quaternion [12].  Re-normalization is carried out externally to

the Kalman filter.  This approach can be useful in obtaining a faster convergence, but lacks

physical sense in the filter’s state propagation.  The second approach uses the normalized

quaternion as a “pseudo-measurement.”  The re-normalization is subsequently carried out by

performing a measurement update with ideally zero noise on the “pseudo-measurement,” thereby

forcing the estimated quaternion to the normalized quaternion.  However, attitude solutions

converge to incorrect values when noise levels are high [12].

In this paper, an optimal attitude estimation and smoothing algorithm is developed which is

capable of accurate state estimation for spacecraft lacking accurate or any gyro measurements

and/or accurate dynamic models.  This algorithm is based on the Minimum Model Error (MME)

[17] batch-estimation approach.  The advantages of the MME estimator over conventional

Kalman strategies include: (i) no a priori statistics on the form of the model error are required,

(ii) the actual model error is determined as part of the solution, and (iii) the states estimates are

always free of jump discontinuities.  For quaternion estimation, the MME nonlinear estimator

has the additional advantage that quaternion normalization is maintained as an inherent feature of

the process.  The MME estimation approach has been successfully applied to numerous poorly-

modeled dynamic systems which exhibit highly nonlinear behaviors (e.g., see [18], [19]).
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Initial results using an MME approach to estimate the attitude and angular rates of SAMPEX

utilized TRIAD determined attitudes as measurements [20], [21].  The formulation developed in

this paper expands upon this technique to use attitude sensors, such as three-axis magnetometers

(TAM), fine sun sensors (FSS), star trackers, etc.  The general functional form of the optimal

estimation approach involves the solution of a nonlinear two-point-boundary-value-problem

(TPBVP).   This problem has been previously solved by using gradient based techniques [22].

However, gradient based techniques can be computationally intense.  The MME-based approach

presented in this paper utilizes a linearization technique similar to Ref. [10] with a Riccati

transformation.  This leads to an algorithm which is easy to design and implement in actual

practice.

The organization of this paper proceeds as follows.  First, a summary of the spacecraft

attitude kinematics, dynamics, and sensor models is shown.  Then, a brief review of the MME

estimator for nonlinear systems is shown.  Next, a MME-based estimator is developed for the

purpose of attitude estimation.  A general attitude estimation formulation is shown which uses

the nonlinear kinematics and dynamics model.  Then, a linearization technique with a Riccati

transformation is derived in order to provide a computationally efficient algorithm.  Finally, the

MME estimator is used to estimate the attitude of SAMPEX in order to demonstrate the

usefulness of this algorithm.

Attitude Kinematics and Dynamics
In this section, a brief review of the kinematic and dynamic equations of motion for a three-

axis stabilized spacecraft is shown.  The attitude is assumed to be represented by the quaternion,

defined as
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q4 2= cos /θ� � (2b)

where �n  is a unit vector corresponding to the axis of rotation and θ  is the angle of rotation.  The

quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity

(ω ), given by
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 � �= =1
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The quaternion obeys the following normalization constraint

q q q q qT T= + =
13 13 4

2 1 (6)

Also, the matrix Ξ q	 
  obeys the following helpful relations

Ξ ΞT Tq q q q I	 
 	 
 = ×3 3 (7a)

Ξ Ξq q q q I q qT T T	 
 	 
 = −×4 4 (7b)

ΞT q q	 
 = ×03 1 (7c)
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Ξ ΞT Tq q	 
 � �λ λ λ= − ×for any 4 1 (7d)

The measurement model is assumed to be of the form given by

B A q BB I= 	 
 (8)

where BI  is a 3 1×  dimensional vector of some reference object (e.g., a vector to the sun or to a

star, or the Earth’s magnetic field vector) in a reference coordinate system, BB  is a 3 1×

dimensional vector defining the components of the corresponding reference vector measured in

the spacecraft body frame, and A q	 
  is given by

A q q q q I q q q qT T	 
 � �= − + − ××4
2

13 13 3 3 13 13 4 13
2 2 (9)

which is the 3 3×  dimensional (orthogonal) attitude matrix.

The dynamic equations of motion, also known as Euler’s equations, for a rotating spacecraft

are given by [23]

�L t N t t L t� � � � � � � �= − ×ω (10)

where L  is the total angular momentum, N  is the total external torque (which includes, e.g.,

control torques, aerodynamic drag torques, solar pressure torques, etc.), and J  is the inertia

matrix of the spacecraft.  If reaction or momentum wheels are used on the spacecraft, the total

angular momentum is given by

L t J t h t� � � � � �= +ω (11)

where h  is the total angular momentum due to the wheels.  Thus, Equation (10) can be re-written

as

�L t N t J L t h t L t� � � � � � � �
 � � �= − − ×−1 (12)

Also, from Equations (10) and (11) the following angular velocity form of Euler’s equation can

be used

J t N t h t t J t h t� �ω ω ω� � � � � � � � � � � �= − − × + (13)
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which involves the derivative of the wheel angular momentum.

Minimum Model Error Estimation
In this section, a brief review of the Minimum Model Error (MME) estimation algorithm is

shown.  The essential feature of this batch estimator is that actual model error trajectories are

determined during the estimation process, unlike most filter/smoother algorithms which assume

that the model error is a stochastic process with known properties.  The MME algorithm

determines the correction added to the assumed model which yields an accurate representation of

the system’s behavior.  This is accomplished by solving an optimality condition using an output

residual constraint.  Therefore, accurate state estimates can be determined without the use of

precise system representations in the assumed model.

The MME algorithm assumes that the state estimates are given by a preliminary model and a

to-be-determined model error vector, given by

�� � , , ,x t f x t u t d t t� � � � � � � �= (14a)

� � ,y t g x t t� � � �= (14b)

where f  is an n×1 model vector, �x t� �  is an n×1 state estimate vector, u t� �  is a p×1 vector of

known inputs, and d t� �  is an l ×1 model error vector, g  is a q ×1 measurement vector, and

�y t� �  is a q ×1 estimated output vector.  State-observable discrete measurements are assumed for

Equation (14b) in the following form

~ ,y t g x t t vk k k k k� � � �= + (15)

where ~y tk� �  is a q ×1 measurement vector at time tk , and vk  is a q ×1 measurement noise

vector which is assumed to be a zero-mean, Gaussian distributed process with known covariance.

In the MME algorithm, the optimal state estimates are determined on the basis that the

measurement-minus-estimate error covariance matrix must match the measurement-minus-truth

error covariance matrix.  This condition is referred to as the “covariance constraint,” shown as
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~ � , ~ � ,y t g x t t y t g x t t Rk k k k k k k k
T

k� � � �
 � � � � �
 �− − = (16)

where Rk  is the element-by-element (known) measurement error covariance.  However,

problems may arise using Equation (16) which are attributed to “small sample” statistics [24].

Therefore, in the typical case where the measurement error process is stationary, the average

covariance can be used, given by

1

1
m

y t g x t t y t g x t t Rk k k k k k k k
T

k

m
~ � , ~ � ,� � � �
 � � � � �
 �− − ≈

=
∑ (17)

where m is the total number of measurements.

Next, the following cost function is minimized with respect to d τ� �

J y t g x t t R y t g x t t d W d dk k k k
T

k k k k

k

m
T

t

t f

= − − +−

=
∑ �1

2

1

2
1

1
0

~ � , ~ � ,� � � �
 � � � � �
 � � � � �τ τ τ (18)

where W  is an n n×  positive-definite weighting matrix.  The necessary conditions for the

minimization of J  lead to the following TPBVP [17]

�� � , , ,x t f x t u t d t t� � � � � � � �= (19a)

d t W
f

d
t

T

� � � �= −
�
��
�
��

−1 ∂
∂

λ (19b)

�

�
λ

∂
∂

λt
f

x
t

T

� � � �= −
�
��
�
��

(19c)

λ λt t H t y t g x t tk k
T

k k k k k
+ −= + −� � � � � � � � � �
 �~ � , (19d)

H t
g

xk
x t tk k

� �
� �

≡
∂
∂ �

� ,

(19e)
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where λ t� �  is an n×1 co-state vector which is updated at each measurement point using

Equation (19d).  The boundary conditions are selected such that either λ t0 0− =� �  or �x t0� �  is

specified at the initial time and either λ t f
+ =� � 0  or �x t f	 
  is specified at the final time.

Attitude Estimation
In this section, the MME estimator is derived for spacecraft which lack any rate information.

First, a general MME-based algorithm using the nonlinear kinematics and dynamics equations of

motion is shown.  Next, a linearized algorithm with a Riccati-type transformation is derived

using an a priori estimate of the angular velocity.

General Formulation

The general formulation is based upon using Euler’s equation for modeling the angular

momentum, and the quaternion kinematics equation for the attitude.  The MME problem for this

case minimizes the following cost function

J B A q B R B A q B d Wd dB I
T
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B I

t
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m
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t
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k k
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� � � � � �τ τ τ (20)
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(21)

where

� � ~ω = −−J L h1� � (22)

~
h  is the measured angular momentum due to the wheels, and 

~
B  denotes the body measurement.

Note that the model error term d  acts as a torque model correction to the dynamics.  Minimizing

Equation (20) leads to the TPBVP given by Equation (21) and the following
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d t W tL� � � �+ =−1 0λ (23a)
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� �

	 

� �
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(23b)

with discrete jumps in the co-states given by

λ λ λq k q k
T

B I
t q ft t H l R B A q B t
k

+ − − += + − =� � � � � � 	 
� � � �1 0
~

� , (24)

The matrix H  in Equation (24) can be derived to be

H l lT� � � �= 2Ξ (25)

where

l q BI= Ψ �	 
 (26a)

Ψ �

� �

�

q

q I q

qT
	 
 ≡

− + ×�

�

�
�
��

�

�

�
�
��

×4 3 3 13

13

������ (26b)

The TPBVP given by Equations (21) and (23) can be solved by using a simple gradient-based

search technique.  The extension to multiple attitude sensors is accomplished by using a

partitioned residual output and sensitivity matrix, given by

H H

B A q B

B A q B

T
m
T

B I

B Im m

1

1 1

� �
tot

tot tot

~
�

~
�

−

−

�

�

�
�
�
�

�

�

�
�
�
�

	 
� �

	 

 �
(27)

where mtot  is the total number of vector observations.  It is important to note that the MME state

estimate in Equation (21) is free of jump discontinuities, unlike traditional smoothing algorithms

such as the Kalman smoother.

The co-state update in Equation (24) shows a nonlinear relationship with respect to the

quaternion estimate.  However, this nonlinearity can be reduced to be a linear function if the
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quaternions obey normalization and the measurement errors are assumed isotropic (i.e., equal for

each axis so that R rI= ×3 3, where r  is a scalar ).  This can be shown by deriving the co-state

update using

1

2r q
B A q B B A q BB I

T
B I

∂
∂ �

~
�

~
�− −���

���	 
 	 
 (28)

In order to determine the partial derivative in Equation (28), the following identities and

definitions are used

Ε B

B B

B
I

I I

I
T

� � ≡
− × −�

�

�
�
�

�

�

�
�
�

�

�� � ��

� 0

(29a)

A q q qT� � �	 
 	 
 	 
= −Ξ Ψ (29b)

Ψ Ε� �q B B qI I	 
 � �= (29c)

Ε ΕB B I B BI I I
T

I� � � � = − ×4 4 (29d)

Equation (28) can now be re-written as

1

2
2

2

r q
B B q B B q B B q qB

T
B

T
B I I

T
I

T∂
∂ �

~ ~
�

~
� � �− +���

���
Ω Ε	 
 � � � �� � (30)

The partial derivative in Equation (30) is given by

2

r
B B q B B q q qB I I

T
I

T− +Ω Ε~
� � � �	 
 � � � �� �
 � (31)

Hence, if the quaternions obey normalization the following identity is true

Ξ Ω Εl B A q B B B B B I qB I B I I
T

I� � 	 
� � 	 
 � � � �
 �~
�

~
�− = − ×4 4 (32)

Therefore, if the sensor measurement errors are isotropic, the co-state update in Equation (24) is

linear with respect to the quaternion estimate.  Equation (32) also leads to another useful identity

Ξ Ε Ξl B qI� � � � 	 
= (33)
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Linearized Formulation

The linearized method involves a two-step process.  The first determines the angular velocity

using a simplified MME cost function and a nominal angular velocity input.  The second uses the

MME-determined angular velocity to determine a torque model error correction.  Although the

second step is not required for an attitude solution, it may be useful in providing a correction to

the dynamics model for linear and/or nonlinear identification [21].  The MME attitude angular

velocity estimation formulation minimizes the following cost function

J B A q B R B A q B d Wd dB I
T

t
B I

t
k

m
T

t

t

k k

f

= − − +−

=
∑ �1

2

1

2
1

1
0

~
�

~
�	 
� � 	 
� � � � � �τ τ τ (34)

subject to

�� � , � �q t d t d t q t q t qn� � � � � � � � � �= + =1

2 0 0
Ω (35)

where dn  is an a priori estimate of the angular velocity.  The model error (d ) is now a

correction to the nominal angular velocity.  The TPBVP for this problem is given by

�� � , � �q t d t d t q t q t qn� � � � � � � � � �= + =1

2 0 0
Ω (36a)

d t W q tT� � 	 
 � �= − −1

2
1Ξ � λ (36b)

�λ λt d t d t tn� � � � � � � �= +1

2
Ω (36c)

λ λ λt t H l R B A q B tk k
T

B I
t

f
k

+ − − += + − =� � � � � � 	 
� � � �1 0
~

� , (36d)

A linearized solution can be derived by using error quaternion multiplication (this approach is

similar to the linear equations used in [10]).  First, define an error quaternion given by (dropping

the t� �  notation for now)

δ � �q q q
n

= ⊗ −1 (37)
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where δ �q  is the error quaternion, and q
n

 is a nominal quaternion determined using dn .  The

inverse quaternion is determined by taking the negative of the first three components.  The

quaternion product is defined as

q q q q q
a b b b a

⊗ ≡ Ξ� � � (38)

Taking the time derivative of Equation (37) yields

δ �� �� � �q q q q q
n n

= ⊗ + ⊗− −1 1 (39)

Substituting the quaternion kinematic equations into Equation (39) gives

δ δ δ�� � �q
d

q q
dn=

�
��
�
��

⊗ − ⊗
�
��
�
��

1

2 0
1

2 0
(40)

Equation (40) can be re-written as

δ δ δ
δ

δ�� � � �q
d

q q
d d

qn n=
�
��
�
��

⊗ − ⊗
�
��
�
��

�
�
�

�
�
�

+
�
��
�
��

⊗1

2 0 0
1

2 0
(41)

where

δd d dn= − (42)

If δ �q
4

1≈  then second order terms in Equation (41) are negligible and the fourth derivative error

component is zero, which leads to

δ δ δ�� �q d q dn13 13

1

2
= − × + (43)

with

δ � �q q qT
n13

= Ξ � � (44)

In order to determine δd  the cost function in Equation (34) is minimized subject to the equality

constraint in Equation (43).  This minimization leads to the following TPBVP

δ δ λ δ�� � , �q t d t q t d t W t q tn n13 13
1

13 0
1

2

1

4
0� � � � � � � � � � � �= − × − − =− (45a)

�λ λt d t tn� � � � � �= − × (45b)
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λ λ δ λt t A q B R B A q B A q B q tk k n I B n I n I
t

f
k

+ − − += − × − − × =� � � � � � � � � �
 � � �2 2 01
13

~
� , (45c)

The TPBVP in Equation (45) can be decoupled by introducing a time-varying Riccati

transformation [25].  This leads to the following set of equations

�P t P t d t d t P t P t W P tn n
T� � � � � � � � � � � � � �= × + × + −1

4
1 (46a)

P t P t A q B R A q B P tk k n I n I
t

f
k

− + − += − × × =� � � � � � � � � �4 01 , (46b)

�z t P t W d t z t P t d tn n� � � � � � � � � � � �= − ×���
���

+−1

4

1

2
1 (46c)

z t z t A q B R B z tk k n I B
t

f
k

− + − += + × =� � � � � � � �2 01 ~
, (46d)

Therefore, the Riccati trajectories in Equation (46a) are integrated backwards in time with

discrete updates given at the measurement time by Equation (46b).  Also, the inhomogeneous

trajectories in Equation (46c) are integrated backwards in time accounting for discrete jumps

using Equation (46d).  Then, the error quaternion trajectories can be solved by integrating the

following equation forward in time

δ δ δ�� � �q t d t W P t q t d t W z t q tn n13
1

13
1

13 0
1

4

1

2

1

4
0� � � � � � � � � � � � � �= − × +���

���
− − =− − (47)

The estimated quaternion trajectories can then be constructed by using

�
�

q
q

q
n

=
�
��

�
��

⊗
δ

13
1

(48)

The MME angular rate trajectories ω = +d dn  in Equation (35) can now be used to estimate

model error torques.  First, a “measured” angular momentum vector is determined by

~ ~
L J h= +ω (49)

In general the angular momentum measurements in Equation (49) will be noisy due to the

measurements of the wheel speed.  However, this noise can be smoothed by another simple linear
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MME estimator [22].  The MME problem for determining the errors in the torque input of

Euler’s equation minimizes the following cost function

J L t L t R L t L t d Wd d
T

t t
k

m
T

t

t

k
k

f

= − − +−

=
∑ �1

2

1

2
1

1
0

~ � ~ �� � � �� � � � � �� � � � � �τ τ τ (50)

subject to

�� � , � �L t t L t N t d t L t L� � � � � � � � � � � �= − × + + =ω 0 0 (51)

The matrix R in Equation (50) now represents the covariance of the noise associated with 
~
L .

Minimizing Equation (50) leads to the following TPBVP

�� � , � �L t t L t N t W t L t L� � � � � � � � � � � �= − × + − =−ω λ1
0 0 (52a)

�λ ω λt t t� � � � � �= − × (52b)

λ λ λt t R L L tk k t f
k

+ − − += + − =� � � � � � � �1 0
~ � , (52c)

The solution to the TPBVP in Equation (52) can also be found by using a Riccati transformation,

which leads to the following equations

�P t P t t P t W P t t P t� � � � � � � � � � � � � �= × + + ×−ω ω1 (53a)

P t P t R P tk k f
− + − += + =� � � � � �1 0, (53b)

�z t P t W t z t P t N t� � � � � �
 � � � � � � �= − × −−1 ω (53c)

z t z t R L z tk k t f
k

− + − += + =� � � � � �1 0
~

, (53d)

�� � , � �L t t W P t L t W z t N t L t L� � � � � �
 � � � � � � � � �= − × − − + =− −ω 1 1
0 0 (53e)

Therefore, the Riccati and inhomogeneous trajectories are solved backwards in time using

Equations (53a) and (53c), accounting for discrete jumps by Equations (53b) and (53d).  Then,

the angular momentum estimates are determined by integrating Equation (53e) forwards in time.
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Attitude Estimation of an Actual Spacecraft

In this section, the MME attitude estimation algorithm previously developed is used to

estimate the attitude, rates, and torque modeling errors of the SAMPEX spacecraft with

magnetometer data only.  The spacecraft is three-axis stabilized in a 550 by 675 km elliptical

orbit with an 82° inclination.  A schematic of the spacecraft with axis definitions is shown in

Figure 1. The spacecraft is nominally controlled to rotate about the y-axis at some constant rate,

while the other axis rates are controlled to near zero.  The attitude control hardware consists of a

magnetic torquer assembly (MTA) and a single reaction wheel.  The attitude determination

hardware consists of five coarse Sun sensors (CSS) (primarily for Sun-acquisition), one fine Sun

sensor (FSS), and a three-axis magnetometer (TAM).  No rate gyroscopic instruments are present

on the spacecraft.

The onboard computer routine to determine attitude is based upon the TRIAD [1]

deterministic method.  The spacecraft is controlled by the MTA to maintain the fixed solar arrays

perpendicular to the sun-line.  The reaction wheel is used to point the instrument boresight axis

as required by the scientific mission.  During eclipse no sun measurements are available from the

FSS.  Attitude control is maintained by using a constant sun-line vector as a “pseudo-

measurement.”  The MTA is turned off in eclipse, but the reaction wheel is still used to control

pitch.  During vector co-alignment, the spacecraft is placed in a “coast” mode in which neither

the MTA nor the reaction wheel is used (see [26] for more details).  The required nominal

attitude determination accuracy is ±2°.  During anomalous conditions (eclipse and/or

measurement vector co-alignment) an accurate attitude cannot be determined by deterministic

methods such as TRIAD.  The MME algorithm presented here can determine the attitude using

TAM measurements only, so that attitude accuracy may be checked for any deviations from

nominal performance.

The inertial magnetic field is obtained by using a 8th order spherical harmonic model of the

Earth’s magnetic field with International Geomagnetic Reference Field (IGRF) coefficients.

Magnetometer measurements by the TAM are known to be extremely accurate (within 0.3mG).

However, experience has shown that errors in the magnetic field model have a standard deviation

of about 3mG [16].  Therefore, 9mG2 is chosen for the diagonal elements of the measurement

covariance matrix.
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A plot of the angular velocities determined from taking finite differences of the TRIAD

attitude solutions is shown in Figure 2.  These rates are extremely noisy, which is due to the large

digitization noise associated with the FSS measurements.  Also, the large errors at the beginning

are due to a TAM outage or loss of signal.  In order to demonstrate the MME capabilities a test

case was run using only TAM measurements to estimate the attitude and angular rates.  The

linearized MME estimator is implemented using Equations (46)-(48) with the angular velocities

shown in Figure 2 as the nominal estimates.  The weighting matrix is determined by using a

simple parameter optimization scheme with a quadratic form of the covariance constraint as a

cost function.  A plot of the MME determined angular velocities is shown in Figure 3.  This plot

clearly shows a rotation about the spacecraft y-axis, which is the desired control motion.  Also, a

noticeable motion in the x and z axes is evident, which is not easily seen in Figure 2.  This

motion may be due to the MTA not fully damping spacecraft nutation.  Although this is not

relevant for the SAMPEX spacecraft (since requirements are not stringent), this clearly shows the

capability of the MME estimator to significantly smooth the noise associated with the available

sensor complement.  A plot of the error between the estimated MME attitudes using TAM data

only and the attitudes determined by TRIAD is shown in Figure 4.  A slight hangoff is seen in the

pitch axis.  This may be due to nonlinear effects in the magnetic field model.  Although the

accuracy using TAM cannot be fully known for this system, the methodology of the MME

approach seems to provide a reasonable method for attitude estimation, while performing

substantial smoothing of noisy measurements.

Finally, the MME estimator is used to estimate the torque modeling error using Equation

(53).  This is important for purposes of updating the dynamics model using linear or nonlinear

identification techniques [21].  Since the angular velocity estimates have been significantly

smoothed using Equations (46)-(48), the MME estimator for the torque case was implemented

with W = 0 , so that the estimated angular momentum matches the “measured” angular

momentum exactly for any R.  Therefore, no tuning of the MME estimator parameters is

required.  Also, no modeling of disturbance torques or control torques is used in the MME

estimator (i.e., N = 0).  A plot of the determined torque modeling errors is shown in Figure 5.

This corresponds to the torque modeling errors determined using the full nonlinear solution of

the TPBVP shown in Equations (21) and (23).  Therefore, the linearized MME approach
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provides accurate solutions without using computational expensive methods (such as a gradient

search) for the full nonlinear solution.  Also, the MME estimator is able to easily estimate the

required torque error using no modeling of disturbance torques, unlike a Kalman filter which

required extensive modeling of disturbance torques (used in N ) and intensive tuning of filter

parameters [16].

Conclusions
In this paper, a Minimum Model Error algorithm was presented for use in attitude estimation.

This algorithm was developed for spacecraft which do not possess angular rate sensing

equipment.  A general form of the optimal estimation approach was shown that involves a

nonlinear two-point-boundary-value-problem, which can only be solved using computationally

intense methods.  A linearized solution was also shown that is more efficient than methods which

solve the general form.  Both solutions can determine the torque modeling error input in the

dynamics equation, which may be used for identification purposes.  The MME-based attitude

estimator was then applied to determine the attitude of an actual spacecraft.  Results indicated

that an MME-based approach provides a viable approach which can be used to determine the

attitude of a spacecraft from magnetometer measurements only, while providing substantial

smoothing of noisy measurement data.
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Figure 1  Solar, Anomalous, Magnetospheric, Particle Explorer Spacecraft

Figure 2  Plot of TRIAD Determined Angular Velocities

Figure 3  Plot of the Minimum Model Error Determined Angular Velocities

Figure 4  Plot of Attitude Errors Between the TRIAD

Solution and Minimum Model Error Magnetometer-Only Solution

Figure 5  Plot of Minimum Model Error Determined Torque Modeling Errors



Zenith

Instruments

Sun LineElectronics

Deployed Array

+Z

+Y



0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

−3
X

 (
ra

d/
S

ec
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

−3

Time (Hrs)

Z
 (

ra
d/

S
ec

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
x 10

−3

Y
 (

ra
d/

S
ec

)



0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12
x 10

−4

Time (Hrs)

A
ng

ul
ar

 V
el

oc
iti

es
 (

R
ad

/S
ec

)

X

Y

Z



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5
R

ol
l (

D
eg

)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

P
itc

h 
(D

eg
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Time (Hrs)

Y
aw

 (
D

eg
)



0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−4

Time (Hrs)

T
or

qu
e 

M
od

el
in

g 
E

rr
or

s 
(N

−
m

)

X

Y

Z


