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This paper is mainly motivated by the outcome of a previous study carried out by the 
same authors on the subject of attitude estimation via a multiple model adaptive estimation 
(MMAE) scheme and serves as the follow-up study to further evaluate the potential of the 
MMAE scheme subject to higher fidelity models of both sensors and operating 
environments. The investigation carried out in this paper is aimed at answering the 
following design questions: (1) Will navigation solution mixing via MMAE truly offer an 
enhanced solution? (2) Will the MMAE architecture be more suitable for the multi-sensors 
(i.e., two star trackers, three-axis gyros, image-based sensors, etc) data mixing versus a 
single Extended Kalman Filter (EKF) design? (3) Will noise extraction and identification via 
MMAE offer a path to employ low-cost low-grade Micro-Electro-Mechanical Systems 
(MEMS) sensors? (4) Is it worth our while to consider the MMAE scheme as possible 
solution for future space vehicle subject to performance enhancement with lower grade and 
lower cost navigation sensors?  The multiple sensors mixing via real-time adaptive mixing 
coefficients and autonomous switching among these on-board sensors at various operating 
conditions of a space vehicle’s typical mission profile are also used as part of the design 
objectives in order to realistically evaluate the MMAE solution. 

 
1.0 INTRODUCTION 

The attitude determination systems (ADS) of the majority of earth observation missions traditionally employ a 
six state ADS Kalman filter (e.g., see Lefferts et al [1]) which calibrates the gyro bias error and star tracker attitude 
error by fusing both star tracker and gyro data in a “bootstrap” fashion to determine the spacecraft attitude.  An ADS 
filter with a higher dimension state vector is simply not needed for these types of missions because of its low orbit 
rate, less stringent attitude knowledge requirements and high quality ADS sensors (i.e., gyros and star trackers 
selected for these missions are high grade components). As a result, onboard ADS Kalman filters, with a larger 
dimension state vector applied to the spacecraft attitude determination system, have been rarely observed.  Large 
state dimensioned ADS filters are normally applied to ground-based software systems for telemetry data processing 
to fully examine the on-orbit sensor performance. 

 
Stringent attitude knowledge requirements together with spacecraft agility performance specifications 

demanded by present and future missions have altered such a design tradition and presented a greater design 
challenge to ADS designers.  These include (i) how to separate scale factor errors stability from bias drift stability 
under high rate operating conditions; (ii) how to achieve precision estimation and accurate tracking of these two 
parameters when they are strongly correlated at high rate condition; (iii) should a multiple filtering architecture be 
implemented in a scheduling scheme to address mode variations by having each individual filter turned on based on 
real-time dynamic mode dependency or should a mix of all filters be employed simultaneously; (iv) what are the 
design options that ADS designers can use to produce adequate ADS systems meeting stringent performance 
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requirements at milli-arcsec or even micro-arcsec levels while state-of-the art sensing devices such as advanced star 
trackers only offer a noise equivalent angle (NEA) of 3 arcsec, etc.   
 

This paper is mainly motivated by the outcome of a previous study [2] on the subject of attitude estimation via a 
multiple model adaptive estimation (MMAE) scheme and serves as the follow-up study to further evaluate the 
potential of the MMAE scheme subject to higher fidelity models of both sensors and operating environments.  The 
investigation carried out in this paper is aimed at answering the following design questions: (1) Will navigation 
solution mixing via MMAE truly offer an enhanced solution? (2) Will the MMAE architecture be more suitable for 
the multi-sensors (i.e., two star trackers, three-axis gyros, image-based sensors, etc) data mixing vs a single 
Extended Kalman Filter (EKF) design? (3) Is it worth our while to consider the MMAE scheme as possible solution 
for future space vehicle subject to performance enhancement with lower grade and lower cost navigation sensors?  
The multiple sensors mixing via real-time adaptive mixing coefficients and autonomous switching among these on-
board sensors at various operating conditions of a space vehicle’s typical mission profile are also used as part of the 
design objectives in order to realistically evaluate the MMAE solution. 
 

2.0 Problem Statement and Research Motivation 
The attitude solution mixing via an MMAE scheme (e.g., [2]) or quaternion averaging (e.g., see [3]) tends to 

offer an enhanced attitude solution.  This paper closely examines the attitude (or navigation) solution mixing via the 
MMAE scheme developed in [2].  The mixing of multiple state estimate vectors produced by the multiple EKFs via 
a modified mixing coefficient is one of the key design technique investigated by this paper.  The real-time dynamic 
mixing coefficients are implemented using the processing scheme developed by the Interacting Multiple Model 
(IMM) (e.g., see [4] and [5]) rather than the MMAE scheme.  The reason for this mixing design is due to the 
dynamic probability assignment needed for the EKF models to be allocated in real-time. 
 

The smooth transition among various operating “modes” and sensor data mixing of external aiding sources (i.e., 
two star trackers and image based sensors) as measurement update to the filter dynamics being propagated via 
compensated gyros rate are also closely examined and evaluated.  Fidelity models of the star trackers and gyros as 
well as sensor redundancy (i.e., two star trackers for good coverage mixed with image based sensors and/or 
altimeter) for data mixing will be implemented to reflect the reality of the mission for a better evaluation of the 
MMAE concept. 
 

3.0 Development of a 15 State Extended Kalman Filter 

3.1 Quaternion Parameterization and Gyro Model 
For spacecraft attitude estimation, the quaternion has been the most widely used attitude parameterization [1].  

The quaternion is given by a four-dimensional vector, defined as 
 

 13

4q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

q
q  (1) 

 
with ( )13 1 2 3 sin / 2Tq q q ϑ≡ =⎡ ⎤⎣ ⎦q d  and ( )4 cos / 2q ϑ= , where d  is the unit Euler axis and ϑ  is the rotation 
angle.  Because a four-dimensional vector is used to describe three dimensions, the quaternion components cannot 
be independent of each other.  The quaternion satisfies a single constraint given by 1T =q q .  The attitude matrix is 
related to the quaternion by  
 
 ( ) ( ) ( )TA = Ξ Ψq q q  (2) 
 
with 
 

 ( ) 4 3 3 13

13
T

q I ×⎡ ⎤+ ×⎡ ⎤⎣ ⎦Ξ ≡ ⎢ ⎥
−⎢ ⎥⎣ ⎦

q
q

q
 (3a) 



                                                                                                             

 
American Institute of Aeronautics and Astronautics 

3

 

 ( ) 4 3 3 13

13
T

q I ×⎡ ⎤− ×⎡ ⎤⎣ ⎦Ψ ≡ ⎢ ⎥
−⎢ ⎥⎣ ⎦

q
q

q
 (3b) 

 
where 3 3I ×  is a 3 3×  identity matrix and 13 ×⎡ ⎤⎣ ⎦q  is the cross product matrix, defined by 
 

 
3 2

13 3 1

2 1

0
0

0

q q
q q
q q

−⎡ ⎤
⎢ ⎥× ≡ −⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

q  (4) 

For small angles the vector part of the quaternion is approximately equal to half angles [6]. 
 

The quaternion kinematics equation is given by 
 

 ( )1
2

= Ξq q ω�  (5) 

where ω  is the three-component angular rate vector.  A major advantage of using the quaternion is that the 
kinematics equation is linear in the quaternion and is also free of singularities.  Another advantage of the quaternion 
is that successive rotations can be accomplished using quaternion multiplication.  Here the convention of [6] is 
adopted, where the quaternions are multiplied in the same order as the attitude matrix multiplication, in contrast to 
the usual convention established by Hamilton.  A successive rotation is written using ( ) ( ) ( )' 'A A A= ⊗q q q q .  The 
composition of the quaternions is bilinear, with 
 
 ( ) ( )' ' ' '⎡ ⎤ ⎡ ⎤⊗ = Ψ = Ξ⎣ ⎦ ⎣ ⎦q q q q q q q q  (6) 
 

Also, the inverse quaternion is given by 1
13 4

TT q− ⎡ ⎤≡ −⎣ ⎦q q , with ( ) ( )1 TA A− =q q .  Note that 

[ ]1 0 0 0 1 T−⊗ =q q , which is the identity quaternion. 
 

A common sensor that measures the angular rate is a rate integrating gyro. For this sensor, a widely used three-
axis continuous-time model is given by 
 

 

( )3 3
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k η

�
�

�
�

�
 (7) 

 
where ω�  is the measured rate, b  is the drift, S  is a matrix of scale factors s  and misalignments Uk  and Lk  , and 

vη  (i.e., angular random walk, ARW), uη  (i.e., rate random walk, RRW) and sη , Uη  and Lη  are independent 
zero-mean Gaussian white-noise processes with 
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where E{ } denotes expectation and ( )tδ τ−  is the Dirac-delta function.  
 
3.2 Kalman Filtering for Attitude Estimation 

This section provides a review of the equations involved for spacecraft attitude estimation using the Kalman 
filter.  The measurements are assumed to be given for a star tracker determined Kalman filter.  To within first-order 
the quaternion measurements can be modeled by 
 

 ( )1
2

= + Ξq q q v�  (9) 

 
where q�  is the measurement quaternion and v  is a zero-mean Gaussian process with covariance R .  Note that v  is 
not a stationary process and R  is determined from the attitude error-covariance of the attitude determination process 
[4].  Also, to within first-order the quaternion normalization constraint is maintained with this measurement model.  
A summary of the extended Kalman filter (EKF) for attitude estimation, including gyro drifts and scale factors, is 
shown in Table 1.  All symbols and characters with a hat over them signify estimates.  The variables kP+  and kP−  
denote the updated and propagated error-covariance at time kt , respectively; kK  is the Kalman gain;  the first three 
components of ˆΔx , denoted by ˆδα , are the small-attitude error estimates, and the vector ŝ  denotes the diagonal 
elements of the estimate scale factor matrix, Ŝ .  Note that the propagated values for the gyro drift and scale factors 
are given by their previous time values.   
 

We now derive the ( )F t  and ( )G t  matrices.  Here it is assumed that ( ) ( )1
3 3 3 3I S I S−
× ×+ ≈ − , which is valid 

for small S .  A multiplicative error quaternion is used to derive the attitude errors: 
 

 1 0.5ˆ
1

− ⎡ ⎤
= ⊗ ≈ ⎢ ⎥

⎣ ⎦

δα
δq q q  (10) 

 
where δα  is the vector of small attitude (roll, pitch and yaw) attitude errors.  The error-kinematics follow [1] 
 
 ˆ= − × +⎡ ⎤⎣ ⎦δα ω δα δω�  (11) 
 
where ˆ≡ −δω ω ω .  From Eq. (7) we have 
 

 
( ) ( ) ( )

( ) ( )
3 3 3 3 3 3

3 3 3 3
ˆ ˆ ˆˆ

vI S I S I S

I S I S

× × ×

× ×

= − − − − −

= − − −

ω ω b η

ω ω b

�

�
 (12) 

Then δω  is given by 
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( )( )

( )3 3
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ˆ
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 (13) 

where ˆS S SΔ ≡ −  and ˆΔ ≡ −b b b .  Ignoring second-order terms leads to 
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where diag denotes a diagonal matrix, Δs  is a vector of the diagonal elements of SΔ , and UΔk  and LΔk  
correspond to the upper and lower off-diagonal elements of SΔ .  Hence, the matrices ( )F t , ( )G t  and ( )Q t  are 
given by 
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Table 1.  EKF For Attitude Estimation 
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A discrete-time propagation of the quaternion and error-covariance is possible (see [5] for details).  The 

discrete-time covariance propagation is given by 
 
 T

k k k k kP P Q− += Φ Φ +  (16) 
 
where kΦ  and kQ  are discrete-time state transition and process-noise covariance matrices, respectively.  For small 
sampling intervals the discrete process noise matrix is well approximated by (also see [8]) 
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(17)  
 
where tΔ  is the sampling interval and ( )ˆ kΩ ω  is a diagonal matrix made up of the elements of the estimate rate. 
 

4.0 Multiple-Model Adaptive Estimation 

4.1 MMAE Formulation 
Multiple-model adaptive estimation described in [2] is a recursive estimator that uses a bank of filters that 

depend on some unknown parameters.  In our case these parameters are the process noise covariance, denoted by the 
vector p , which is assumed to be constant (at least throughout the interval of adaptation).  Note that we do not 
necessarily need to make the stationary assumption for the state and/or output processes though, i.e. time varying 
state and output matrices can be used.  A set of distributed elements is generated from some known probability 

density function (pdf) of p , denoted by ( )p p , to give ( ){ }; 1, , M=p A A … .  The goal of the estimation process is to 

determine the conditional pdf of the A th element of ( )p A  given the current-time measurement ky� .  Application of 
Bayes rule yields 
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=
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where kY�  denotes the sequence { }0 1, , , ky y y� � �… .  The a posteriori probabilities can be computed through 
 

 

( )( )
( )( )

( )
( )( ) ( )( )

( )( ) ( )( )

1

1

1

1
1

, |
|

|

ˆ| |

ˆ| |

k k
k

k k

k k k

M
j j

k k k
j

p
p

p

p p

p p

−

−

−
−

−
−

=

=
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where ( )ˆ k
−x A  denotes the propagated state estimate of the A th Kalman filter.  Note that the denominator of Eq. (19) is 

just a normalizing factor to ensure that ( )( )| kp p YA �  is a pdf.  The recursion formula can now be cast into a set of 

defined weights ( )
kϖ A  

 

 

( ) ( ) ( )

( )
( )

( )

1

1

ˆ|kk k k

k
k M

k
j

pϖ ϖ

ϖ
ϖ

ϖ

−
−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

←

∑

y xA A A

A
A

A

�

 (20) 

 

where ( ) ( )( )1| kk pϖ −≡ p YA A � .  The weights are initialized to ( )
0 1/ Mϖ =A  for 1, 2, , M=A … .  Note that 

( )ˆ|k kp −⎛ ⎞
⎜ ⎟
⎝ ⎠

y x A�  denotes the likelihood function. 

 
The conditional mean estimate is the weighted sum of the parallel filter estimates 

 

 ( ) ( )

1

ˆ ˆ
M

j j
k kk

j
ϖ− −

=

= ∑x x  (21) 

 
Also, the error covariance of the state estimate can be computed using 
 

 ( ) ( )( ) ( )( )
1

ˆ ˆ ˆ ˆ
M Tj j j

k k k k kk
j

P ϖ− − − − −

=

= − −∑ x x x x  (22) 

 
The specific estimate for p  at time kt , denoted by ˆ kp , and error covariance, denoted by kZ , are given by 
 

 ( ) ( )

1

ˆ
M

j j
k k

j
ϖ

=

= ∑p p  (23a) 

 ( ) ( )( ) ( )( )
1

ˆ ˆ
M Tj j j

k k kk
j

Z ϖ
=

= − −∑ p p p p  (23b) 

 
Equation (23b) can be used to define 3σ bounds on the estimate ˆ kp . 
 
4.2 Attitude Likelihood Function 

This section derives the likelihood function for the MMAE algorithm using quaternion measurements.  From 
Table 1, the measurement residual is defined to be (ignoring the propagated notation for q̂ ) 
 
 ( )ˆ2 T≡ Ξe q q�  (24) 
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which is derived from the vector part of 1ˆ −⊗q q�  (the factor of 2 is used so that e  represents half-angle residuals).  

Using Eq. (9) and ( )1ˆ
2

T= + Ξq q q δα  in Eq. (24) gives 

 

 ( ) ( )( ) ( )1 12
2 2

T T T⎡ ⎤ ⎡ ⎤= Ξ + Ξ Ξ + Ξ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
e q q δα q q v  (25) 

 
Using the identity ( )( ) [ ] ( )T T TΞ Ξ = − × Ξ −q δα δα q δαq  in Eq. (25) leads to 
 

 [ ]1
2

= − × −e v δα v δα  (26) 

 
where ( ) ( ) 3 3

T I ×Ξ Ξ =q q , ( )TΞ =q q 0  and 1T =q q  have been used.  Therefore, since δα  and v  are 
uncorrelated, the covariance of the residual at time kt , using the propagated values, is given by 
 
 { }T T

k k k kE H P H R− − −= +e e  (27) 

 
where H  is defined in Table 1.  Therefore the likelihood function is given by 
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which is used to update the weights in the MMAE algorithm. 
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Figure 1.  MMAE Architecture Suitable for Multiple Sensors Fusion 
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4.3 Multiple Model Adaptive Estimation (MMAE) Filtering For Multiple Sensor Fusion 
Architecture 

The linear multiple model filter design framework is now extended into an MMAE scheme wherein the pre-
selected αi coefficients now can be computed on-line using some adaptive computation scheme subject to a 
performance criterion. The MMAE baseline algorithm described in Section 4.0 is adopted here to enhance the 
performance of a typical multi-slewing multi-rate operating condition during imaging mode presented early on.  The 
MMAE architecture applied to the multiple model ADS filter is depicted in Figure 1 wherein three ADS filter 
structures are employed to address the multi-rate/multi-mode situation.  The fifteen-state ADS filter is the largest 
model that is implemented to fully address the attitude error and the gyro high order calibration of bias and fully 
populated misalignment matrix.  The nine-state ADS filter model will address the attitude error and the gyro bias 
and symmetrical scale factor errors.  Finally, the six-state ADS filter model consisting of attitude and gyro bias error 
is implemented to provide precision attitude determination in the low rate operating condition. 
 

The multi-state mixing of three ADS filters is accomplished using the Interacting Multiple Model (IMM) 
blending approach ([4] and [5]) expressed as follows: 
 
 ˆ ˆx(n 1|n 1) x (n 1|n 1) (n 1)j i|jj

δ δ μ+ + = + + +∑  (29) 

 
where j=1:m with m being the number of filter models in general.  For the scope of this paper, m is set to 3 for 6 
state EKF, 9 state EKF, and 15 state EKF, respectively.  The mixing coefficient probabilities μ i|j are computed as 
 
 ( 1| 1) p ( 1) /i|j ij i j n n n cμ μ+ + = +  (30) 

where 

 
r
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c μ= +∑

=
 (31) 
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where μi computed in equation (32) is also called as the mode probability update, and 
 

 
1
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j j
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c n c
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where Λi is the likelihood functions of model I described in equation (28), and pij is i-jth element of a 3×3 probability 
transition matrix computed as follows: 
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Pii will be chosen to reflect mission specific’s rate profile.  For our study, Ptrans is selected to be: 
 

 
0.9000 0.0050 0.0950
0.0033 0.9333 0.0633
0.0677 0.1333 0.8000

transP

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (35) 
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5.0 Performance Evaluation & Discussion 
In general, at low rate operating condition when the navigation performance impact due to the “ participation” 

of scale factor (SF) errors and misalignment (MA) errors is negligible, designers can select the lower dimension 
EKF (i.e., 6 state EKF for this study) implemented in a single EKF low rate mode.  Similarly, for medium rate and 
high rate operating conditions, higher dimension EKFs are then selected to account for SF errors and MA errors 
(i.e., 9 state and 15 state EKFs for this study), and these high dimension EKFs will be implemented in a single EKF 
mode and individually selected based on the actual rate magnitude signatures (being monitored in real-time.)  This 
implementation can be similarly viewed as the “gain scheduling” approach employed by the control approach 
counter part.  Drawbacks associated with the gain scheduling approach when dealing with nonlinearities, parameter 
variations, and model orders are still applied to the estimation problem.  As a result, an adaptive estimation scheme 
is still being actively sought. 
 

The main motivation of searching for an enhanced attitude/navigation solution via the multiple model mixing 
approach is described in Ref. 2.  The reason behind employing a combined solution produced by a set of multiple 
EKFs can be intuitively perceived as “the averaging quaternions” design concept presented in Ref. 3. Here instead of 
“averaging” all solutions produced by a set of EKFS, we employ the MMAE/IMM scheme to compute a real-time 
dynamic mixing “probability coefficients” at various range rates allowing the participation of each navigation filter 
contributing their knowledge at its best based on or dictated by its real-time likelihood function.  Therefore, we are 
not “equally” averaging all solutions to produce a single solution at all time.  Rather, we use the best solution 
produced by the best EKF (dictated by its own dynamic mode probability) in real-time while for the least accurate 
solutions, they are judiciously being selected (via an MMAE/IMM mixing scheme) for whatever their worth 
contribution (instead of completely throwing them out under the single EKF implementation!)   The following 
sections will illustrate the effectiveness of the proposed MMAE solution versus a solution produced by a single 
EKF. 
 
5.1 Performance of a Single Filter (Baseline 15 State EKF) 
 

Figures 1 through 6 show the performance using only the 15 state filter.  From Figure 5 it is seen that the 3-
sigma bound do not bound one of the estimate errors for the misalignment portion.  This is most likely due to low 
observability in this parameter. 
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Figure 2.  Attitude Estimation Performance of a 15 State Single EKF 

(1 sigma error: [5.8931    4.7698    6.2053] arcsecs) 
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Figure 3.  Gyro Bias Estimation Performance of a 15 State EKF 
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Figure 4.  Scale Factor Estimation Performance of a 15 State EKF 
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Figure 5.  Upper Misalignment (MA) Error Estimation of a 15 State EKF 

(poor performance in estimating the 3rd upper misalignment error for the first two minutes) 
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Figure 6.  Lower MA Error Estimation of a 15 State EKF 
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5.2 Performance of Three EKFs MMAE Mixing Scheme (6 State, 9 State, and 15 State EKF 
Models) 

Figures 7 to 12 present the performance of a three EKFs solution.  The estimation of all gyro errors has been 
improved via the15 state EKF add-on (by quickly comparing the attitude estimation error responses presented in 
Figure 3 versus Figure 7).  For the remainder of the gyro errors estimation, SF and MA error estimation accuracy is 
also relatively improved (i.e., Figures 9 to 11). 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

0

0.02
Attitude Estimation Error, Mix of 6S, 9S, and 15S filters

R
ol

l (
D

eg
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

-0.01

0

0.01

P
itc

h 
(D

eg
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.02

0

0.02

Y
aw

 (D
eg

)

Time (Min)
 

Figure 7.  Attitude Estimation Via MMAE Mixing of Three EKFs 
(1 sigma error:[ 5.7247    5.5211    5.3248] arcsecs) 

 



                                                                                                             

 
American Institute of Aeronautics and Astronautics 

15

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50
Gyro Bias Estimation Error, Mix of 6S, 9S, and 15S filters

X
 (D

eg
/H

r)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

Y
 (D

eg
/H

r)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

Z 
(D

eg
/H

r)

Time (Min)  
Figure 8.  Gyro Bias Estimation via MMAE Mixing of Three EKFs 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5
x 10

5 Gyro Scale Factor Estimation Error, Mix of 6S, 9S, and 15S filters

X
 (P

P
M

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2
x 10

5

Y
 (P

P
M

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5
x 10

5

Z 
(P

P
M

)

Time (Min)
 

Figure 9: Gyro SF Error Estimation via MMAE Mixing of Three EKFs 
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Figure 10.  Gyro MA Error Estimation via MMAE Mixing of Three EKFs 
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Figure 11.  Gyro SF Error Estimation via MMAE Mixing of Three EKFs 
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Figure 12.  MMAE Mixing Coefficients of Three EKFs 

 
5.3 Performance of Three EKFs MMAE with IMM Mixing Scheme  (6 State, 9 State, and 15 State 
EKF Models) 
 

The MMAE Mixing coefficients shown in Figure 12 are now replaced with the IMM mixing update scheme 
(via equation 32) to compute the new real-time mixing coefficients (see Figure 13) among three EKFs.  Attitude 
estimation accuracy among three axes has been dramatically improved (see Figure 14) using the mixing coefficients 
computed by the IMM scheme.  The performance of the IMM scheme shows that even with scale factor and 
misalignments, the best choice for the filter design is a combination of all three filters, i.e. using the 15 state filter 
only does not necessarily produce the best results.  This is most likely due to the observability of the system.  For 
example, at times of low observability estimation of misalignments is difficult, but the gyro biases may still be 
estimated well. The coupling of the gyro biases with the misalignments in the 15 state filter may produce worse 
results for gyro bias estimation that using only a 6 state filter.  The IMM scheme provides a mechanism that yields 
the best possible performance. 
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Figure 13.  IMM Mixing Coefficients 
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Figure 14.  Improved Attitude Estimation Accuracy via IMM Mixing Coefficients 

(1 sigma error: [4.5570    4.3385    4.6461] arcsecs & its well behaved error response versus the attitude error 
response of a single 15 state EKF presented in Figure 2) 
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5.4 Performance Enhancement of MMAE/IMM Architecture with Inner Loop Gyro Noise 
Identification 
 

The attractive baseline MMAE/IMM mixing architecture presented early on is then further enhanced with an 
“inner loop” subsystem implemented with pure MMAE algorithm (i.e., equations 18 to 28) to perform gyro noise 
identification. This adaptive dual-compensation MMAE estimation scheme is presented in Figure 15.  They are 
clearly useful for MEMS IMU or IRU utilization in general for the low-cost high performance navigation subsystem 
design of future space vehicles.   

 
 
 

 
Figure 15.  Dual-Compensation Architecture Supporting MEMS IRU Utilization 

 
Figures 16 and 17 present the excellent gyro noise identification of the MMAE scheme implemented as a 

separate subsystem to estimate the IRU noise.  Only rate random walk (RRW), angular random walk (ARW), and 
SF noises are estimated in this study.  The one sigma values of RRW, ARW, and SF noises estimated online, will 
feed the adaptive process noise block to compute the right signature for the MMAE/IMM filter to effectively 
maintain the accuracy of the navigation solution in the presence of IRU performance degradation (due to aging or 
in-orbit drift variation). 
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Figure 16.  RRW and ARW Noise Estimation 
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Figure 17.  SF Noise Estimation 
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6.0 Conclusion 
An adaptive filtering architecture via MMAE scheme is proposed to ameliorate the effect of gyro SF and MA 

errors at high rate operating condition and effectively maintain an accurate attitude estimation performance while a 
traditional EKF scheme suffers for a same operating condition. The MMAE scheme is exploited to offer two 
primary design features: (1) multiple EKF models mixing to provide the right fusion combination between various 
filter models’ state vectors for a consistent navigation solution update at various rate magnitudes and (2) the ability 
to mix multiple external sensor data update in a simultaneous fashion via MMAE framework regardless their 
disparate update rate.  In other words, external data available out of each sensor provided at different output rate can 
be systematically combined via the MMAE/IMM mixing scheme (e.g., ST/IRU data at 100Hz, radar altimeter data 
at 20Hz, and image based sensor data at 10Hz).  Simulation performance results indicate that the MMAE/IMM 
provides better estimates compared to using each filter alone.  Also, the MMAE approach is an effective scheme to 
estimate gyro noise parameters. 
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