
ROBUST SPACECRAFT ATTITUDE CONTROL USING

MODEL-ERROR CONTROL SYNTHESIS

Jongrae Kim∗

Department of Aerospace Engineering

Texas A&M University

College Station, TX 77843-3141

John L. Crassidis†

Department of Mechanical & Aerospace Engineering

University at Buffalo, The State University of New York

Amherst, NY 14260-4400

ABSTRACT
Model-error control synthesis is a nonlinear robust

control approach that uses an approximate receding-
horizon estimation algorithm to cancel the effects of
modelling errors and external disturbances on a sys-
tem. In this paper the state prediction equations in the
approximate receding-horizon algorithm are modified
so that the solution provides better performance than
the original approach. To verify the results the new
approach is applied to the spacecraft attitude control
problem with attitude-angle measurements only, i.e.,
without any angular-velocity measurements. Also, an
optimal design scheme is presented to determine the
weighting factor and receding-horizon time-length. In
addition the closed-loop system is shown to be glob-
ally quadratically stable for a norm bounded nonlinear
uncertainty. Simulation results are provided to show
the performance of the new control approach.

INTRODUCTION
Model-Error Control Synthesis (MECS) is a sig-

nal synthesis adaptive control method.1 Robustness is
achieved by applying a correction control, which is de-
termined during the estimation process, to the nominal
control vector thereby eliminating the effects of mod-
elling errors at the system output.2 The model-error
vector is estimated by using either a one-step ahead
prediction approach,1,3 or an Approximate Receding-
Horizon (ARH) approach.4 As shown by the bench-
mark problem example in Ref. [3], the one-step ahead
prediction approach inherent in MECS could not sta-
bilize the system, which has one pole at the origin and
two poles on the imaginary axis. When using the ARH
approach the closed-loop system can be stabilized and
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the system can tolerate relatively large uncertainties.
However, the one-step ahead prediction approach may
be easier to design for complicated systems than the
ARH approach. Therefore, choosing between the one-
step ahead prediction approach or the ARH approach
to determine the model error depends on the partic-
ular properties and required robustness in the system
to be controlled.

In Ref. [1] MECS with the one-step ahead predic-
tion approach is first applied to suppress the wing rock
motion of a slender delta wing, which is described by
a highly nonlinear differential equation. Results indi-
cated that this approach provides adequate robustness
for this particular system. In Ref. [3] a simple study
to test the stability of the closed-loop system is pre-
sented using a Padé approximation for the time delay,
which showed the relation between the system zeros
and the weighting in the cost function. The analysis
proved that some systems may not be stabilized using
the original model-error estimation algorithm, which
lead to the ARH approach in the MECS design to de-
termine the model-error vector in the system.4

The closed-form solution of the ARH approach us-
ing Quadratic Programming (QP) is first presented by
Lu.5 Although the problem is solved from a control
standpoint, the algorithm can be reformulated as a fil-
ter and estimator problem.2 The model-error vector is
determined by the ARH optimal solution.4 Using the
ARH approach, the capability of MECS is expanded
so that unstable non-minimum phase systems can be
stabilized. Furthermore, Ref. [4] shows a method to
calculate the stable regions with respect to the weight-
ing and the length of receding-horizon step-time using
the Hermite-Biehler theorem.6 After the stable region
is found, the weighting and the length of receding-
horizon step-time are chosen to minimize the ∞-norm
of the sensitivity function.4

The ARH solution for an rth-order relative degree
system shows that the model-error solution is zero be-
fore the end of receding-horizon step-time is reached.
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Some parts of the model-error vector are separated
completely from the constraints, so that the optimal
solution for those parts are automatically zero. In this
paper an extension to the ARH approach is shown.
For all model-error elements of each constraint at the
time before the end of receding-horizon step-time, the
state prediction is substituted by an rth-order Tay-
lor series expansion instead of a repeated first-order
expansion in the ARH approach. We call this the
Modified Approximate Receding-Horizon (MARH) ap-
proach, which leads to an even more robust MECS law
than with the ARH solution.

In this paper the MECS approach with the MARH
solution is applied to the spacecraft attitude control
problem for the case where the only available infor-
mation is attitude-angle measurements, i.e., with no
angular-velocity measurements. In Ref. [7] an adaptive
control approach using attitude, based on the Modified
Rodrigues Parameters (MRPs), and angular-velocity
information has been developed. This approach pro-
vides robustness in the system by estimating the iner-
tia matrix and external disturbances through a lin-
ear closed-loop dynamics expression. In this paper
the same basic non-adaptive portion of the controller
in Ref. [7] is used as nominal controller, however,
the angular-velocity information is provided using a
Kalman filter with attitude measurements only. Fur-
thermore, instead of estimating each element of the
inertia matrix and the external disturbance separately,
the whole effect of both uncertainties is estimated by
the MARH approach through a model-error vector in
the dynamics. The MECS approach uses this estimate
to subtract the model error from the nominal control
input in order to track the desired dynamics in the
face of severe inertia and external disturbance errors.

The organization of this paper is as follows. First,
the ARH approach to estimate the model-error vector
in a system is summarized. Second, the state predic-
tion in the ARH approach is modified using a Taylor
series expansion, and the solution is generalized for a
standard nonlinear system form. Next, the new ap-
proach is applied to the spacecraft attitude control
problem. An optimal design scheme is presented to
determine the weighting factor and receding-horizon
time-length. Also, globally quadratic stability is pro-
vided for a norm bounded nonlinear uncertainty. Fi-
nally, the results are verified through several simulated
cases.

MODIFIED ARH (MARH)

In this section the ARH approach to estimate the
model-error vector in a system is first summarized,
followed by a motivation for the modified algorithm.
Finally, the modified algorithm is generalized for a
standard nonlinear system form.

ARH APPROACH

The receding-horizon optimization problem is set up
as follows:5

min
û

J [x̂(t), t, û(t)] =
1

2

∫ t+T

t

[

eT (ξ)R−1(ξ) e(ξ)

+ûT (ξ)W (ξ) û(ξ)
]

dξ (1)

subject to the following:

˙̂x(t) = f̂ [x̂(t)] + B̂ [x̂(t)]u(t) + Ĝ [x̂(t)] û(t) (2a)

ŷ(t) = ĉ [x̂(t)] (2b)

where x̂(t) ∈ X ⊂ <n is the state estimate vector
of x(t), R−1(ξ) and W (ξ) are positive-definite and
symmetric weighting matrices for all ξ ∈ [t, t + T ],

f̂ [x̂(t)] ∈ <n is the assumed model vector, B̂ [x̂(t)] ∈
<n×qu is the assumed control input distribution ma-
trix, Ĝ [x̂(t)] ∈ <n×qw is the model-error distribution
matrix, u(t) ∈ Ωu ⊂ <qu is the control input, û(t) ∈
Ωû ⊂ <qw is the to-be-determined model error, which
also includes external disturbances, ĉ [x̂(t)] ∈ <m is
the measurement vector (m ≤ n in general), and
ŷ(t) ∈ <m is the estimated output vector.5 Also,
we assume that a unique solution for x̂(t) exists, and
e(t+ T ) = 0 where the residual error is defined by

e(t) = ỹ(t)− ŷ(t) (3)

where ỹ(t) is the measurement. Note that T is the
receding-horizon optimization-interval, which is not
the sampling interval in general.

For most mechanical systems Ωu ⊂ Ωû, i.e., the
system is under-actuated or fully actuated at the max-
imum, so that qu ≤ qw, where qw is the dimension
of the dynamics parts. The admissible sets X and
Ωu ⊂ Ωû are compact and X×Ωû contains a neighbor-
hood around the origin. One important assumption is
m ≥ qw, i.e., the dimension of the measurement vector
is at least the dimension of the dynamics. Also, we as-
sume that the rank of Ĝ [x̂(t)] is qw, i.e., full rank. In
addition controllability, observability, stable zero dy-
namics, and well-defined relative degree with respect
to û(t) are presumed, and the assumptions about con-

tinuity and f̂ (0) = 0 hold. Finally, we assume that
each element of the model-error vector affects the out-
put.

State-observable measurements are assumed for
Eq. (2b) in the following form:

ỹ(t) = c[x(t)] + v(t) (4)

where ỹ(t) ∈ <m is the measurement vector at time
t, and v(t) ∈ <m is the measurement noise vector,
which is assumed to be a zero-mean, stationary, Gaus-
sian noise distributed process with E {v(t)} = 0 and
E
{

v(t)vT (t+∆t)
}

= Rv δ(∆t), where E{·} is expec-
tation, Rv ∈ <m×m is a positive-definite symmetric
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covariance matrix, δ(·) is Dirac delta function, and ∆t
is the sampling rate for the discrete-time measurement
case.

At each time t, the model-error solution û over a
finite horizon [t, t + T ] is determined on-line. Define
h ≡ T/N for some integer N ≥ n/m, where N is the
number of sub-intervals on [t, t + T ]. Now ŷ(t + kh)
for each k = 1, 2, · · · , Nh = T is approximated by
an iterative first-order Taylor series. For simplicity
and avoiding the cross-product terms of û(t+ ih) and
û(t+ jh), we assume that Ĝ[x̂(t+ kh)] ≈ Ĝ[x̂(t)] and

F̂ [x(t+kh)] ≈ F̂ [x̂(t)], where F̂ ≡ ∂ f̂/∂x̂. In addition
since the future values of ỹ(t) and u(t) are unknown in
general, ỹ(t) and u(t) are assumed to remain constant
over the finite horizon [t, t + T ]. Then the following
expression is obtained for 1 ≤ k ≤ N :5

ŷ(t+ kh) ≈ ŷ(t) + h Ĉ

[{

k−1
∑

i=0

(

In×n + hF̂
)i
}

f̂

+

k−1
∑

i=0

(

In×n + hF̂
)i {

B̂ u(t)

+Ĝ û[t+ (k − 1− i)h]
}]

(5)

where In×n is an n×n identity matrix, Ĉ ≡ ∂ĉ(x̂)/∂x̂

and f̂ , F̂ , B̂, and Ĝ are evaluated at x̂(t). Define the
following:

L(k h) ≡ eT (t+ k h)R−1
k e(t+ k h)

+ ûT (t+ k h)Wk û(t+ k h) (6)

The cost function to be minimized is approximated us-
ing a trapezoidal formula or Simpson’s rule as follows:5

when N is odd,

J̄ =
h

2

N
∑

k=1

{

1

2
L [(k − 1)h] +

1

2
L (kh)

}

(7)

when N is even,

J̄ =
h

6

(N/2)−1
∑

k=0

{L (2kh) + 4L [(2k + 1)h]

+L [2 (k + 1)h]} (8)

With the following definition:

ν0 ≡
{

ûT (t), ûT (t+ h), · · · , ûT [t+ (N − 1)h]
}T

(9)

The approximate cost, J̄ , can be rewritten in quadratic
form as

J̄ =
1

2
νT

0 H0 ν0 + gT0 (x̂,u, ỹ)ν0 + q0(x̂,u, ỹ) (10)

where H0, g0 and q0 are functions of L(k h).5 Also, the
terminal constraint, e(t + T ) = 0, can be formulated
as a constraint on ν0 as follows:

MTν0 = d(t) (11)

Taylor Series Expansion Up To

r

r

dt

td )(ŷ
Taylor Series Expansion Up To

Taylor Series Expansion Up To

[ ]hNt )1(ˆ −+y

t ht + ht 2+ hNt )1( −+ Nht +

)(ˆ

)(

ht

ht

+

+

u

u [ ]

[ ]hNt

hNt

)1(ˆ

)1(

−+

−+

u

u

)2(ˆ

)2(

ht

ht

+

+

u

u
)(ˆ

)(

)(ˆ

t

t

t

u

u

y

)(ˆ ht +y )(ˆ Nht +y)2(ˆ ht +y

r

r

dt

htd )(ˆ +y

[ ]
r

r

dt

hNtd )1(ˆ −+y

Fig. 1 Modified Approximate Receding-Horizon
(MARH) Concept

where

MT = C
[

(In×n + hF̂ )N−1Ĝ, · · · , (In×n + hF̂ )Ĝ, Ĝ
]

(12)

and

d(t) =
1

h
e(t)− Ĉ

N−1
∑

i=0

(I + hF̂ )i
{

f̂ + B̂u(t)
}

(13)

Finally, the solution of the QP problem is given by

ν0 = −
[

H−1
0 −H−1

0 M
(

MTH−1
0 M

)−1
MTH−1

0

]

g0(t)

+
[

H−1
0 M

(

MTH−1
0 M

)−1
]

d(t) (14)

where the rank of M is m. The first qw equations give
a current model error minimizing the cost function,
which leads to a predictive filter structure:

û[t; x̂(t), u(t), ỹ(t), h] = Iqw×N ν0 (15)

where Iqw×N is a min(qw, N) × min(qw, N) identity
matrix with zeros for the remaining elements.

MOTIVATION FOR THE MODIFIED ARH

In this section the motivation for a new ARH ap-
proach is shown. Consider the following linear system:

˙̂x(t) = Ax̂(t) +Bu(t) +Bû(t) (16a)

ŷ(t) = Cx̂(t) (16b)

and assume that the relative degree is r for each ele-
ment of ŷ. The quantity MT is given by

MT =
[

C (In×n + hA)
N−1

B, C (In×n + hA)
N−2

B,

...

C (In×n + hA)
r
B, C (In×n + hA)

r−1
B,

...

C (In×n + hA)B, CB ]

=
[

MT
1

... 0m×qr

]

(17)
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where 0m×qr is an m × qr zero matrix. Consider the
case where the equality constraint is free from the last
r model-error terms as follows:

[

MT
1

... 0m×qr

]





ν01

· · ·
ν02



 = d(t)

MT
1 ν01 = d(t) (18)

where

ν01 =
{

ûT (t) ûT (t+ h) · · ·

· · · ûT [t+ (N − r − 1)h]
}T

(19a)

ν02 =
{

ûT [t+ (N − r)h] · · ·

· · · ûT [t+ (N − 1)h]
}T

(19b)

Also, the last (qr)-columns of the first-order term of ν0

in J̄ , i.e., g0(x̂), are all zeros and the coupling terms
for ν01 and ν02 in H0 are zeros. Therefore, the original
minimization problem is written as

J̄ =
1

2
νT

01H01(x̂)ν01 +
1

2
νT

02H02(x̂)ν02

+ gT01(x̂)ν01 + q0(x̂) (20a)

MT
1 ν01 = d(t) (20b)

where

H0 =

[

H01 0
0 H02

]

(21a)

g0(x̂) =
[

g01(x̂)
T 01×qr

]T
(21b)

Hence, the optimal value of ν02 to minimize J̄ is 0qr×1,
i.e., the model error is already zero before the end of
the receding horizon (t+Nh) is reached. To avoid the
model-error separation from the equality constraint,
the state prediction in Eq. (5) has to be modified.

In this paper an rth-order Taylor series expansion
is used to predict the future state. The basic concept
is shown in Fig. 1. Using the given ŷ(t), u(t), and
û(t), the states at t+ h are approximated by a Taylor
series expansion. The order of the expansion of each
predicted state is given when û(t) first appears due to
successive differentiation of the output. For the states
at time t+2h, the expansion is similar to the previous
case, using the states at time t + h when û(t + h)
first appears. Hence after this expansion is given, the
states at time t + 2h are functions of the states, the
control, and the model error at time t + h. Then the
states at time t + h in the predicted states at t + 2h
are substituted by the approximated ones at the first
stage. This process is repeated up to time t+Nh.

GENERALIZATION OF MODIFIED ARH

The output prediction at t+ (k + 1)h is given by

ŷ [t+ (k + 1)h] ≈ ŷ (t+ kh) + z [x̂ (t+ kh) , h]

+ Λ(h)Su [x̂ (t+ kh)] u(t)

+ Λ(h)Sû [x̂ (t+ kh)] û (t+ kh) (22)

for k = 1, 2, . . . , N , where ŷ (t+ kh) and x̂ (t+ kh)
are given by the predictions from the previous stage.
This process is repeated up to all x̂ (t+ kh) written
in terms of x̂ (t). The ith component of z [x̂(t), h] is
given by

zi [x̂(t), h] =

pi
∑

k=1

hk

k!
Lk

f̂
(ci) (23)

where Lk
f (ci) is the kth Lie derivative, defined by

L0
f̂
(ci) = ci (24a)

Lk
f̂
(ci) =

[

∂Lk−1

f̂
(ci)

∂x̂

]T

f̂ , for k ≥ 1 (24b)

where the gradient is represented by a column vector
with elements given by (∂ci/∂x)k = ∂ci/∂xk. The ith

rows of Su [x̂(t)] and Sû [x̂(t)] are given by

sui
=
{

L
b̂1

[

Lpi−1

f̂
(ci)

]

, · · · , L
b̂qu

[

Lpi−1

f̂
(ci)

]}

(25a)

sûi
=
{

Lĝ1

[

Lpi−1

f̂
(ci)

]

, · · · , Lĝqw

[

Lpi−1

f̂
(ci)

]}

(25b)

for i = 1, 2, . . . , m, where b̂j is the jth column of

B̂ [x̂(t)], ĝj is the jth column of Ĝ [x̂(t)], and the Lie
derivative in Eq. (25) is defined by

L
b̂j

[

Lpi−1

f̂
(ci)

]

≡
[

∂Lpi−1

f̂
(ci)

∂x̂

]T

b̂j (26)

for j = 1, 2, . . . , qu, and

Lĝj

[

Lpi−1

f̂
(ci)

]

≡
[

∂Lpi−1

f̂
(ci)

∂x̂

]T

ĝj (27)

for j = 1, 2, . . . , qw.
Finally, the approximated cost function J̄ is ob-

tained through the same steps as in the ARH ap-
proach, and the optimal solution is obtained by
Eqs. (14) and (15). As a result, the MARH approach
is derived by combining the one-step ahead state pre-
diction with the approximate receding-horizon cost
function.

MECS CONCEPT
The block diagram with MECS is shown in Fig. 2,

where r(t) is the reference command. The model error
is determined using the estimated states, x̂(t), the con-
trol input, u(t), and the current measurement, ỹ(t).
The determined model error, û(t), corrects not only
the nominal control input, ū(t), but also the filter
model. After the model error is determined, any state
estimator or observer can be implemented, including
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Fig. 2 Overall Block Diagram with MECS

a Kalman filter. The total control input u(t) with
model-error correction is given by

u(t) = ū(t)− ûc(t− τ) (28)

where ū(t) is the nominal control input at time
t, which can be any controller, i.e., Proportional-
Integrate-Derivative (PID) Control, Lead-Lag Com-
pensator, Sliding Mode Control, H∞ Control, Lin-
ear Quadratic Regulator (LQR) Control, Linear
Quadratic Gaussian (LQG) Control, etc. The time
delay τ is always present in the overall MECS design
because the measurement ỹ(t) must be given before
the error in the system can be corrected. The term
ûc (t− τ) is used to cancel the estimated model error
at time t − τ , determined by the current information
using a Pseudo-Inverse (n ≥ qu, i.e., under-actuated)
as follows:

ûc(t) = [B̂T B̂]−1 B̂T Ĝ û(t) (29)

When B̂ [x̂(t)] = Ĝ [x̂(t)], i.e., separate actuators are
installed for each dynamics part, ûc(t) is equal to û(t),
which will be the case for the spacecraft attitude con-
trol problem.

SPACECRAFT ATTITUDE CONTROL
In this section the nominal control design in Ref. [7]

is first summarized, and then the model-error correc-
tion input using the MARH approach is derived. Next,
a method is derived to choose the optimal weighting
and length of receding-horizon step-time. Then, the
quadratic stability of the closed-loop system for a norm
bounded uncertainty is derived. Finally, simulation
results are shown to verify the new control design ap-
proach.

NOMINAL CONTROLLER DESIGN

The spacecraft attitude kinematics and dynamics
can be written as follows:8

˙̂σ(t) =
1

4
B [σ̂(t)] ω̂(t) (30a)

˙̂ω(t) = −Î−1 [ω̂(t)×] Iω̂(t) + Î−1 [u(t) + û(t)] (30b)

where σ̂(t) represents the estimated Modified Ro-
drigues Parameter (MRP) vector, ω̂(t) is the angular-
velocity vector, Î is the nominal spacecraft inertia
matrix, û(t) is the model-error vector to be determined
(which is a function of the unknown external distur-
bances, spacecraft moment of inertia, and the angular
velocity), and u(t) is the total control input defined by
Eq. (28). The matrix B [σ̂(t)] is given by8

B [σ̂] ≡
[

1− σ̂2
]

I 3×3 + 2 [σ̂×] + 2 σ̂σ̂T (31)

where σ̂2 = σ̂
T
σ̂, and the inverse is given by

B−1 [σ̂] =
1

{1 + σ̂2}2
BT [σ̂] (32)

For a = [a1, a2, a3]
T
, the cross product operator [a×]

is defined by

[a×] ≡





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (33)

By the control design in Ref. [7], the nominal control
input is given by

ū(t) = [ω̂(t)×] Îω̂(t) + Îφ(t) (34)

where

φ(t) = −P ω̂(t)−
{

ω̂(t) ω̂T (t)

+

(

4K

1 + σ̂2(t)
− ω̂2(t)

2

)

I3×3

}

σ̂(t)

− 4KIB−1 [σ̂(t)]

∫ t

0

σ̂(ξ)dξ (35)

where P , K, and KI are the control gain matrices, and
ω̂2(t) = ω̂

T (t) ω̂(t). After substituting this control
input into the dynamics in Eq. (30), the closed-loop
dynamics become

¨̂σ(t) = −P ˙̂σ(t)−Kσ̂(t)−KI

∫ t

0

σ̂(ξ) dξ

+
1

4
B [σ̂(t)] Î−1 {û (t)− û (t− τ)} (36)

In Ref. [7] Î and the external disturbances are esti-
mated by an adaptive scheme where the model pa-
rameters are updated on-line in the control law, so
that û(t) approaches zero as time increases. In this
paper instead of using the adaptive scheme, the to-
tal model-error vector û(t) is estimated by the MARH
solution and the control input is corrected using the
MECS approach shown in Fig. 2.

MODEL-ERROR ESTIMATION USING MARH

Choosing P = pI3×3, K = kI3×3, and KI = kII3×3

(where p, k, and kI are positive constants), then

¨̂σi(t) = −p ˙̂σi − k σ̂i(t)− kI

∫ t

0

σ̂(ξ) dξ

+ ν̂i(t)− ν̂i(t− τ) (37)

5
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for i = 1, 2, 3, where

ν̂(t) =
[

ν̂1(t) ν̂2(t) ν̂3(t)
]T

(38a)

ν̂(t) =
1

4
B [σ̂(t)] Î−1û(t) (38b)

The state-space form for each axis is given by

ẋi(t) = Âixi(t) + B̂iνi(t) + B̂i ν̂i(t) (39a)

ŷi(t) = Ĉi x̂i(t), for i = 1, 2, 3 (39b)

where

νi(t) = ν̄i(t)− ν̂i(t− τ) (40a)

ν̄i(t) = −kI

∫ t

0

σi(ξ) dξ (40b)

x̂i(t) =
[

x̂i1(t) x̂i2(t)
]T

=
[

σ̂i(t) ˙̂σi(t)
]T

(40c)

and

Âi =

[

0 1
−k −p

]

, B̂i =

[

0
1

]

, Ĉi =
[

1 0
]

(41)

Usually kI is chosen to be as small as possible so that
the integral control action does not significantly affect
the transient response, while also reducing the steady-
state error. Therefore, in order to keep the order of
the model equal to two (which is required to simplify
the analysis), the integral control term is not put into
the model (for small kI this approximation is valid).
Note, integral control will still be used in the final
control form. The measurement is attitude-angle only,
so that

ỹi(t) = σ̃i(t) = σi(t) + vi(t) for i = 1, 2, 3 (42)

where vi(t) is the measurement noise with known co-
variance.

As shown in the above equations the dynamics is
completely linearized and decoupled without any ap-
proximation. After the vector ν̂ is determined, the
actual model-error correction input, û(t), is set to the
following:

û(t) =
4

{1 + σ̂2(t)}2
Î BT [σ̂(t)] ν̂(t) (43)

Since the relative degree is two, we choose the value
of the subinterval N be equal to two. From the steps
of the MARH approach, the following terms are ob-
tained:

h11 =
h

32 r2

{

k2h8 + 4 k p h7 +
(

4p2 − 12k
)

h6

−24 p h5 +
(

8r−1
1 + 36

)

h4 + 16w0 r2

}

(44a)

h12 = h21 = −h5
(

k h2 + 2 p h− 6
)

16 r2
(44b)

h22 =
h
(

h4 + 8w1 r2

)

8 r2
(44c)

where hij is the ith-row and jth-column element of H0,
h = T/2, and

MT =











−k h4

4
− p h3

2
+

3h2

2

h2

2











(45)

and

g1(t) = −
h3

32 r1 r2
× {kg11x̂i1(t) + kg12x̂i2(t)

+kg13νi(t) + kg14ỹi(t)} (46a)

g2(t) =
h3

16 r2
× {kg21x̂i1(t) + kg22x̂i2(t)

+kg23νi(t) + kg24ỹi(t)} (46b)

where

kg11 = k3 r1 h6 + 4 k2 p r1 h5

+
(

4 p2 k r1 − 14 k2 r1

)

h4 − 28 p k r1 h3

+ (52 kr1 + 8kr2)h
2 + 8 p r1 h− 24 r1 − 16 r2 (47a)

kg12 = k2 p r1 h6 +
(

−2 k2 r1 + 4 p2 kr1

)

h5

+
(

4 p3 r1 − 18 k p r1

)

h4 +
(

20 k r1 − 28 p2 r1

)

+ (64p r1 + 8 p r2)h
2 + (−48 r1 − 16 r2)h (47b)

kg13 = −k2 r1 h6 − 4 k p r1 h5 +
(

14 k r1 − 4 p2 r1

)

h4

+ 28 p r1 h3 − (8 r2 + 48 r1)h
2 (47c)

kg14 = 24 r1 − 8h p r1 − 4h2 k r1 + 16 r2 (47d)

kg21 = k2 h4 + 2 p k h3 − 8 k h2 + 4 (47e)

kg22 = k p h4 +
(

2 p2 − 2 k
)

h3 − 8 p h2 + 8h (47f)

kg23 = −k h4 − 2 p h3 + 8h2 (47g)

kg24 = −4 (47h)

with g0(t) = [ g1, g2 ]
T
. Also, di(t) in Eq. (11) is given

by

di(t) = −
(

k2 h4

4
+

k p h3

2
− 2 k h2 + 1

)

x̂i1(t)

−
{

k p h4

4
+
(

p2 − k
) h3

2
− 2 p h2 + 2h

}

x̂i2(t)

+

(

k h4

4
+

p h3

2
− 2h2

)

νi(t) + ỹi(t) (48)

Using the above equations, the current estimated
model error is determined by the first element of
Eq. (14).

The output is assumed to be constant during the
given time interval. However, this assumption be-
comes less accurate as the receding-horizon step-time
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T increases and/or the speed of response increases.
Therefore, the weights have to be adjusted accord-
ingly. To accomplish this task, the following expo-
nential functions are used:

r(tk) = erp r(tk−1) (49a)

w(tk) = ewp w(tk−1) (49b)

where r0 ≡ r(t0) and w0 ≡ w(t0) are given, and rp and
wp are non-negative real values. More details of this
concept can be found in Ref. [4]. Finally, the estimated
model-error correction input is simply given by

ν̂i(t) = a1 x̂i1(t) + a2 x̂i2(t) + a3 νi(t) + a4 ỹi(t) (50)

for i = 1, 2, 3, where a1, a2, a3 and a4 are the func-
tions of wi, ri, h and τ (given in the Appendix).

After ν̂i(t) in Eq. (39a) is determined, a Kalman
filter is designed for state estimation. For the simu-
lations the noise variance for the MRP measurement
is given by 6.67 × 10−4, which corresponds to the
standard deviation of a Fine Sun Sensor angle mea-
surement, 0.5◦/

√
12. The state estimation errors and

3σ bounds are shown in Fig. 3. As shown in the figure
without any angular-velocity sensor, such as a three-
axis gyro, the rate estimation error bound is about
±1.24◦/sec. If this error is too large, then gyro mea-
surements should be employed.

0 20 40 60 80 100 120
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−2

0

2

4
x 10

−3

∆σ
 i (

 t 
)

0 20 40 60 80 100 120
−2

−1

0

1

2

time [sec]

∆ω
 i( 

t )
 [

 °/
se

c]

Fig. 3 Estimation Errors and 3σ Bounds

OPTIMAL DESIGN

In this section the optimal weighting and length of
receding-horizon step-time are determined. Our goal
is to determine wp and/or rp and h that minimizes the
∞-norm of sensitivity function for the system given by
Eq. (39). To find a stable region the Hermite-Biehler
theorem is used, which gives the necessary and the suf-
ficient conditions for a system to be Hurwitz stable.6

Theorem 1 Hermite-Biehler Theorem

Consider the following polynomial:

dcl(s) = cn sn + cn−1 sn−1 + · · ·+ c1 s+ c0 (51)

where cn 6= 0 can be decomposed as

dcl(s) = p(s) + sq(s) (52)

where p(s) contains even power terms and q(s) con-

tains odd power terms of dcl(s). Then dcl(s) is Hurwitz
stable if and only if cn and cn−1 are the same sign with

all roots of p(jω) and q(jω) real, and the nonnegative

roots satisfy the following interlacing property:

0 < ωe1 < ωo1 < ωe2 < ωo2 < · · · (53)

where ωei and ωoi are the roots of p(jω) and q(jω),
respectively. ¥

From the Hermite-Biehler theorem the following is de-
duced:

Corollary 1 Consider the following 6th-order polyno-

mial:

dcl(s) = c6 s6+c5 s5+c4 s4+c3 s3+c2 s2+c1 s+c0 (54)

where c6 > 0, then dcl(s) is Hurwitz stable if and only

if the stability index,

ε ≡ sgn(κ) log10 (|κ|+ 1) (55)

is greater than zero, where

κ ≡ min ( I, II-a, II-b, II-c,

III-a, III-b, III-c, III-d ) (56)

and

I : c0 > 0 (57a)

II-a : min (c3 c5) > 0,

II-b : min (c5 c6) > 0,

II-c : min (c1 c5) > 0 (57b)

III-a : c̄6, c5, c̄4, c̄3, c2, c1, c̄0,

III-b : c6, c̄5, c4, c3, c̄2, c̄1, c0,

III-c : c6, c̄5, c̄4, c3, c2, c̄1, c̄0,

III-d : c̄6, c5, c̄4, c̄3, c2, c1, c0 (57c)

are substituted into III

where ci and c̄i are the lower and the upper bounds of

each ci, for i = 1, 2, . . . , 6, and

III : −
(

4 c1 c5 A2 + 2 c3 AB +B2
)

> 0 (58)

where

A ≡ c1 c5 c6 − c2 c25 + c3 c4 c5 − c23 c6 (59a)

B ≡ 2 c0 c35 − 2 c1 c4 c25 + 2 c1 c3 c5 c6 (59b)

¥
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Proof: the proof can be found in Ref. [4].

We assume that no estimation errors are present,
i.e., the estimator transients have sufficiently decayed
(the estimator is also assumed to provide unbiased
estimates). Then the following closed-loop transfer
function is obtained:

yi(t) =
Nv(s)

Dcl(s)
[vi(t)] +

Nw(s)

Dcl(s)
[ν̂i(t)] (60a)

≡ Sν(s) [νi(t)] + S(s) [ν̂i(t)] (60b)

where Sν(s) is the measurement-noise transfer func-
tion and S(s) is sensitivity function, with

Dcl(s) = {dt(s) + a3nt(s)}Dk(s)Ds(s)

+ {(1− a3) dt(s) + a3nt(s)}Nk(s)Ns(s)

+ dt(s) (a1 + a4 + sa2)Dk(s)Ns(s) (61a)

Nv(s) = −a4dt(s)Dk(s)Ns(s) (61b)

Nw(s) = {dt(s) + a3nt(s)}Dk(s)Ds(s) (61c)

The term Nk(s)/Dk(s) is the transfer function of inte-
gral control action given by Eq. (40b). Note that the
nominal controller in Eq. (34) is now embedded in the
system model through Eq. (41). Also, nt(s)/dt(s) is
a Padé approximation of e−τs (from the time-delay in
the MECS design). The following (3, 3) Padé approx-
imation is used:9

e−τs≈−τ3 s3 + 12 τ2 s2 − 60 τ s+ 120

τ3 s3 + 12 τ2 s2 + 60 τ s+ 120
≡ nt(s)

dt(s)
(62)

and h, rp and/or wp are chosen so that the following
H∞ norm is minimized:

min ||S(jω)||∞ (63)

To narrow down the searching space, k = 1.0, p = 3.0
and kI = 0.090 are adopted from Ref. [7], and w1 =
1, wp = 0.1, r1 = 0.5 and τ = 0.0025 sec. Then,
the parameter space for the optimal values is now 2-
dimensional (rp and h).

By calculating ε and ‖S(jω)‖∞ for various values
of h and rp, we find that the stability index and the
norm are more sensitive to h than rp. Figure 4 depicts
h versus the normalized values of ‖S(jω)‖∞, ε, settling
time and maximum overshoot for an impulse ν̂(t) in-
put, with rp set to 0.1 (chosen by trial and error). To
minimize the sensitivity norm (‖S(jω)‖∞) the value of
h has to be chosen as small as possible. However, the
settling time increases as h decreases and the control
input may saturate. Therefore, the optimal value of
h is in the range of 1.48 ≤ h∗ ≤ 1.58. By trial and
error h∗ = 1.5 sec is selected. Finally, the determined
model error for i = 1, 2, 3 is given by

ν̂i(t) ≈ 0.72 σ̂i(t) + 2.03 ˙̂σi(t)

− 0.66 νi(t)− 0.06 ỹi(t) (64)
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0.2
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0.5

0.6

0.7
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0.9

1

 h [sec]

[Maximum Overshoot] / 9.69

[Settling Time] / 22.6

|| S(jω)||
∞
 / 1.09

 ε / 13.7

h*

Fig. 4 h vs. ‖S(jω)‖∞, ε, Settling Time, and Max-
imum Overshoot

QUADRATIC STABILITY

To provide a stability proof, the following are sum-
marized from Ref. [10] and the proof of each of the
following can also be found in Ref. [10]:

Definition 1 Quadratically Stable

Consider the following system with nonlinear uncer-

tainty ∆f [x(t)]:

ẋ(t) = Ax(t) + ∆f [x(t)] (65)

where x(t) ∈ <n and the nonlinear uncertainty

∆f [x(t)] ≡ Ef δ [x(t)] is a C0 function, and δ [x(t)]
is a element of the following set:

Ω ≡ { δ [x(t)] | ‖δ [x(t)] ‖∞ ≤ ‖Nf x(t)‖∞, ∀ x(t)}
(66)

where Ef and Nf are some constant matrices. The

system, Eq. (65), is said to be quadratically stable if

there exists a positive-definite symmetric matrix Pq >
0 such that

{Ax(t) + ∆f [x(t)]}T Pq x(t)

+ xT (t)Pq {Ax(t) + ∆f [x(t)]} < 0 (67)

for all nonzero x(t) ∈ <n and all admissible nonlinear

uncertainty, ∆f [x(t)]. ¥

Definition 2 Quadratic Cost Matrix, Pq

A positive definite matrix Pq > 0 is said to be a

quadratic cost matrix for Eq. (65) and the following

cost function:

Jq =

∫ ∞

0

xT (t)Qq x(t) dt (68)

where Qq ≥ 0, if

{Ax(t) + ∆f [x(t)]}T Pq x(t)

+ xT (t)Pq {Ax(t) + ∆f [x(t)]} < −xT (t)Qq x(t)
(69)

8

American Institute of Aeronautics and Astronautics



Table 1 Simulation Scenarios

Case Inertia External Full State Sensor MECS
Scenario Uncertainty Disturbance Information Noise On/Off

(1) No No Yes N/A Off
(2) Yes Yes Yes N/A Off
(3) Yes Yes No Yes On

for all nonzero x(t) ∈ <n and all admissible nonlinear

uncertainty, ∆f [x(t)].
¥

Theorem 2 The Cost Function Bound

If Pq > 0 is a quadratic cost matrix of Eq. (65), then
the cost function is bounded by

Jq ≤ xT (0)Pq x(0) (70)

and if the system is quadratically stable, then there

exists a quadratic cost matrix. ¥

Lemma 1 H∞ Norm Bound Condition

For the system, Eq. (65), there exists a quadratic cost

matrix, Pq > 0, if and only if the following conditions

hold:

1. A is a stable matrix.

2. The following H∞ norm bound is satisfied for

some ε > 0:

∥

∥

∥

∥

[

Nf√
εQq

]

(s In −A)
−1

Ef

∥

∥

∥

∥

∞

< 1 (71)

Then, for such ε, the Riccati equation

AT Pq+Pq A+ε Pq Ef ET
f Pq+

1

ε
NT

f Nf = −Qq (72)

has a solution.
¥

For the state-space form of Eq. (60), the following
values are obtained:

Ef = { 0, 0, 1, 0, 0, 0 }T (73a)

Nf =
[

diag [0.248, 2.250, 8.160] 03×3

]

(73b)

Qq =

[

I3×3 03×3

03×3 03×3

]

(73c)

ε = 0.001 (73d)

where the first three diagonal terms of Nf and ε are
the maximum values to satisfy Eq. (71) with the given
matrices (the ∞-norm of Eq. (71) is 0.9982) and Pq

is given in the Appendix. Therefore, for the norm
bounded uncertainty by Definition 1, the closed-loop
system is globally quadratically stable.

SIMULATION

The initial MRP is σ̂(t0) = {−0.3, −0.4, 0.2 }T
and the initial angular velocity is ω̂(t0) =
{11.46, 11.46, 11.46 }T [◦/sec]. The true and assumed
inertia matrices are given by (consistent with Ref. [7])

I =





30 10 5
10 20 3
5 3 15



 , Î = diag { 5, 5, 5}
[

kg·m2
]

(74)
and the external disturbance, Fe(t), is given by

Fe(t) =

















2 +
1

5
sin

(

t

7

)

1 +
1

10
sin

(

t

7
+

π

4

)

−1− 1

10
cos

(

t

7

)

















[N·m] (75)

The model-error upper bounds in an ∞-norm sense
are as follows:

‖ν‖∞ ≤ 3.605 and ‖Î−1 û‖∞ ≤ 4.120 (76)

In addition since Î is a diagonal matrix, then the upper
bound of û is given by

‖û‖∞ ≤ 5× 4.120 = 20.60 [N·m] (77)

A simulation result of the actual calculated model er-
ror compared to the upper bound given by Eq. (77) is
shown in Fig. 5.
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Fig. 5 True Model Error and Upper Bound
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The simulation scenarios are given in Table 1. The
MRP norm histories for each case are shown in Fig. 6.
After the transient response settles, the mean value of
the norm for Case 3 is 0.002 and the one for Case 2
is 0.007. This represents a 71% performance improve-
ment in the sense of the 2-norm of σ̂(t). Also, the
time histories of the MRPs for each case are shown
in Fig. 7. MECS provides the best transient response,
i.e., less overshoot and closer to the response of Case 1.
The control histories for each case are shown in Fig. 8.
The MECS controller reacts more to the modelling and
external disturbance errors.

The norm of the cost function, Eq. (68), for each
case shows the significant performance improvement
of MECS. The norm is defined as

‖Jq‖2 =
√

J2
q1 + J2

q2 + J2
q3 (78)

where

Jqi =

∫ ∞

0

xTie(t)xie(t)dt, for i = 1, 2, 3 (79)
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Fig. 9 Time History of the Cost Function Norm
for Each Case

with

xTie =

{
∫ t

0

σ̂i(ξ)dξ, σ̂i(t), ˙̂σi(t)

}

(80)

As shown in Fig. 9, the slope of Case 2 is very steep
compared to the one of Case 3. MECS decreases the
increasing speed of the norm ‖Jq‖2, especially when
t < 60 sec, the norm for Case 3 is even less than
the one for Case 1, the perfect case (given by us-
ing the nominal controller with no model errors or
external disturbances with full state measurement in-
formation). As shown in Fig. 8, at the beginning of the
simulation the control torque for each axis of Case 3 is
relatively larger than the ones for the other two cases.
Since the initial value of the rate is not zero, the rate
dependent part of the true model error dominates. At
the beginning of the simulation MECS not only can-
cels this initial model error but also makes the system
response faster than the one for the perfect case. As
shown in Fig. 6, the first minimum for Case 3 is 1.3
sec faster than the one for Case 1.
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CONCLUSION

A new approach to determine modelling errors in
a dynamical system was derived using a modified ap-
proximate receding-horizon expression with a Taylor
series expansion at each instant of time. This new
approach was used in the model-error control synthe-
sis design to provide robustness with respect to ex-
treme modelling errors. An application was shown for
the spacecraft attitude control problem using attitude-
angle information only. A Kalman filter was designed
to estimate the angular velocity, which was subse-
quently used in the overall controller. Simulation
results indicated that a nominal controller combined
with the model-error control synthesis approach pro-
duced robust transient response behaviors, and the
steady-state attitude errors were much smaller than
nominal controller only design case. In addition the
closed-loop system is globally quadratically stable for
a norm bounded nonlinear uncertainty.
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APPENDIX
The parameters in Eq. (50) are given by

a1 =
[

k
(

r0 w0 erp+wp k2 + 1
)

h6 + 4 r0 w0 erp+wp p k2 h5

− 2
(

7 r0 w0 erp+wp k2 − 2 r0 w0 erp+wp p2 k + 1
)

h4

− 28 r0 w0 erp+wp p k h3 + 52 r0 w0 erp+wp k h2

+8 r0 w0 erp+wp p h− 24r0 w0 erp+wp
]

/da (81a)

a2 =
[

p
(

r0 w0 erp+wp k2 + 1
)

h6

+ 2
(

2 r0 w0 erp+wp p2 k − r0 w0 erp+wp k2 − 1
)

h5

+ 2
(

2 r0 w0 erp+wp p3 − 9 r0 w0 erp+wp p k
)

h4

+ 4
(

5 r0 w0 erp+wp k − 7 r0 w0 erp+wp p2
)

h3

+64 r0 w0 erp+wp p h2 − 48 r0 w0 erp+wp h
]

/da (81b)

a3 =
[

−
(

r0 w0 erp+wp k2 + 1
)

h6 − 4 r0 w0 erp+wp p k h5

+ 2
(

7 r0 w0 erp+wp k − 2 r0 w0 erp+wp p2
)

h4

+28 r0 w0 erp+wp p h3 − 48 r0 w0 erp+wp h2
]

/da
(81c)

a4 = 2
[

h4 − 2 r0 w0 erp+wp k h2 − 4 r0 w0 erp+wp p h

+12 r0 w0 erp+wp
]

/da (81d)

where

da =
(

r0 w0 erp+wp k2 + 1
)

h6 + 4 r0 w0 erp+wp p k h5

+ 4 r0 w0 erp+wp
(

p2 − 3 k
)

h4 − 24 r0 w0 erp+wp p h3

+ 2 r0 w0 erp (18 ewp + erp) h2 (82)

The matrix Pq used in Eq. (72) is given by

Pq ≈ 1× 107

[

P11 P12

PT
12 P22

]

(83)

where

P11 =





0.0001 0.0002 0
0.0002 0.0027 0.0003

0 0.0003 0.0006



 (84a)

P22 =





1.1646 0.0009 0.2543
0.0009 0.0001 0.0002
0.2543 0.0002 0.0556



 (84b)

P12 =





−0.0007 0 −0.0002
−0.0131 0 −0.0029
−0.0254 0 −0.0055



 (84c)

11

American Institute of Aeronautics and Astronautics


