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ABSTRACT

Model-error control synthesis is a nonlinear robust
control approach that uses an approximate receding-
horizon estimation algorithm to cancel the effects of
modelling errors and external disturbances on a sys-
tem. In this paper the state prediction equations in the
approximate receding-horizon algorithm are modified
so that the solution provides better performance than
the original approach. To verify the results the new
approach is applied to the spacecraft attitude control
problem with attitude-angle measurements only, i.e.,
without any angular-velocity measurements. Also, an
optimal design scheme is presented to determine the
weighting factor and receding-horizon time-length. In
addition the closed-loop system is shown to be glob-
ally quadratically stable for a norm bounded nonlinear
uncertainty. Simulation results are provided to show
the performance of the new control approach.

INTRODUCTION

Model-Error Control Synthesis (MECS) is a sig-
nal synthesis adaptive control method.! Robustness is
achieved by applying a correction control, which is de-
termined during the estimation process, to the nominal
control vector thereby eliminating the effects of mod-
elling errors at the system output.? The model-error
vector is estimated by using either a one-step ahead
prediction approach,™?3 or an Approximate Receding-
Horizon (ARH) approach.? As shown by the bench-
mark problem example in Ref. [3], the one-step ahead
prediction approach inherent in MECS could not sta-
bilize the system, which has one pole at the origin and
two poles on the imaginary axis. When using the ARH
approach the closed-loop system can be stabilized and
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the system can tolerate relatively large uncertainties.
However, the one-step ahead prediction approach may
be easier to design for complicated systems than the
ARH approach. Therefore, choosing between the one-
step ahead prediction approach or the ARH approach
to determine the model error depends on the partic-
ular properties and required robustness in the system
to be controlled.

In Ref. [1] MECS with the one-step ahead predic-
tion approach is first applied to suppress the wing rock
motion of a slender delta wing, which is described by
a highly nonlinear differential equation. Results indi-
cated that this approach provides adequate robustness
for this particular system. In Ref. [3] a simple study
to test the stability of the closed-loop system is pre-
sented using a Padé approximation for the time delay,
which showed the relation between the system zeros
and the weighting in the cost function. The analysis
proved that some systems may not be stabilized using
the original model-error estimation algorithm, which
lead to the ARH approach in the MECS design to de-
termine the model-error vector in the system.*

The closed-form solution of the ARH approach us-
ing Quadratic Programming (QP) is first presented by
Lu.> Although the problem is solved from a control
standpoint, the algorithm can be reformulated as a fil-
ter and estimator problem.? The model-error vector is
determined by the ARH optimal solution.* Using the
ARH approach, the capability of MECS is expanded
so that unstable non-minimum phase systems can be
stabilized. Furthermore, Ref. [4] shows a method to
calculate the stable regions with respect to the weight-
ing and the length of receding-horizon step-time using
the Hermite-Biehler theorem.5 After the stable region
is found, the weighting and the length of receding-
horizon step-time are chosen to minimize the co-norm
of the sensitivity function.*

The ARH solution for an r*-order relative degree
system shows that the model-error solution is zero be-
fore the end of receding-horizon step-time is reached.
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Some parts of the model-error vector are separated
completely from the constraints, so that the optimal
solution for those parts are automatically zero. In this
paper an extension to the ARH approach is shown.
For all model-error elements of each constraint at the
time before the end of receding-horizon step-time, the
state prediction is substituted by an r*"-order Tay-
lor series expansion instead of a repeated first-order
expansion in the ARH approach. We call this the
Modified Approximate Receding-Horizon (MARH) ap-
proach, which leads to an even more robust MECS law
than with the ARH solution.

In this paper the MECS approach with the MARH
solution is applied to the spacecraft attitude control
problem for the case where the only available infor-
mation is attitude-angle measurements, i.e., with no
angular-velocity measurements. In Ref. [7] an adaptive
control approach using attitude, based on the Modified
Rodrigues Parameters (MRPs), and angular-velocity
information has been developed. This approach pro-
vides robustness in the system by estimating the iner-
tia matrix and external disturbances through a lin-
ear closed-loop dynamics expression. In this paper
the same basic non-adaptive portion of the controller
in Ref. [7] is used as nominal controller, however,
the angular-velocity information is provided using a
Kalman filter with attitude measurements only. Fur-
thermore, instead of estimating each element of the
inertia matrix and the external disturbance separately,
the whole effect of both uncertainties is estimated by
the MARH approach through a model-error vector in
the dynamics. The MECS approach uses this estimate
to subtract the model error from the nominal control
input in order to track the desired dynamics in the
face of severe inertia and external disturbance errors.

The organization of this paper is as follows. First,
the ARH approach to estimate the model-error vector
in a system is summarized. Second, the state predic-
tion in the ARH approach is modified using a Taylor
series expansion, and the solution is generalized for a
standard nonlinear system form. Next, the new ap-
proach is applied to the spacecraft attitude control
problem. An optimal design scheme is presented to
determine the weighting factor and receding-horizon
time-length. Also, globally quadratic stability is pro-
vided for a norm bounded nonlinear uncertainty. Fi-
nally, the results are verified through several simulated
cases.

MODIFIED ARH (MARH)

In this section the ARH approach to estimate the
model-error vector in a system is first summarized,
followed by a motivation for the modified algorithm.
Finally, the modified algorithm is generalized for a
standard nonlinear system form.

2

ARH APPROACH

The receding-horizon optimization problem is set up
as follows:®

1

t+T
min J [%(t) £, 5(t)] = | / [e7 (&) R™(€) e(€)

+a’ (&) W(g) a(¢)] de

subject to the following:

where %x(t) € X C R" is the state estimate vector
of x(t), R71(¢) and W(£) are positive-definite and
symmetric weighting matrices for all £ € [t, t + T,
f[%(t)] € R" is the assumed model vector, B [%(t)] €
R"™* 49w jis the assumed control input distribution ma-
trix, G [%(t)] € R is the model-error distribution
matrix, u(t) € Q, C R is the control input, G(t) €
Qs C R is the to-be-determined model error, which
also includes external disturbances, ¢[x(t)] € R™ is
the measurement vector (m < n in general), and
y(t) € R™ is the estimated output vector.> Also,
we assume that a unique solution for x(t) exists, and
e(t + T) = 0 where the residual error is defined by

(3)

where y(t) is the measurement. Note that T is the
receding-horizon optimization-interval, which is not
the sampling interval in general.

For most mechanical systems €, C g, i.e., the
system is under-actuated or fully actuated at the max-
imum, so that ¢, < qu, where ¢, is the dimension
of the dynamics parts. The admissible sets X and
Q, C Qg are compact and X x ; contains a neighbor-
hood around the origin. One important assumption is
m > ), i.e., the dimension of the measurement vector
is at least the dimension of the dynamics. Also, we as-
sume that the rank of G [X(t)] is qu, i.e., full rank. In
addition controllability, observability, stable zero dy-
namics, and well-defined relative degree with respect
to (t) are presumed, and the assumptions about con-
tinuity and f(0) = 0 hold. Finally, we assume that
each element of the model-error vector affects the out-
put.

State-observable measurements are assumed for
Eqg. (2b) in the following form:

e(t) =y(t) —y(t)

c[x(t)] + v () (4)
where y(t) € R™ is the measurement vector at time
t, and v(t) € R™ is the measurement noise vector,
which is assumed to be a zero-mean, stationary, Gaus-
sian noise distributed process with E {v(¢)} = 0 and
E{v(t)vT(t+ At)} = R, 6(At), where E{-} is expec-
tation, R, € R™*™ is a positive-definite symmetric

y(t) =
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covariance matrix, d(-) is Dirac delta function, and At
is the sampling rate for the discrete-time measurement
case.

At each time ¢, the model-error solution @ over a
finite horizon [t, t + T] is determined on-line. Define
h = T/N for some integer N > n/m, where N is the
number of sub-intervals on [t, ¢t + T]. Now y(¢ + kh)
for each kK = 1,2, --- ) Nh = T is approximated by
an iterative first-order Taylor series. For simplicity
and avoiding the cross-product terms of G(t + ih) and
a(t + jh), we assume that G[%(t + kh)] ~ G[%(t)] and
Flx(t+kh)] = F[x(t)], where I = 8f /d%. In addition
since the future values of y(¢) and u(¢) are unknown in
general, y(t) and u(t) are assumed to remain constant
over the finite horizon [t, ¢ + T]. Then the following
expression is obtained for 1 < k < N:°

y(t+kh) ~y(t)+hC {kzl(fmmﬁ)i}f
i=0
k—1 i )
+;(Inxn+hF) {Bu()

(5)

where I, is an n x n identity matrix, C' = 9¢(X) /0%
and f, F, B, and G are evaluated at %X(t). Define the
following:

L(kh) =el(t+kh)R;'e(t+kh)
+al(t+kh)Wya(t+kh)

+Gaft+ (k—1— i)h]H

(6)

The cost function to be minimized is approximated us-
ing a trapezoidal formula or Simpson’s rule as follows:®
when N is odd,

j:gZ{%L[(k—l)h]—i—%L(kh)} (7)

k=1
when N is even,
, (V/2)-1
T=¢ ];) {L (2kh) +4AL[(2k + 1) h]
+L[2(k+1)h]}
With the following definition:

al(t+hn), -,

(8)

alft+ (N —1)h]}"
(9)

The approximate cost, J, can be rewritten in quadratic
form as

vo = {0’ (t)

- 1
J=35v0 o Hovo + g5 (X, u,5) vo +qo(%,u,y)  (10)
where Hy, go and qq are functions of L(k h).5 Also, the
terminal constraint, e(t +1") = 0, can be formulated

as a constraint on v as follows:

MTvy =d(t) (11)

3

Taylor Series Expansion Up To %
.'y

Su+h ut+2h) ult+(N-D)h

Soae+h) % G+2hn) u[t+(N |
T S i
t i t+h ‘g,+,,2‘b' t+(N Dh t+Nh

.}f{“fﬁ‘l §lt+(N=Dh]
Taylor Series Expansion Up To %

dr y[t+(N Dh]

Taylor Series Expansion Up To

Fig. 1 Modified Approximate Receding-Horizon
(MARH) Concept

where

MT = C [(Tsen + WEYNTAG, o (I + W) G, G

(12)

N-1
~e(t)—C ;(H hE) {f+ Bu(t)} (13)
Finally, the solution of the QP problem is given by

_ _ _ -1 _
vy = — [HO Y Hy M (MTH M) M7 H, 1} go(t)

+ [Ho_lM (MTHo_lM)_l} d(t) (14)

where the rank of M is m. The first ¢, equations give
a current model error minimizing the cost function,
which leads to a predictive filter structure:

aft; x(t), u(t), y(¢), h] = Iy, xn Vo (15)
where I, «n is a min(g,, N) X min(g,, V) identity
matrix with zeros for the remaining elements.
MOTIVATION FOR THE MODIFIED ARH

In this section the motivation for a new ARH ap-
proach is shown. Consider the following linear system:

x(t) = A%(t) + Bu(t) + Ba(t) (16a)
y(t) = Cx(1) (16b)

and assume that the relative degree is r for each ele-
ment of y. The quantity M7 is given by

MT =| C(Inxn + hAY ' B, C (Inxn + hA)N 2 B,

C (Inxn + hA)" B, C(Inxn +hA) ' B

C (Inxn + hA) B, CB |

0m><qr
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where 0y, xqr is an m X gr zero matrix. Consider the
case where the equality constraint is free from the last
r model-error terms as follows:

Vo1
A | |
Vo2
M{vo =d(t) (18)
where
={a’(t t+h)
ﬁT[t +(N=r=Dh}  (19a)
Voo = {ﬁT[t-l- N —r)h]--
a”t+ (N —1)n]} (19b)

Also, the last (gr)-columns of the first-order term of v
in J, i.e., go(X), are all zeros and the coupling terms
for vgy and vgo in Hy are zeros. Therefore, the original
minimization problem is written as

J = ; V01H01( Yvo1 + ;VOQHOQ( Nz
+ 801 (%) vor + qo(%) (20a)
M{vor = d(t) (20b)
where
Hy = [HO(“ H(z) J (21a)
g0(%) = [go1(%)" 01er]T (21b)

Hence, the optimal value of v, to minimize J is Ogrx1,
i.e., the model error is already zero before the end of
the receding horizon (t+ Nh) is reached. To avoid the
model-error separation from the equality constraint,
the state prediction in Eq. (5) has to be modified.

In this paper an r*P-order Taylor series expansion
is used to predict the future state. The basic concept
is shown in Fig. 1. Using the given y(¢), u(t), and
u(t), the states at ¢t + h are approximated by a Taylor
series expansion. The order of the expansion of each
predicted state is given when () first appears due to
successive differentiation of the output. For the states
at time t + 2h, the expansion is similar to the previous
case, using the states at time ¢ + h when u(t + h)
first appears. Hence after this expansion is given, the
states at time t + 2h are functions of the states, the
control, and the model error at time ¢ 4+ h. Then the
states at time t + h in the predicted states at ¢t + 2h
are substituted by the approximated ones at the first
stage. This process is repeated up to time ¢ + Nh.

GENERALIZATION OF MODIFIED ARH
The output prediction at t + (k + 1)k is given by
Flt+ (k+ 1))~ (4 bh) + 2% (¢ + kh) , B]
+ A(h) Sy [x (t+ kh)] u(t)

+ A(h) Su [%x (t + kh)] G (t + kh) (22)

4

for k =1,2,..., N, where y (¢t + kh) and x (t + kh)
are given by the predictions from the previous stage.
This process is repeated up to all X (¢t + kh) written
in terms of X (t). The i*" component of z [%(t), h] is
given by

Lg(ci) =c (24a)
8L@71(Ci) T ~
k _ f
Li(ci) = la& f, fork>1 (24b)

where the gradient is represented by a column vector
with elements given by (dc;/0x), = dc;/0x). The i*h
rows of S, [%(t)] and S [X(¢)] are given by

Su; = {Lfn [L?il(ci)} T LBqu [Lgiil(ci)}}

(25a)
i*l 7;71
Sﬁi = {Lgl |:L;%D (Cl)} y quw |:L§ (Cl):|}
(25b)
for 1= 1, 2, ..., m, where E)j is the j* column of

B[x(t)], g; is the 7 column of G [%(t)], and the Lie
derivative in Eq. (25) is defined by

i—1 T
8L§ (CZ)] ~

Ly, {Lé”'_l(ci)} = [ 5% b,  (26)

forj=1,2,..., qu, and

pi—1
8Lf

T
e, |17 7)) = ax()] & o0

forj=1,2, ..., qu- -

Finally, the approximated cost function J is ob-
tained through the same steps as in the ARH ap-
proach, and the optimal solution is obtained by
Egs. (14) and (15). As a result, the MARH approach
is derived by combining the one-step ahead state pre-
diction with the approximate receding-horizon cost
function.

MECS CONCEPT

The block diagram with MECS is shown in Fig. 2
where r(t) is the reference command. The model error
is determined using the estimated states, x(¢), the con-
trol input, u(t), and the current measurement, y(t).
The determined model error, u(t), corrects not only
the nominal control input, u(t), but also the filter
model. After the model error is determined, any state
estimator or observer can be implemented, including
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Fig. 2 Overall Block Diagram with MECS

a Kalman filter. The total control input u(t) with
model-error correction is given by

u(t) = a(t) — et —7) (28)
where u(t) is the nominal control input at time
t, which can be any controller, i.e., Proportional-
Integrate-Derivative (PID) Control, Lead-Lag Com-
pensator, Sliding Mode Control, H,, Control, Lin-
ear Quadratic Regulator (LQR) Control, Linear
Quadratic Gaussian (LQG) Control, etc. The time
delay 7 is always present in the overall MECS design
because the measurement y(¢) must be given before
the error in the system can be corrected. The term
U, (t — 7) is used to cancel the estimated model error
at time t — 7, determined by the current information
using a Pseudo-Inverse (n > g, i.e., under-actuated)
as follows:

a.(t) =[BT B]"' BT Ga(t) (29)
When B [%(t)] = G [X(t)], i.e., separate actuators are
installed for each dynamics part, G.(t) is equal to u(t),
which will be the case for the spacecraft attitude con-
trol problem.

SPACECRAFT ATTITUDE CONTROL

In this section the nominal control design in Ref. [7]
is first summarized, and then the model-error correc-
tion input using the MARH approach is derived. Next,
a method is derived to choose the optimal weighting
and length of receding-horizon step-time. Then, the
quadratic stability of the closed-loop system for a norm
bounded uncertainty is derived. Finally, simulation
results are shown to verify the new control design ap-
proach.

NOMINAL CONTROLLER DESIGN

The spacecraft attitude kinematics and dynamics
can be written as follows:®

[e()]w(t)

—I ) x] To(t) + 17 [u(t) +a(t)] (30Db)

Q-

() iB (30a)

(t)

X

5

where &(t) represents the estimated Modified Ro-
drigues Parameter (MRP) vector, w(¢) is the angular-
velocity vector, I is the nominal spacecraft inertia
matrix, 01(¢) is the model-error vector to be determined
(which is a function of the unknown external distur-
bances, spacecraft moment of inertia, and the angular
velocity), and u(t) is the total control input defined by
Eq. (28). The matrix B[6(t)] is given by®

Bo]=[1—62] Isxs +2[6x]|+266" (31)
where 62 = 67 &, and the inverse is given by
1
B lg|=—=B[6 32
)= B0l (32)

For a = [a1, ag, ag}T, the cross product operator [ax]|
is defined by

0 —as a9
[ax] = | a3 0 —-a (33)
—as aq 0

By the control design in Ref. [7], the nominal control
input is given by

a(t) = [wt)x] Iw(t) + Io(t) (34)
where
$(t) = —Pa(t) - {@n)&" (1)
4K O2%(t) .
+(1+&2(t) 2 >I3X3}U(t)
KB (o (0)] [ o€ (35)
0

where P, K, and K are the control gain matrices, and
Q%) = @ (t)@(t). After substituting this control
input into the dynamics in Eq. (30), the closed-loop
dynamics become

5(t) = —Pé(t) — Ké(t) - K, /0 &(€) de

4 izs’ 6] I {a@) —at—7)  (36)
In Ref. [7] I and the external disturbances are esti-
mated by an adaptive scheme where the model pa-
rameters are updated on-line in the control law, so
that 0(t) approaches zero as time increases. In this
paper instead of using the adaptive scheme, the to-
tal model-error vector (t) is estimated by the MARH
solution and the control input is corrected using the
MECS approach shown in Fig. 2.

MODEL-ERROR ESTIMATION USING MARH
Choosing P :pI3><3, K = ]{13><37 and K] = k[]gxg
(where p, k, and k; are positive constants), then

Bit) = —péi — kou(t) — ki / 5(€) de

0

+0i(t) = vt — 7) (37)
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for i =1, 2, 3, where

p(t) = [n(t) n(t) (t)]"  (3%)
b(t) = is 6()] I a() (38h)

The state-space form for each axis is given by
x(t) = Axi(t) + Bivi(t) + Bi oi(t) (39a)
Gi(t) = Cix;(t), fori=1,2,3 (39b)

where

vi(t) = i(t) —tyl(t —7) (40a)
Pi(t) = —ks /0 os(€) de (40b)

AZ-:[_Ok 1}3:[“,@:[1 0] (41)

Usually k; is chosen to be as small as possible so that
the integral control action does not significantly affect
the transient response, while also reducing the steady-
state error. Therefore, in order to keep the order of
the model equal to two (which is required to simplify
the analysis), the integral control term is not put into
the model (for small k; this approximation is valid).
Note, integral control will still be used in the final
control form. The measurement is attitude-angle only,
so that

where v;(t) is the measurement noise with known co-
variance.

As shown in the above equations the dynamics is
completely linearized and decoupled without any ap-
proximation. After the vector  is determined, the
actual model-error correction input, (t), is set to the
following:

4 A T A N
= m IB" [6(t)|v(t) (43)

Since the relative degree is two, we choose the value
of the subinterval N be equal to two. From the steps
of the MARH approach, the following terms are ob-
tained:

a(t)

h
hir = —— {k?h® + 4kph" + (4p* — 12k) h®
327‘2

—24ph® + (87" +36) h' +16wor2}  (44a)
h® (kh%+2ph — 6)
hi2 = hay 1679 (44b)
h(h*+38
hyy — DT 81 T2) (440)

87"2

where h;; is the ih-row and j*'-column element of Hy,
h=T/2, and

kh' ph® 3K

1T 2 T2
MT = (45)
h2
2
and
h3
g1(t) = T X {kg11Z1(t) + kgr2242(t)
+hg13vi(t) + kg147:(t) } (46a)
h? . .
ga(t) = X {kgo1241(t) + kgoodiz(t)
16 T2
+hgosvi(t) + kgoati(t)} (46b)
where

kg1 = k> ri hS + 4K pry h°
+ (4p°kry — 14Kk%ry) h* — 28pkry h®
+ (52kry + 8kro) B2 +8prih —24r; — 167y (47a)

kgio = k*pri h® + (=2k*ri +4p® kry) h°
+ (4p®r1 —18kpry) h* + (20kry — 28p* ry)
+ (64pry + 8pro) B + (—487r1 — 1679) h (47b)

kg3 = —k*ri h® —4dkpri B° + (14kry — 4pry) b

+28pr h® — (875 +4871) h? (47c)
kgia = 24711 —8hpry —4h%kry + 1679 (47d)
kgor = k*h* +2pkh® — 8k h? + 4 (47¢)
kgoo = kph* + (2p* —2k) h® —8ph® +8h  (47f)
kgoz = —k h* —2ph® +8h? (47¢g)
kgoa = —4 (47h)

with go(t) = [g1, g2]". Also, d;(t) in Eq. (11) is given
by

214 3
di(t):—<k4h +’”’2h —2kh2—|—1>§:i1(t)

4 3
{020 22 aa)
Eht  phd
N (4 i 2h2) vi(t) + Gilt) (48)

Using the above equations, the current estimated
model error is determined by the first element of
Eq. (14).

The output is assumed to be constant during the
given time interval. However, this assumption be-
comes less accurate as the receding-horizon step-time
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T increases and/or the speed of response increases.
Therefore, the weights have to be adjusted accord-
ingly. To accomplish this task, the following expo-
nential functions are used:

T‘(tk) =e'P T(tkfl)
w(ty) = e“? w(tg—1)

(49a)
(49Db)

where 79 = r(t9) and wy = w(ty) are given, and r, and
w), are non-negative real values. More details of this
concept can be found in Ref. [4]. Finally, the estimated
model-error correction input is simply given by

I;Z(t) = aj j?zl(t) + as fig (t) + as v; (t) + aq gz (t) (50)

for i = 1, 2, 3, where aq, as, a3 and a4 are the func-
tions of w;, r;, h and 7 (given in the Appendix).

After #;(t) in Eq. (39a) is determined, a Kalman
filter is designed for state estimation. For the simu-
lations the noise variance for the MRP measurement
is given by 6.67 x 1074, which corresponds to the
standard deviation of a Fine Sun Sensor angle mea-
surement, 0.5°/ V/12. The state estimation errors and
30 bounds are shown in Fig. 3. As shown in the figure
without any angular-velocity sensor, such as a three-
axis gyro, the rate estimation error bound is about
+1.24° /sec. If this error is too large, then gyro mea-
surements should be employed.

1T
:
20 ! ‘\i:u‘w : ~l‘
1 I Wiy
L ST ol e e ol
! hhlub X
T L
TR

bl

ol ‘

I
0 20 40 60 80 100 120

time [sec]

Fig. 3 Estimation Errors and 30 Bounds

OPTIMAL DESIGN

In this section the optimal weighting and length of
receding-horizon step-time are determined. Our goal
is to determine w,, and/or r, and h that minimizes the
oo-norm of sensitivity function for the system given by
Eq. (39). To find a stable region the Hermite-Biehler
theorem is used, which gives the necessary and the suf-
ficient conditions for a system to be Hurwitz stable.%

Theorem 1 Hermite-Biehler Theorem
Consider the following polynomial:

de(s) =cn 8"+ cn1 8"t 4 dcrsteg  (51)

where ¢, # 0 can be decomposed as

dei(s) = p(s) + sq(s) (52)

where p(s) contains even power terms and q(s) con-
tains odd power terms of dci(s). Then d.(s) is Hurwitz
stable if and only if ¢, and c,_1 are the same sign with
all roots of p(jw) and q(jw) real, and the nonnegative
roots satisfy the following interlacing property:

0 <Wel <wot < Wez < Wea < -+ (53)

where we; and wy; are the roots of p(jw) and q(jw),
respectively. M

From the Hermite-Biehler theorem the following is de-
duced:

Corollary 1 Consider the following 6" -order polyno-
mial:

dei(s) = cg $84c5 sP+4ey sttes 3 +co s2Her s+e (54)

where cg > 0, then de(s) is Hurwitz stable if and only
if the stability index,

e = sgn(k) logyg (|k| + 1) (55)
is greater than zero, where

k = min (I, II-a, II-b, Il-,
[l-a, III-b, ¢, 1T1-d) (56)

and

I: ¢y>0
II-a: min (czcs) >0,
II-b : min (c5¢6) > 0,

(57a)

II-c: min (c1c5) >0 (57b)
III-a : cg, Cs, C4, C3, Co, Cqy, Cp,
III-b : ¢4, Cs, ¢4, €3, C2, C1, Co,
III—CSQG, 55, 54, 23, 92, 61, 607
III-d : G, ¢, C4, C3, Coy C15 Co (57¢)

are substituted into 111

where ¢; and ¢; are the lower and the upper bounds of
each ¢c;, fori=1,2,...,6, and

II: — (4dc1c5 A2 +2c3AB+B%) >0  (58)

where
A=ciescg—cact+czcqcs — cacg (59a)
B=2cyct —2cieac2 +2c1c3c5¢6 (59b)
[ ]

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Proof: the proof can be found in Ref. [4].

We assume that no estimation errors are present,
i.e., the estimator transients have sufficiently decayed
(the estimator is also assumed to provide unbiased

estimates). Then the following closed-loop transfer
function is obtained:

w0 = A 0]+ A ] (60a)

= 5,(s) ()] + S(s) [54 (1) (60b)

where S, (s) is the measurement-noise transfer func-
tion and S(s) is sensitivity function, with

Dai(s) = {di(s) + azni(s)} Di(s)Ds(s)
+{(1 —as) di(s) + agni(s)} Ni(s)Ns(s)
+di(s) (a1 + a4 + saz) Di(s)Nys(s)  (61a)
Ny(s) = —aqdi(s)Di(s)Ns(s) (61b)
Nuls) = {dy(s) + asnu(s)} Da(s)D(s)  (61c)

The term Ny (s)/Dg/(s) is the transfer function of inte-
gral control action given by Eq. (40b). Note that the
nominal controller in Eq. (34) is now embedded in the
system model through Eq. (41). Also, n:(s)/d:(s) is
a Padé approximation of e~™* (from the time-delay in
the MECS design). The following (3, 3) Padé approx-
imation is used:®

s 412727 — 6075+ 120 _ my(s)
T3 112725246075 +120  di(s)

and h, r, and/or w, are chosen so that the following
Ho, norm is minimized:

6—7'3

(62)

min [[S(jw)[|oe (63)

To narrow down the searching space, k = 1.0, p = 3.0
and k; = 0.090 are adopted from Ref. [7], and w; =
1, w, = 0.1, y = 0.5 and 7 = 0.0025 sec. Then,
the parameter space for the optimal values is now 2-
dimensional (r, and h).

By calculating € and ||S(jw)||e for various values
of h and rp, we find that the stability index and the
norm are more sensitive to h than r,. Figure 4 depicts
h versus the normalized values of ||S(jw)| oo, €, settling
time and maximum overshoot for an impulse o(t) in-
put, with 7, set to 0.1 (chosen by trial and error). To
minimize the sensitivity norm (||S(jw)||o) the value of
h has to be chosen as small as possible. However, the
settling time increases as h decreases and the control
input may saturate. Therefore, the optimal value of
h is in the range of 1.48 < h* < 1.58. By trial and
error h* = 1.5 sec is selected. Finally, the determined
model error for ¢ = 1, 2, 3 is given by

Di(t) = 0.726;(t) + 2.036,(t)

—0.66 () — 0.06 3 (¢) (64)
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Fig. 4 h vs. ||S(jw)|/, €, Settling Time, and Max-
imum Overshoot
QUADRATIC STABILITY

To provide a stability proof, the following are sum-
marized from Ref. [10] and the proof of each of the
following can also be found in Ref. [10]:

Definition 1 Quadratically Stable
Consider the following system with nonlinear uncer-
tainty Af[x(t)]:

X(t) = Ax(t) + Af[x(t)]

(65)

where x(t) € R and the nonlinear uncertainty
Afx(t)] = E;d[x(t)] is a C° function, and & [x(t)]
is a element of the following set:

Q={ax®] | 16 x®)] oo < INyx(t)lloo: ¥ x(t)}
(66)
where Ey and Ny are some constant matrices. The
system, Eq.(65), is said to be quadratically stable if
there exists a positive-definite symmetric matriz Py >
0 such that

{Ax(t) + Af[x()]} Pyx(t)

+xT(t) P, {Ax(t) + Af[x(1)]} < 0 (67)
for all nonzero x(t) € R™ and all admissible nonlinear
uncertainty, Af[x(t)]. m

Definition 2 Quadratic Cost Matriz, P,

A positive definite matrizc P, > 0 is said to be a
quadratic cost matriz for Eg.(65) and the following
cost function:

J, = /0 KT (1) Q, x(¢) dt (68)

where Qg > 0, if

{Ax(t) + Af[x(1)]}" Py x(t)

+xT(t) P, {Ax(t) + Af[x()]} < —xT(t) Qy x(t)
(69)
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Table 1

Simulation Scenarios

Case Inertia External Full State | Sensor | MECS
Scenario || Uncertainty | Disturbance | Information | Noise | On/Off
(1) No No Yes N/A Off
(2) Yes Yes Yes N/A Off
(3) Yes Yes No Yes On
for all nonzero x(t) € R™ and all admissible nonlinear ~ SIMULATION
uncertainty, Af[x(t)]. The initial MRP is &(t)) = {—0.3, —0.4, 0.2}
B .nd the initial angular velocity is @(tp) =

Theorem 2 The Cost Function Bound
If P, > 0 is a quadratic cost matriz of Eq. (65), then
the cost function is bounded by

J, < x"(0) P, x(0) (70)

and if the system is quadratically stable, then there
erists a quadratic cost matriz.

Lemma 1 H,, Norm Bound Condition

For the system, Eq. (65), there exists a quadratic cost
matriz, Py, > 0, if and only if the following conditions
hold:

1. A is a stable matrix.

2. The following Ho, morm bound is satisfied for
some € > 0:

<1

oo

H 2, ¢ )

Then, for such €, the Riccati equation

)

1
AT Py+ Py Ate Py Eyp Ef Pyt = Nj Ny = =Q (72)

has a solution.

] 30
—U1 t
Ll
For the state-space form of Eq. (60), the following 20F : : ug(t))
values are obtained: /
T 10¢ ; ;
E;={0,0,1,0,0,0} (73) & | Upper Bound
Ny = [diag[0.248, 2.250, 8.160] 03x3]  (73b) &
I3xs  O3xs =
- 73 <= er soun
@ [03><3 03><3:| (73c) 0 Upper Bound
e = 0.001 (73d) \
-20k |
where the first three diagonal terms of Ny and € are
the maximum values to satisfy Eq. (71) with the given 0 ‘ | | ‘ |
0 5 10 15 20 25 30

matrices (the oco-norm of Eq. (71) is 0.9982) and P,
is given in the Appendix. Therefore, for the norm
bounded uncertainty by Definition 1, the closed-loop
system is globally quadratically stable.

9

{11.46, 11.46, 11.46 }T [° /sec]. The true and assumed
inertia matrices are given by (consistent with Ref. [7])

30 10 5 .
I=1{10 20 3|, I=diag{5, 5 5} [kgm®’]
5 3 15
(74)
and the external disturbance, F.(t), is given by
1 t
1 t m
] 1 t
10 “C\ 7

The model-error upper bounds in an co-norm sense
are as follows:

[v]loo < 3.605 and |1~ 1]jo < 4.120 (76)
In addition since I is a diagonal matrix, then the upper

bound of 1 is given by

][00 < 5 x 4.120 = 20.60 [N-m] (77)
A simulation result of the actual calculated model er-
ror compared to the upper bound given by Eq. (77) is
shown in Fig. 5.

time [sec]

Fig. 5 True Model Error and Upper Bound
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Fig. 7 Time History of o(t)

The simulation scenarios are given in Table 1. The
MRP norm histories for each case are shown in Fig. 6.
After the transient response settles, the mean value of
the norm for Case 3 is 0.002 and the one for Case 2
is 0.007. This represents a 71% performance improve-
ment in the sense of the 2-norm of &(t). Also, the
time histories of the MRPs for each case are shown
in Fig. 7. MECS provides the best transient response,
i.e., less overshoot and closer to the response of Case 1.
The control histories for each case are shown in Fig. 8.
The MECS controller reacts more to the modelling and
external disturbance errors.

The norm of the cost function, Eq. (68), for each
case shows the significant performance improvement
of MECS. The norm is defined as

||Jq||2 = \/ng +J32+J§3 (78)
where
Joi = / KL (t) xeo()dt, fori=1,2,3  (79)
0
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Fig. 9 Time History of the Cost Function Norm
for Each Case

with

(80)

{/Ot G;(€)de, &i(t), 3i(t)}

As shown in Fig. 9, the slope of Case 2 is very steep
compared to the one of Case 3. MECS decreases the
increasing speed of the norm ||J,||2, especially when
t < 60 sec, the norm for Case 3 is even less than
the one for Case 1, the perfect case (given by us-
ing the nominal controller with no model errors or
external disturbances with full state measurement in-
formation). As shown in Fig. 8, at the beginning of the
simulation the control torque for each axis of Case 3 is
relatively larger than the ones for the other two cases.
Since the initial value of the rate is not zero, the rate
dependent part of the true model error dominates. At
the beginning of the simulation MECS not only can-
cels this initial model error but also makes the system
response faster than the one for the perfect case. As
shown in Fig. 6, the first minimum for Case 3 is 1.3
sec faster than the one for Case 1.
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CONCLUSION

A new approach to determine modelling errors in
a dynamical system was derived using a modified ap-
proximate receding-horizon expression with a Taylor
series expansion at each instant of time. This new
approach was used in the model-error control synthe-
sis design to provide robustness with respect to ex-
treme modelling errors. An application was shown for
the spacecraft attitude control problem using attitude-
angle information only. A Kalman filter was designed
to estimate the angular velocity, which was subse-
quently used in the overall controller. Simulation
results indicated that a nominal controller combined
with the model-error control synthesis approach pro-
duced robust transient response behaviors, and the
steady-state attitude errors were much smaller than
nominal controller only design case. In addition the
closed-loop system is globally quadratically stable for
a norm bounded nonlinear uncertainty.
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APPENDIX
The parameters in Eq. (50) are given by

a = [k (ro wo e e |2 4 1) RS + drgwoe ™ pk? B®
-2 (7 rowo e P TP k2 — 2rgwg e TV p? k + 1) B4
— 2879 wo P T pk h3 4+ 52rg wy P TP k b2
+8rgwg e T ph — 241¢ wy eTP““P] /da (81a)
as = [p (ro wo e TP |2 4 1) K8

+2 (2 rowo €T p? k — rowg e TP k2 — 1) h®
+2 (2 o wo P TP p3 — 9rgwy e TP p k) ht

+4 (5 ro wo e P TP k — Trgwg e T¥r p2) h3

+ 6479w e T ph? — 48 1 wg e Ve h] /d, (81Db)

as = [— (ro wo eP T k2 4 1) hS — 4rgwg et pk hd
+2 (7 ro wo €TV k — 21w e TYr p2) ht

+ 2879 wo P TV phd — 48 1o wg e T hﬂ /d,
(81c)

as =2 [B* = 2rqwo e ? kh* — drgwo e TP ph
+12T0 W erp+wp] /da (81(1)
where
do = (rowo ™7 k? + 1) b + drgwo e 7 pk h°
+4drgwp e TP (p2 -3 k) h* — 24 g wy e TV ph3
+ 2nguge’s (186 + ) I (52)

The matrix P, used in Eq. (72) is given by

P, P
P,~1x107 |-} 12} 83
q [Pllg P22 ( )
where

[0.0001 0.0002 0 ]

Pi; = |0.0002 0.0027 0.0003 (84a)
0 0.0003  0.0006 |
[1.1646 0.0009 0.2543]

Py = [0.0009 0.0001 0.0002 (84b)
10.2543  0.0002 0.0556 |
[—0.0007 0 —0.0002

Py = |—0.0131 0 —0.0029 (84c)
|—0.0254 0 —0.0055
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