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REAL TIME ATTITUDE INDEPENDENT
GPS INTEGER AMBIGUITY RESOLUTION

E. Glenn Lightsey* and John L. Crassidis’

In this paper, a new motion-based approach for Global Positioning System
(GPS) integer ambiguity resolution is derived. The approach first repre-
sents the GPS sightline vectors in the body frame or the baseline vectors
in the reference frame. The solution to this problem is always available
as long as at least three non-coplanar baseline or sightline vectors exist.
The body-frame sightline or reference-frame baseline observations are the
sum of two vectors, one depending on the phase measurements and the
other on the unknown integers. The vector containing the integer phases
is identical to the three-axis magnetometer bias model, which can be con-
verted into an attitude independent observation using scalar checking. The
bias estimation problem is typically solved by using a batch process. In
this paper, simple real time algorithms are developed based on both the
extended Kalman filter and Unscented filter. Simulation results indicate
that both algorithms provide accurate integer resolution in real time, but
the Unscented filter is more robust to large initial condition errors and slow
vehicle motions than the extended Kalman filter.

INTRODUCTION

When used as a sensor on moving objects, a Global Positioning System (GPS) receiver
provides a wealth of information about the vehicle’s dynamic state. These data may be used
in real time to monitor and potentially control the vehicle’s trajectory. The most widely
used dynamic states that are provided by GPS receivers are three dimensional position
and velocity along with accurate time measurements. However, GPS receivers have also
demonstrated the potential to provide attitude and rotation rate information for the vehicle.
The existence of a single low cost sensor that provides both translational and rotational
information and is well suited to electronic miniaturization enables numerous real time
control applications that were previously considered to be impossible or impractical.

Although vehicle attitude determination using GPS has been demonstrated in some im-
portant examples, such as on the International Space Station,! it has not gained widespread
acceptance as an alternative to more traditional attitude sensors. The main reason for this
reluctance has been a lack of robustness of the attitude solution. The most common method
for performing GPS based attitude determination of objects with relatively small dimensions
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Figure 1 On-orbit GPS Carrier Phase Attitude Solutions (Data from GPS Attitude and
Navigation Experiment (GANE), May 1996)

(less than tens of meters) is to measure the difference in the carrier phase signal between
multiple antennas which are placed on the object and perform interferometry using the
measurements.? The carrier phase signal is used because it has approximately two orders
of magnitude greater measurement precision than the GPS code signal. If the separation
vector between each of the antennas is known in the object’s body frame, then the attitude
of the object may be determined with respect to the external reference frame using the
differential carrier phase measurements. These operations are reviewed in more detail in
the GPS Sensor Model section.

The separation distance between the antennas is almost always greater than one GPS
carrier phase wavelength of 19.04 centimeters. Since each antenna measures just the frac-
tional portion of the carrier phase angle, the integer number of wavelengths in the mea-
surement between the two antennas must be determined to convert the differential carrier
phase measurement into a differential range measurement. This classic problem in GPS
attitude determination is known as the carrier phase integer ambiguity problem, and it has
been much studied in GPS research.®* Solving the integer ambiguity is known as integer
resolution, and it is this critical step that enables attitude determination to be performed.
Once the integers are known, new measurements may be easily incorporated by using the
estimated attitude to back-solve for the integers from a newly visible GPS satellite. Using
systems of this type, attitude solution accuracies of better than 1 degree are possible with
antenna separation distances of only a few meters.?

The trouble is that integer resolution is a computationally intense and error prone
process, especially in the presence of noisy and/or weak signal measurement environments.
Although many algorithms may work relatively well during strong signal and low noise



conditions, many of these algorithms break down when the measurement conditions degrade.
In these cases, the integer resolution process may go through long periods without a solution
or may even report an incorrect solution. The problem is compounded by the fact that it
is precisely in these poor measurement environments that the integer resolution algorithm
will be called more frequently, due to a lack of available measurements and the presence of
cycle slips. This has caused the GPS based attitude determination sensor to display a lack
of robustness in some cases. Figure 1 demonstrates this robustness issue using on-orbit data
collected in 1996.5 Although there are many correct attitude solutions during the primary
data collection from ¢ = 75 to 275 minutes, there are also data dropouts of several minutes,
lasting more than 10 minutes in some cases. There is also an incorrect solution reported at
approximately ¢ = 175 minutes.

The problem is made more challenging by the real time nature of the sensor require-
ments. Although the carrier phase integer resolution problem is routinely solved in survey
applications, for example, this is accomplished by post-processing long data arcs and ap-
plying the constraint of no object motion.® In the real time control application, data in the
future are not available, and data dropouts and incorrect solutions may produce unaccept-
able control.

The objective of this paper is to present and compare two sequential integer resolution
algorithms that are suitable for real time attitude determination applications. The algo-
rithms are attitude independent in the sense that they do not require any prior knowledge
of the vehicle attitude to work. The first algorithm uses an extended Kalman filter (EKF)
approach that is developed with commonly employed estimation techniques. The second
algorithm uses an Unscented filter (UF) approach which offers very good results for robust
integer resolution in poor measurement conditions.

PRIOR ART

Although many different algorithms have been proposed for integer resolution, most may
generally be categorized as one of two types. The first type is known as the search method.
Algorithms using the search method attempt to resolve the integers by considering the full
set of possible values and picking the best solution for the current measurement sample.”8 A
simple implementation of the search method would calculate the solution residual for every
possible integer and report the integer set with the minimum overall solution residual.
The main appeal of search method algorithms is that they can be very fast under good
measurement conditions, often yielding a solution in just a few samples.

Some of the problems with search methods are that they are computationally intense and
prone to report no solution or an erroneous solution under poor measurement conditions.
The reason that they are computationally intense is that the full set of possible integers can
be extremely large even for modestly sized objects of a few meters. It is very difficult to
consider all of the possible solutions in a real time application without introducing significant
computational latency. However, many search method algorithms have developed innovative
techniques to discard families of solutions and thus reduce the computation load.? In some
cases, the range of possible attitude solutions is restricted to further reduce the search space.
This can help if there is a priori information about the attitude of the vehicle, but it limits
the range of operation.



A more fundamental limitation of the search method algorithms is their performance
under poor measurement conditions. When measurement error is large, due to multipath
for example, impostor solutions may masquerade as the correct solution by having a lower
solution residual. Since multipath error is geometry dependent, these erroneous solutions
will persist until the geometric conditions change enough to allow the correct solution to
be revealed. Therefore, a search method algorithm may possibly report the erroneous
solution as the correct solution. Additional robustness may be brought into the algorithm
by waiting a predetermined amount of time to ensure that the candidate solution is not
erroneous, but in this case, the main advantage of the search method has been lost (its
quick resolution). Another mechanism for robustness is to require that the solution residual
of the candidate solution be much lower than the next best solution, since it is unlikely
that an erroneous solution would have such a large separation over the next best solution.
In poor measurement conditions, however, this may lead to no solution at all, because the
correct solution may never experience such a large separation in residual over the next best
solution.

The other type of integer resolution algorithm is known as the motion method. Motion
methods rely on the geometry between the antenna array and the GPS satellites to change
while the integers remain constant. Therefore, the biases in the measurements may be
attributed to the integers and the problem of integer resolution reduces to one of bias
determination. The main appeal of the motion method is that the possibility of obtaining
an incorrect solution becomes very small as the range of geometric motion becomes large.

There are some problems with motion methods as well. The first is that the geometric
motion between the array and the GPS satellites may be very slow in some cases. This
reduces the observability of the problem and requires the user to wait longer to obtain
a solution. This delay may not be acceptable in a real time control application. If it
is not possible to somehow increase the amount of geometric motion (by performing a
vehicle rotation, for example), then the algorithm must be designed to work in marginally
observable conditions.

If the motion method algorithm is a batch algorithm, then all the measurements must
be retained and a single batch solution is sought over the entire data collection. While
techniques that use this approach have been implemented for attitude determination,'® one
problem that frequently occurs is the inversion of a very large matrix to obtain a solution.
Therefore, it is highly desirable to obtain a sequential formulation of the motion method,
if possible, instead of a batch solution.

An attitude independent approach using motion methods is shown in Ref. [11]. This
approach represents the GPS sightline vectors in the body frame as the sum of two vec-
tors, one depending on the phase measurements and the other on the unknown integers.
The vector containing the integer phases is found using a procedure developed to solve
for magnetometer biases,'? which leads to a linear least squares solution that can also be
implemented in real time. In this paper, two new sequential attitude independent inte-
ger resolution algorithms are developed using motion methods. These algorithms are also
suitable for implementation in real time attitude determination applications. The first al-
gorithm, using an extended Kalman filter approach, is simpler to implement but it does
not perform as well under poor measurement conditions. The second algorithm, using an



Figure 2 GPS Wavelength and Wavefront Angle

Unscented filter approach, is designed specifically for poor measurement environments and
low observability conditions. The algorithms are compared to demonstrate the performance
differences.

GPS SENSOR MODEL

In this section, a brief background of the GPS phase difference measurement is shown.
The main measurement used for GPS attitude determination is the phase difference of the
signal received from two antennas separated by a baseline. The essential geometry of the
wavefront angle and wavelength, which is used to develop a phase difference, is illustrated
in Figure 2. The phase difference measurement is obtained by

bycos = AN(Ap —n) (1)

where b; is the baseline length (in cm), 6 is the angle between the baseline and the line-of-
sight to the GPS spacecraft, n is the number of integer wavelengths between two antennas,
A¢ is the phase difference (in cycles), and A is the wavelength (in cm) of the GPS signal.
The two GPS frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this
writing, non-military applications generally use the L1 frequency, which corresponds to a
wavelength of A = 19.04 cm. The measurement model can be expressed by

Ap=bTAs+n+w (2)

where A¢ denotes the phase difference measurement, s € R3 is the normalized sightline
vector to the GPS spacecraft in a reference frame, typically Earth-Centered-Earth-Fixed
(ECEF),!? b € #3 is the baseline vector (in wavelengths), which is the relative position vec-
tor from one antenna to another, A € R3*3 is the (proper and orthogonal) attitude matrix
that maps the reference frame to the body frame, and w represents a zero-mean Gaussian
measurement error with standard deviation w, which is (0.5cm)/\ = 0.026 wavelengths for
typical phase noise.? At each epoch it is assumed that M baselines and N sightlines exist.
The minimum number of baselines and sightlines required to determine the attitude within



an ambiguity (arising from an intersection of two cones) is two baselines and two sight-
lines.' This ambiguity can be easily resolved from the geometry of the sensor array to the
GPS satellites though. A mathematically unique attitude solution exists if any additional
number of baselines or sightlines are available at a given epoch.

ATTITUDE INDEPENDENT OBSERVATION

In this section, the attitude independent observation derived from GPS phase difference
measurements is reviewed (see Ref. [11] for more details). The case of processing multiple
baselines and one sightline at a time to resolve the integer ambiguities (solving for M integers
for each sightline) is considered first. Other sightlines can be processed in parallel. When
at least two sightlines have been processed with multiple baselines, then an attitude can be
determined. The derivation of the attitude independent observation begins by representing
the available sightline vector in the body frame, As, as the sum of two components. The
first component § is a function of the measured fractional phase measurements, and the

second ¢ depends on the unknown integer phase differences:!!
As=s8-c (3a)
M ~
s=B""|> @ *A¢b; (3b)
i=1
M
c=DB"1 Z w;2nibi] (3c)
i=1
M
B=> = ’bb] (3d)
i=1

where the subscript i denotes the i*" baseline. Since the measurements are not perfect,
Eq. (3a) is replaced by the measurement model

s=As+c+e (4)
where c is a constant bias since the baselines are assumed constant, and € is a zero-mean
Gaussian process with covariance R = B~!. We will consider the three-baseline case, which
is the most common in practice. If more baselines are available, then a three-baseline
subset can always be chosen. After the integer phases have been determined using this
subset, a refined attitude estimate can be computed using all baselines (i.e., three baselines

are sufficient to determine an attitude, which may then be used to resolve the integers
corresponding to the other baselines).

To eliminate the dependence on the attitude, the orthogonality of A and Eq. (4) are

used to give
Is[]> = [|As|* = [|s —c —¢l]”
= |Isl[* —2sc+|lc|* —2(s —¢) e+ [€]|?

()

Next, following Alonso and Shuster,'? the following effective (scalar) measurement and noise
are defined:

z = [5]]* — [Is]|” (6a)

v=2(5—c)le—||¢|? (6b)



Then the effective measurement model is
z=28"c—|lc|P+v (7)
where v is approximately Gaussian for small € with mean and variance given by, respectively,
j= B{v} = —Tx(R) (8)

and
o*=E{v*} — > =4(6-c)'R(s - c) +2[Tr(R)]? (9)

Note that the variance in Eq. (9) is a function of the unknown bias vector c¢. Equation (6a) is
used to compute the actual effective measurement (determined from the known quantities
in Egs. (3b), (3d) and the GPS sightline vector), while Eq. (7) represents the effective
measurement model as a function of the unknown bias vector c. Equations (6)-(9) define
an attitude independent set of equations because they do not contain the attitude matrix
A. Reference [11] shows a statistically correct centered estimate algorithm!? to determine
the bias vector ¢ (and thus the integers) based on linear least squares, and also shows a
linear sequential algorithm to determine the bias vector in real time.

If coplanar baselines exist, then another approach using multiple sightlines and one
baseline can be used to determine an attitude independent effective measurement. This
approach converts the baseline vector into the reference frame:

ATb=b-c (10a)
N
B = Sil ij_qungj (10b)
j=1
N
c=S5" Zw{znjsj (10c)
j=1
N
S=D @ sis; (10d)
j=1

where the subscript j denotes the ;% sightline. The new effective measurement and noise
now follow

z = bl - |[b]]? (11a)
v=2(b-c)Te—|€|? (11b)

where the covariance of € is now given by R = S~!. The new effective measurement model
is
z=2blc—|lc||> +v (12)

where v is approximately Gaussian for small € with mean and variance given by, respectively,
j= E{v} = —Te(R) (13)

and
o’ =FE{v*} —p*=4(b—c)"R(b—c)+2[Tx(R))? (14)
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Table 1 Continuous-Discrete Extended Kalman Filter

x(t) = £(x(1), t) + G) w(t), w(t) ~ N(0,Q(1))

Model ~
yi = h(xg) + vg, vi ~ N(0, Ry)
c(t) — %
Initialize X(fo) -
Py=F {X(to) X (to)}
Ky = P HI (%, )[Hy (3%, ) B, HE (%) + Ry~
Gain oh
ox Xp=X;
/\+ A — ~ g
=% + Ki[yx—h
Update X Xy k[Yk (Xk )]

Pl = [I - KpHy(%;,)| P,

x(t) = £(x(1), t)
Propagation | P(t) = F(x(t), t) P(t) + P(t) FT(x(t), t) + G(t) Q(t) GT (t)

This approach has the advantage of determining the integers using one baseline at a time
(thus the non-coplanar baseline requirement of the previous approach is not required);
however, at least three GPS sightlines must be available until the integer solutions have
converged. Also, note that the vector ¢ is no longer constant, but unlike the approach
shown in Ref. [11], this poses no difficulties in the EKF and UF formulations.

KALMAN FILTER FORMULATION

In this section, an extended Kalman filter (EKF) is derived to determine the integers in
real time. A summary of the continuous-discrete EKF is given in Table 1, where f(x(¢), ) :
R™ — R is the assumed model vector, x(t) € R™ is the true state vector, G(t) € R"*P
is the process noise distribution matrix, x(¢) € R" is the estimated state vector, x(t) =
%(t) —x(t) is the state estimate-error vector, y; € R is the measurement vector, and w(t)
and vy, are zero-mean Gaussian noise processes with covariances given by Q(t) and Ry,
respectively. The fundamental concept of the EKF involves the notion that the true state is
sufficiently close to the estimated state. Therefore, the error dynamics can be represented
fairly accurately by a linearized first-order Taylor series expansion.

The filter output and state dynamics for the GPS integer ambiguity problem are straight-
forward. The output is given by the effective measurement generated using Eq. (6a),
so that yr = 2z, and the state vector is defined as a vector of the integers, so that
x(t) = [m(t) naolt) ng(t)]T. Since this vector is known to be constant, then the filter

dynamics are given by .
x(t)=0 (15)



Since our goal is parameter estimation, then the process noise covariance is simple zero (i.e.,
Q(t) = 0). Therefore, the integers are strictly determined by the Kalman update equations.
The 1 x 3 matrix Hy (%, ) is derived by taking the partial of Eq. (7) with respect to x, which
gives

oh

Ox
As previously stated the variance of the effective measurement error contains the unknown
vector ¢. In order to implement this condition in the EKF formulation it is assumed that
Ry = a,%, where the estimated bias vector is used at each update. Although this approach
is not truly “optimal” in the strictness sense, it is the most simplest approach to implement
in practice. Furthermore, simulation studies indicate that the EKF is not sensitive to errors
in Ry when using the current estimate.

=2(8—¢)"B7! [w;?b1 w;’bs w; bs] (16)

The implementation of the EKF for GPS integer ambiguity resolution proceeds as fol-
lows. First, given three phase difference measurements associated with three baseline vectors
and a sightline vector, compute an effective measurement at time ¢y using Egs. (3b), (3d)
and (6a). Initialize the filter with some initial covariance estimate Py and state estimate
xg. The propagated state and covariance are simply given by the previous-time updated
values, with x; | = x; and P, = P,j . Then, use the current estimate to update the
state and covariance at each measurement time by the update equations shown in Table
1. At each time step a new effective measurement is computed, and the filter is executed
in real time until convergence is achieved. Multiple sightline vectors can be processed in
parallel. When the filter has converged for two or more sightlines, then an attitude can be
computed, which can be used to instantaneously resolve the integer ambiguities associated
with other sightlines.

If coplanar baselines exist, then the baselines can be converted into the reference frame
using Eqgs. (10b) and (10d), which requires that three non-coplanar sightlines exist through-
out the entire time span. This approach uses Eq. (11a) to compute the effective measure-
ment. The matrix Hy(%, ) is derived by taking the partial of Eq. (12) with respect to x,
which gives

oh

i
Note that the matrix S is time-varying. Therefore, a 3 X 3 matrix inverse is required at
each measurement update to use this approach.

2(b —c)T's™! (w1281 w5782 wj s (17)

The EKF formulation presented here is different than the sequential least squares process
of Ref. [11], where a centering algorithm is first used to remove the nonlinearities in the
derived cost function, which then yields a simple linear least squares solution. This, in
turn, can easily be executed in real time using a sequential process. The linear sequential
process works well when sufficient vehicle or GPS satellite motion is present; however, as
shown by simulation results, the sequential least squares process may produce erroneous
results when the motion is marginally observable in the presence of measurement noise.
Furthermore, the approach of Ref. [11] requires that the vector ¢ be constant, which is only
true when using the sightline vector in the body frame to create the effective measurement.
The EKF is used to estimate the integers directly, so ¢ need not be constant. This clearly
has advantages when three coplanar baselines exist.



UNSCENTED FILTER FORMULATION

In this section a new approach, developed by Julier, Uhlmann and Durrant-Whyte, 516

is shown as an alternative to the extended Kalman filter. This approach, which they called
the Unscented filter (UF), typically involves more computations than the extended Kalman
filter, but has several advantages, including: 1) the expected error is lower than the extended
Kalman filter, 2) the new filter can be applied to non-differentiable functions, 3) the new
filter avoids the derivation of Jacobian matrices, and 4) the new filter is valid to higher-
order expansions than the standard extended Kalman filter. The Unscented filter works
on the premise that with a fixed number of parameters it should be easier to approximate
a Gaussian distribution than to approximate an arbitrary nonlinear function. The filter
presented in Ref. [15] is derived for discrete-time nonlinear equations, where the system
model is given by

Xk+1 = f(XkJ7 Wi, k) (183“)
Yi = h(xp, vi, k) (18D)
Note that a continuous-time model can always be written using Eq. (18a) through an

appropriate numerical integration scheme. It is again assumed that w; and v, are zero-
mean Gaussian noise processes with covariances given by @ and Ry, respectively. The

Kalman filter update equations in Table 1 are first rewritten as'’
)A(z =x; + Kpvg (19a)
P =P — Ky PUK} (19b)

where vy, is the innovations process, given by

Ve =YE— Y

- - (20)
=Yk — h(Xk ) k)
The covariance of vy, is defined by P/”. The gain K}, is computed by
Ky = PP (PY) ! (21)

where Plf Y is the cross-correlation matrix between x, and y, .

The Unscented filter uses a different propagation than the standard extended Kalman
filter. Given an n X n covariance matrix P, a set of order n points can be generated from
the columns (or rows) of the matrices ++v/nP. The set of points is zero-mean, but if the
distribution has mean p, then simply adding @ to each of the points yields a symmetric
set of 2n points having the desired mean and covariance.'® Due to the symmetric nature of
this set, its odd central moments are zero, so its first three moments are the same as the
original Gaussian distribution. This is the foundation for the Unscented filter. A complete
derivation of this filter is beyond the scope of the present paper, so only the final results are
presented here. Various methods can be used to handle the process noise and measurement
noise in the Unscented filter. One approach involves augmenting the covariance matrix with

P prv pr
P =B Qe B (22)
(BE)" (BE) Ry
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where P;/" is the correlation between the state error and process noise, P;” is the correlation
between the state error and measurement noise, and P is the correlation between the
process noise and measurement noise, which are all zero for most systems. Augmenting
the covariance requires the computation of 2(q + 1) additional sigma points (where ¢ is the
dimension of wj, and [ is the dimension of v, which does not necessarily have to be the same
dimension, m, as the output in this case), but the effects of the process and measurement
noise in terms of the impact on the mean and covariance are introduced with the same order
of accuracy as the uncertainty in the state.

The general formulation for the propagation equations are given as follows. First, the
following set of sigma points are computed:

o) < 2L columns from +v./P} (23a)
xi(0) = Xj, (23b)
Xk (i) = o(i) + X (23¢)

where L = n + ¢ + [ and X is an augmented state defined by

X} Xk
X% = | Wi, }A(Z = 0q><1 (24)
Vi Omx1
The parameter ~ is given by
y=vVL+\ (25)
where the composite scaling parameter, A, is given by
A=ao*(L+k)—L (26)

The constant a determines the spread of the sigma points and is usually set to a small
positive value (e.g., 1x107* < a < 1).'® Also, the parameter & is usually given by k = 3— L.
Efficient methods to compute the matrix square root can be found by using the Cholesky
decomposition.!? If an orthogonal matrix square root is used, then the sigma points lie
along the eigenvectors of the covariance matrix. Note that there are a total of 2L values
for o (the positive and negative square roots). The transformed set of sigma points are
evaluated for each of the points by

xk+1(1) = £(xi (2), xi(0), k) (27)
where x (%) is a vector of the first n elements of x¢ (i), and x}’(i) is a vector of the next ¢
elements of x{(7), with

X (1)

xi (1) = | xx (0) (28)

X, (1)
where x} (i) is a vector of the last [ elements of x¢ (i), which will be used to compute the
output covariance. The following weights are now defined:

A

mean __ 2

Wy J (29a)
cov __ A 2
Wi = o+ (1=’ 4 ) (29b)
1

mean: .COV:— :12 2L 2

Wz Wz 2<L—|—A)7 ? 5 ’ ( 9C)

11



where (3 is used to incorporate prior knowledge of the distribution (for Gaussian distributions
B = 2 is optimal).

The predicted mean for the state estimate is calculated using a weighted sum of the
points x7 (), which is given by

2L
Xpq =) WL (i) (30)
1=0

The predicted covariance is given by

2L

= 2 W I (6) = Ry ] X (6) — %, )" (31)
=0

The mean observation is given by

2L
Vo = D W™ v (0) (32)
i=0
where
Ye1(2) = h(xi 1 (8), Xy (), k+1) (33)
The output covariance is given by
2L
P = WE e (1) = T e (6) = 9" (34)
i=0

Then the innovations covariance is simply given by
v =P (35)
Finally the cross correlation matrix is determined using

2L
P = W I () — X [k () — T (36)
1=0

The filter gain is then computed using Eq. (21), and the state vector can now be updated
using Eq. (19). Even though propagations on the order of 2n are required for the UF, the
computations may be comparable to the EKF (especially if the continuous-time covariance
equation needs to be integrated and a numerical Jacobian matrix is evaluated). Also, if the
measurement noise, vy, appears linearly in the output (with [ = m), then the augmented
state can be reduced because the system state does not need to augmented with the mea-
surement noise. In this case the covariance of the measurement error is simply added to
the innovations covariance, with PV, = ,ﬁl + Rjy1. This can greatly reduce the compu-
tational requirements in the Unscented filter. Furthermore, a square root version of the UF

is presented in Ref. [18] that avoids the need to re-factorize at each step.

The implementation of the UF for GPS integer ambiguity resolution proceeds as fol-
lows. For brevity only the body-frame (sightline) effective measurement is discussed here.

12
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Figure 3 Earth-Centered-Earth-Fixed, North-East-Down and Body Frames

Two approaches in the UF are presented here. The first uses the same concept for the
measurement-error variance as with the EKF, where the UF measurement-error variance is
given by Ry = O']%. In this approach the augmented state vector is simply given by the state,
so that a decomposition of a 3 x 3 matrix is only required, with P2 = P,j . Since the state
model estimate is given by x(t) = 0, then X = x; and P, = P, and Egs. (30) and
(31) are not needed. This significantly reduces the computational requirements in the UF.
Equation (33) is computed using the measurement model in Eq. (7), with h = 257¢—||c||?.
Also, the innovations covariance is given by PV, = P,ff_l + Ry+1. Hence, the only essential
difference between the EKF and UF formulations is in the computation of the innovations
covariance, where the EKF uses a first-order expansion to compute this quantity, while the
UF uses a nonlinear transformation to compute this quantity. The second approach for
the UF uses the augmented measurement noise model of Eq. (7) with an augmented vector
given by the state and € in Eq. (6b). The augmented covariance is now given by

0 R (37)

pa _ [PJr 0]
Therefore, a decomposition of a 6 X 6 matrix is now required. Again, since the state model
estimate is given by x(¢) = 0, then x;,_ | = x; and P = P, and Egs. (30) and (31)
are not needed. Also, the innovations covariance is computed using Eqgs. (34) and (35) in
this approach. In the strictness sense this approach is more optimal than the first approach
because the effect of the nonlinear-appearing measurement noise is directly used in the UF.
But, the computational requirements are vastly increased due to the decomposition of a

higher dimensional augmented matrix.

13



SIMULATION RESULTS

In this section, simulation results involving various ground vehicle motions are shown to
demonstrate the performance of the new EKF and UF algorithms for GPS integer ambiguity
resolution. Figure 3 shows the coordinates systems used to generate simulated data. The
Earth-Centered-Earth-Fixed (ECEF) coordinate system has its z axis through the true
north pole (i.e., along the Earth’s spin axis) and its x axis through the intersection of the
prime meridian (0° longitude) and the equator (0° latitude). The ECEF y axis completes
the right-handed coordinate system. The North-East-Down (NED) coordinate system (also
known as the local navigation frame) is defined by fitting a tangent plane onto the surface
of the Farth at the particular point of interest. The plane remains fixed about this point
and this point becomes the origin of the frame. The NED x axis points to true north, the y
axis points east and the z axis points towards the center of the Earth. The body coordinate
system is assumed to be rigidly attached to the vehicle undergoing motion. The body x
axis points forward, the z axis points down, and the y axis completes the right-handed
coordinate system. The heading angle, ¥, in Figure 3 is the angle from the NED z axis to
the body z axis. The transformation from the ECEF frame to the body frame is given by?°

x x
Yy = [ANED2BODY] [AECEF2NED] | ¥ (38)
*1Bopy *1 gcER
with
costy siny 0
[ANED2BODY] = | —siny cosyp 0 (39a)
0 0 1
—sinAcos¢ —sinAsing cosA
[AECEFQNED] = sin gf) COS d) 0 (39b)

—COSA COosS¢p —cosAsing —sinA

where A is the latitude and ¢ is the longitude.

The vehicle is assumed to have coordinates of 38°N and 77°W (i.e., in Washington,
DC). The GPS constellation is simulated using GPS week 137 and a time of applicability
of 61440.0000 seconds (see Ref. [21] for an explanation of GPS time).* The available GPS
satellites are determined using a 15° cutoff.?! A 60 minute simulation is conducted and
measurements are sampled at 1 second intervals. Several GPS sightline vectors are available
throughout the entire simulation interval. Two vehicle motions are assumed. The first has
the vehicle turning at a fairly fast rate of ¢ = 10 deg/sec, while the second has the vehicle
turning at a much slower rate of ¢ = 1 deg/sec. The GPS attitude sensor frame is assumed
to coincide with the body frame. The GPS baseline vectors in wavelengths are assumed to
be given by

6 0 0
by =1|0|, by= (6|, bs=[-2 (40)
0 0 6
The true integers for all simulations are given by ny = 1, ng = —2 and nz = 3. Measure-

ments are generated by adding zero-mean Gaussian white-noise, with a standard deviation

#The U.S. Coast Guard Navigation Center maintains a website that contains GPS almanacs, and as of
this writing this website is given by http://www.navcen.uscg.gov/.
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Figure 4 Integer Errors and 30 Integer Bounds

of o = 0.026 wavelengths, to the true phase difference observations. Also, multipath errors
are introduced using a simple Markov process with time constant of 5 minutes and standard
deviation of 0.25, which is 10 times the amount used in the simulations of Ref. [11].

For the first simulation the fast rate of ¢ = 10 deg/sec is used. For this simulation the
initial covariance for both the UF and EKF is given by Py = (16/9)I3x3, which assumes
a 3o error-bound of the integers of 4 cycles. The parameters used in the UF are o = 0.1,
6=2,k=3—L,and L =3 when the 3 x 3 matrix decomposition approach is used (L = 6
for the augmented approach). For this simulation run no noticeable differences between the
results of the EKF and UF are seen. Also, the two UF approaches (one uses the current
state estimate in the measurement-error variance calculation, which requires a 3 x 3 matrix
decomposition, while the other appends the state vector to include the measurement noise,
which requires a 6 x 6 matrix decomposition) give identical results. Therefore, only the EKF
results are shown. Plots of the integer errors and 3¢ integer bounds are shown in Figure
4. The top plot of Figure 4(i) shows the estimated solutions minus the true integers, while
the bottom plot shows the errors rounded to the nearest integer. The top plot of Figure
4(i) shows that the EKF and UF algorithms can handle large multipath errors well because
the errors converge to very small values, which isn’t the case with the sequential process of
Ref. [11]. From Figure 4(ii) the 30 integers bounds fall below 1/2 at around the 30 second
point, which coincide with the converged solutions shown by Figure 4(i). Several runs with
different random noise seeds have also been executed (i.e., a Monte Carlo type simulation),
which all yield the same results shown here. Therefore, both the EKF and UF algorithms
work well when the vehicle exhibits moderately fast motions.

For the second simulation the slower rate of 1/} = 1 deg/sec is used. For this simulation
the initial covariance for both the UF and EKF is given by Py = 4[343, which assumes a
30 error-bound of the integers of 6 cycles. This essentially assumes that the initial integer
estimates are completely unknown, which may range over the entire length of a baseline (e.g.,
[|b1]] = 6). The parameters for the UF are the same as the ones used in first simulation.
For this current simulation run, the results of the EKF solutions and UF solutions are
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Figure 5 EKF and UF Integer Errors and 30 Integer Bounds

different. The two UF approaches still give identical results, so no apparent advantages of
appending the state vector to include the nonlinear-appearing measurement noise are seen
for this simulation either. Plots of the EKF and UF integer errors and 3¢ integer bounds
are shown in Figure 5. From Figure 5(i), the EKF solutions converge in about 5 minutes,
while the UF solutions converge in less time (about 1 minute less). Figure 5(ii) shows the
errors rounded to the nearest integer. The integer associated with the third baseline takes
the most time to converge because this baseline vector is closest to the axis of the vehicle’s
rotation. In other cases, using different random noise seeds, the EKF never converges to
the correct solution (4 out of 100 Monte Carlo passes did not converge). This is due to
the fact that the first-order approximation in the EKF cannot adequately capture the large
errors introduced by the initial covariance and the small observability of the system due to
the slower rate motion of the vehicle. The sequential least squares process of Ref. [11] does
not converge either using the same simulation parameters and data. The UF outperforms
the EKF and sequential least squares process in every simulated test case.
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Figure 6 Rounded Integer Errors and 30 Integer Bounds for the UF

The biggest concern with the EKF results is the confidence of the integer solutions dic-
tated by the 30 bounds, shown by the top plot of Figure 5(iii). These bounds indicate
that the EKF solutions have converge almost immediately, which is clearly incorrect. For-
tunately, the UF 30 bounds, shown by the bottom plot of Figure 5(iii), fall below 1/2 at
around the 4 minute point, which coincide with the correctly converged solutions shown by
Figure 5(ii). However, the UF algorithm comes with a computational cost. An increased
amount of computation is required for the covariance decomposition and multiple output
calculations. Our experience has shown that the UF algorithm is about 1.5 times slower
than the EKF algorithm. Still, the performance enhancements of the UF over the EKF
outweigh the increased computational costs.

The last simulation involves using three sightlines and one baseline to determine the
integers. Equation (11a) is used as the effective measurement for this case. Several sightlines
are available over a 10 minute span, and a subset of the three sightlines with the best
Geometric Dilution of Precision? is chosen. For this simulation the fast rate of 1) = 10
deg/sec is used. Also, the initial covariance for the UF is given by Py = 4I3x3. Baseline
by from Eq. (40) is chosen as the baseline for the effective measurement. A plot of the
rounded integer errors and 3o bounds for the UF is shown in Figure 6. The UF is able
to accurately determine the integers for this case. However, the 30 bounds indicate that
convergence takes longer than the results shown in Figure 4, which is most likely due to the
geometry of the sightlines leading to a less observable system for this simulation. Still, the
reference-frame baseline approach is useful when three coplanar baselines exist because the
integers associated with each baseline can be determined independently.

CONCLUSIONS

In this paper, two new real time algorithms based on the extended Kalman filter and
Unscented filter were developed for GPS integer ambiguity resolution. The algorithms have
several advantages over existing approaches, including: no a prior: attitude knowledge is
required, the algorithms can easily be modified to work with coplanar baselines, and a suit-
able integrity check can be used to determine when the estimated values have converged to
the correct values. Two different approaches have also been shown in the Unscented filter
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design. One uses the current state estimate in the measurement-error variance calculation,
which requires a 3 x 3 matrix decomposition, while the other appends the state vector to
include the nonlinear-appearing measurement noise, which requires a 6 x 6 matrix decompo-
sition. Simulation results indicated that for this problem, both Unscented filter approaches
gave identical results. So appending the state vector is not required, which significantly
reduces the computational requirements in the Unscented filter. Simulation test cases also
indicated that the performance of the Unscented filter is significantly better than the stan-
dard extended Kalman filter for large initialization errors and slow vehicle motions. Hence,
the Unscented filter algorithm is recommended for actual implementation.
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