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Abstract
In this paper, a novel technique for finding a point-by-point (deterministic) attitude solution

of a vehicle using Global Positioning System phase difference measurements is presented.  This

technique transforms a general cost function into a more numerically efficient form by

determining three-dimensional vectors in either the body or reference coordinate system.

Covariance relationships for the new algorithm, as well as methods which minimize the general

cost function, are also derived. The equivalence of the general cost function and transformed cost

function is shown for the case of orthogonal baselines or sightlines.  Simulation results are shown

which demonstrate the usefulness of the new algorithm and covariance expressions.

Introduction
The utilization of phase difference measurements from Global Positioning System (GPS)

receivers provides a novel approach for three-axis attitude determination and/or estimation.

These measurements have been successfully used to determine the attitude of both aircraft1 and

spacecraft.2,3  Recently, much attention has been placed on spacecraft-based applications.  One of

the first space-based GPS experiments for attitude determination was flown on the RADCAL

(RADar CALibration) spacecraft.4  To obtain maximum GPS visibility, and to reduce signal

interference due to multipath reflection, GPS patch antennas were placed on the top surface of

the spacecraft bus.  Although the antenna baselines were short for attitude determination,

accuracies between 0.5 to 1.0 degrees (root-mean-square) were achieved.

In this paper, the problem of finding the attitude from GPS phase difference measurements

using deterministic approaches is addressed.  Error sources, such as integer sign ambiguity,5 are
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not investigated.  These errors are assumed to be accounted for before the attitude determination

problem is solved.  The most common GPS attitude determination scheme minimizes a cost

function constituting the sum weighted two-norm residuals between the estimated and

determined phase difference quantities.  However, as of this writing, the optimal attitude solution

which minimizes this general cost function can only be found using iterative techniques, such as

gradient search methods.  A suboptimal solution involves transforming the general cost function

into a form which can be minimized without iterative intense methods.  One such technique,

developed by Cohen,1 transforms the general cost function into a form identical to Wahba’s

problem.6  Therefore, fast algorithms such as QUEST7 and FOAM8 can then be used to

determine the attitude.  Cohen showed that the solution based on Wahba’s problem is almost an

order of magnitude faster than a conventional nonlinear least-squares algorithm.

Cohen’s approach involves a two step process.  The first step involves finding a weighting

matrix, using a Singular Value Decomposition (SVD), which transforms the baseline

configuration to an equivalent orthonormal basis.  At least three non-collinear baselines must

exist to perform this transformation.  If this is not the case, the transformation can still be

accomplished as long as three non-collinear sightlines exist.  However, a SVD must be

performed for each new sightline, which can be computationally expensive, whereas the baseline

transformation has to be done only once.  The second step involves finding the attitude using the

fast algorithms such as QUEST or FOAM.  Since the weighting matrix transforms the baseline

configuration to an equivalent orthonormal basis, suboptimal attitude solutions may arise if the

baseline configuration does not already form an orthonormal basis.1  An example of this scenario

is when three baselines are coplanar.  In order to determine the optimal attitude, iterative

techniques which minimize the general cost function must be used.  The method presented in this

paper also is suboptimal for the case where the baseline (or sightline) configuration does not

form an orthonormal basis.  However, it does not require a SVD of a 3 3×  matrix to perform the

orthonormal transformation.

Bar-Itzhack et. al.9 show another analytical conversion of the basic GPS scalar difference

measurements into unit vectors to be used in Wahba’s problem.  This is accomplished by

expressing the angle determined by one of the baselines, which describes a cone around the

baseline vector, and likewise for the second baseline, into a three-dimensional vector resolved in



3

a reference coordinate system.  Attitude solutions are provided for baselines which constitute

Cartesian and non-Cartesian coordinate systems; however, these solutions shown in Ref. [9]

involve only two baseline vectors.  This paper generalizes these results to multiple baseline

vectors.  Also, covariance relations are shown for the new approach, as well as for techniques

which minimize the general cost function directly.  This allows users to quantify any additional

errors produced by transforming the general cost function into Wahba’s form.

The organization of this paper proceeds as follows.  First, the concept of the GPS phase

difference measurement is introduced.  Then, the general cost function used for GPS-based

attitude determination is reviewed.  Next, Cohen’s method for transforming the general cost

function into Wahba’s problem is shown.  Also, system observability using two baselines is

discussed.  Then, a general technique for transforming the general cost function is developed.

Also, the equivalence of the general and transformed (Wahba) cost functions for orthogonal

baselines and/or sightlines is discussed.  Next, a covariance analysis is performed on the new

algorithm, and on algorithms which minimize the general cost function directly.  Finally, results

are shown for a simulated vehicle with near-orthogonal baselines, non-orthogonal baselines, and

baselines which are nearly collinear.

Background
In this section, a brief background of the GPS phase difference measurement is shown.  The

GPS constellation of spacecraft was developed for accurate navigation information of land-

based, air, and spacecraft user systems.  Spacecraft applications initially involved obtaining

accurate orbit information and accurate time-tagging of spacecraft operations.  However, attitude

determination of vehicles, such as spacecraft or aircraft, has gained much attention.  The main

measurement used for attitude determination is the phase difference of the GPS signal received

from two antennas separated by a baseline.  The principle of the wavefront angle and wavelength,

which are used to develop a phase difference, is illustrated in Figure 1.

Figure 1  GPS Wavelength and Wavefront Angle

The phase difference measurement is obtained by
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b nl cosθ λ φ π= + ∆ 0 2� � (1)

where bl  is the baseline length, θ  is the angle between the baseline and the line of sight to the

GPS spacecraft, n  is the number of integer wavelengths between two receivers, ∆φ0 is the

actual phase difference measurement, and λ  is the wavelength of the GPS signal.  The two GPS

frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz.  Then, assuming no integer

offset, we define a normalized phase difference measurement ∆φ  by

∆ ∆φ λ φ
π

≡ =
0

2 b
b A s

l

T (2)

where s R∈ 3 is the normalized line of sight vector to the GPS spacecraft in an inertial frame,

b R∈ 3 is the normalized baseline vector, which is the relative position vector from one antenna

to another, and A SO∈ 3� �  is the attitude matrix, which is a Lie group of orthogonal matrices

with determinant 1 (i.e., A A IT =  and detA = 1).

Cohen’s Method
In this section, Cohen’s method1 for determining the attitude of a vehicle using Equation (2)

is reviewed.  The general cost function to be minimized is given by

J A w b A sij

j

n

i

m

ij i
T

j� � � �= −
==

∑∑1

2
11

2
∆φ (3)

where m represents the number of baselines, and n  represents the number of observed GPS

spacecraft.  The parameters, wij , serve to weight each individual phase measurement.  The phase

measurement can contain noise, which is modeled by

∆ ∆φ φij ij ijv= +true (4)

where vij  is a zero-mean stationary Gaussian process with covariance given by σ ij
2 .  The

maximum likelihood estimate for wij  is given by 1 2/ σ ij .  If the weights wij  factor into a
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satellite-dependent and a baseline-dependent factor, i.e. w w wij bi sj= , then the cost function in

Equation (3) may be re-written as1

J A W B A S WB
T

S
F

� � � �= −1 2 1 2 2
∆Φ (5)

where 
F
2  denotes the Frobenius norm, and

∆Φ

∆ ∆ ∆
∆

∆ ∆

=

�

�

�
�
�
�

�

	










φ φ φ
φ

φ φ

11 12 1

21

1

�
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m mn

(6a)

B b b bm= 1 2 � (6b)

S s s sn= 1 2 � (6c)

The weighting matrices WB  and WS  are applicable to the rows (baselines) and columns

(spacecraft) of ∆Φ , respectively.

If the quaternion10 representation is used for the attitude matrix, then Equation (5) leads to a

quartic dependence in the quaternions.  In Wahba’s problem, this dependence cancels out of the

cost function.  In order to cancel this dependence in Equation (5), Cohen chooses the following

weighting matrix for WB

W V VB B B B
T= −Σ 2 (7)

where VB  and ΣB  are given from a SVD of B , i.e. B U VB B B
T= Σ .  From Equation (7), the

matrix B  must be full rank, which means that at least three non-collinear baselines must be used.

However, if this is not true a solution can still be found as long as three non-collinear sightlines

exist.  This can be accomplished by performing a SVD of S, and choosing WS  as in the same

form in Equation (7).  However, a SVD must be performed for each sightline.  This is more

computationally expensive than using Equation (7), which may be done once for constant

baselines.  It is also not obvious that Equation (7) is consistent with Equation (3).  Substituting
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Equation (7) into the general cost function in Equation (5) leads to Wahba’s problem, which

maximizes

J A A SW W B AGS
T

B
T T'� � � � � �= ≡trace trace∆Φ (8)

However, by constraining WB  or WS , the solution using the transformed cost function in

Equation (8) is suboptimal for non-orthogonal baselines or sightlines.  The concept of the

suboptimal solution will be discussed in detail later.

Attitude Determination from Vectorized Measurements

In this section, a new method for attitude determination from GPS phase measurements is

developed.  This new method extends the method shown in Ref. [9], which converts the phase

measurements into vector measurements.  The general method for the vectorized measurements

is based on an algorithm given by Shuster.11  Also, a covariance analysis is performed for the

new method, and for methods which minimize the general cost function in Equation (3) directly.

The vectorized measurement problem involves determining the sightline vector in the body

frame, denoted by ~s Asj j≡ , or the baseline in an inertial frame, denoted by b A bi
T

i≡ .  For the

sightline case, the following cost function is minimized

J s b s j nj j
iji

m

ij i
T

j
~ ~ , , ,� � � �= − =

=
∑1

2

1
1 2

2
1

2

σ
φ∆ for � (9)

The minimization of Equation (9) is straightforward and leads to11

~s M yj j j
= −1 (10)

where

M b b j nj
iji

m

i i
T= =

=
∑ 1

1 2
2

1
σ

for , , ,� (11a)
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y b j n
j

iji

m

ij i= =
=
∑ 1

1 2
2

1
σ

φ∆ for , , ,� (11b)

The error covariance of ~s j  is given by

P Mj j= −1 (12)

If the sightline in the body is required to be normalized, then the cost function in Equation (9)

must be minimized subject to the constraint ~ ~s sT = 1.  However, Shuster11 showed that the error

introduced by ignoring this constraint is on the order of

m s I s s P I s sj j j
T

j j j
T− −

− −�
��

�
	


1 2
trace ~ ~ ~ ~ ~� � � � , which is usually negligible.  The solution of

Wahba’s problem as shown below will determine the optimal attitude (in the least-squares sense)

which results in a normalized body vector.  Therefore, the normalization constraint may be

ignored.  Also, the normalized error covariance is singular, as shown in Ref. [11].  This

singularity is avoided by using the covariance given by Equation (12).  For a discussion of

singularity issues for measurement covariances see Ref. [12].

From Equation (10) it is seen that at least three non-collinear baselines are required to

determine the sightlines in the body frame.  This is analogous to the problem posed by Cohen.1

However, if only two non-collinear baselines exist, a solution is again possible as long as three

non-collinear sightlines exist.  This approach determines the baselines in the inertial frame, using

the following cost function

J b b s i mi i
ijj

n

ij i
T

j� � = −
� �� =
=

∑1

2

1
1 2

2
1

2

σ
φ∆ for , , ,� (13)

The minimization of Equation (13) is again straightforward and leads to

b N zi i i= −1 (14)

where
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N s s i mi
ijj

n

j j
T= =

=
∑ 1

1 2
2

1
σ

for , , ,� (15a)

z s i mi
ijj

n

ij j= =
=

∑ 1
1 2

2
1

σ
φ∆ for , , ,� (15b)

The error covariance of bi  is given by

Q Ni i= −1 (16)

The case with two non-collinear baselines and two non-collinear sightlines can also be solved

for either the baseline inertial case or sightline body case.  Solving for the latter case yields

~ ,s a b a b a b b jj j j j= + + × =1 1 2 2 3 1 2 1 2� � for (17)

where

a b b b b jj j j1 1 2
2

1 2 1 2 1 2= × − ⋅ =− ∆ ∆φ φ � � for , (18a)

a b b b b jj j j2 1 2
2

2 1 1 2 1 2= × − ⋅ =− ∆ ∆φ φ � � for , (18b)

a b b f b b b b jj j j j j j3 1 2
2

1 2
2

1
2

1 2 1 2 2
2

1 2
2 1 2= ± × × − + ⋅ + =− ∆ ∆ ∆ ∆φ φ φ φ� �� � for , (18c)

where f sj j= ~ 2
.  Equation (18c) involves knowledge of ~s j

2
.  However, this quantity can be

assumed to be 1 with reasonable accuracy.  Also,  from Equation (18c), there are two possible

solutions for the body sightlines.  However, this sign ambiguity can usually be resolved from the

geometry of vehicle to the GPS spacecraft.  The error covariance is given by11

P T L Tj j
T= (19)

where

T b b b b= ×1 2 1 2� � (20a)
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L
D l

l dj
j j

j
T

j
=
�
�
�
�

�
	





(20b)

and

D U P Uj j
= φ (21a)

U b b
b b

b b
= ×

− ⋅
− ⋅
�
��

�
	


−
1 2

2 1 2

1 2

1

1
(21b)

P
j

j

j
φ

σ
σ

=
�

�
�
�

�

	





1
2

2
2

0

0
(21c)

l b b D U P Uj j
T

j j jj
= × −���

�
	


− −
� 1 2

1 1 2
1 ψ ψ ψφ (21d)

d b b D U P Uj j
T

j j j
T

jj
= × −���

�
	


− −
1 2

2 1
1 ψ ψ ψ ψφ (21e)

ψ
φ
φj

j

j
≡
�
�
�

�
	



∆
∆

1

2
(21f)

The covariance in Equation (19) is singular.  However, this does not affect the determination of

the attitude error covariance, as will be shown.  Also, the method can be trivially modified to

determine the baselines in inertial space.

Attitude Determination

The attitude determination problem using body sightlines is very similar to that using inertial

baselines, so we may consider only the former case.  The attitude is determined by using the

following cost function

J A s A s M s A sj j
T

j j j
j

n

� � � � � �= − −
=

∑1

2
1

~ ~ (22)

This cost function is not identical to Wahba’s problem since the quartic dependence in the

quaternion does not cancel, unless the baselines form an orthonormal basis so that M j  is given
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by a scalar times the identity matrix.  The cost function in Equation (22) is in fact equivalent to

the general cost function in Equation (3).  This is shown by substituting Equation (10) and (11)

into (22) and expanding terms, giving

J A y M y y A s s A M A s
j
T

j j j
T

j j
T T

j j
j

n

� � = − +

�

�
�

−

=
∑1

2
21

1

(23)

Expanding Equation (23) now yields

J A y M y b A s
j
T

j j
iji

m

ij

j

n

ij
ij i

T
j

j

n

i

m

� � � �= −



�
��

�

�
�� + −−

== ==
∑∑ ∑∑1

2

1 1

2

11
2

1

2

1
2

2

11
σ

φ
σ

φ∆ ∆ (24)

Since the first term in Equation (24) is independent of attitude, it is clear that this cost function is

equivalent to the general cost function in Equation (3).  In order to reduce the cost function in

Equation (22) into a form corresponding to Wahba’s problem the condition that M j  is given by

a scalar times the identity matrix must be valid.  Therefore, if the baselines do not form an

orthonormal basis, then the attitude solution is suboptimal.

Attitude Covariance

Wahba posed the three-axis determination problem in terms of finding the proper orthogonal

attitude matrix that minimizes the least-squares cost function, given by

J A a s A sj j j
j

n

� � = −
=

∑1

2

2

1

~ (25)

Several efficient algorithms have been developed to solve this problem (e.g., QUEST7 and

FOAM8).  Another solution for the attitude matrix is given by performing a SVD of the following

matrix

F a s s U Vj j j
T

j

n
T= =

=
∑ ~

1

Σ (26)

The optimal solution for the attitude matrix is given by13
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A U VT
opt = + + (27)

where

U U U+ = diag 1 1, ,det� � (28a)

V V V+ = diag 1 1, ,det� � (28b)

The covariance of the estimation error angle vector in the body frame is given by13

E P I F A a a s E e e s I F AT
opt
T

i j j i j
T

j

n

i

m

j
T

opt
Tδα δα� � � � � � � �= = − × × −

−

==

−∑∑body
1

11

1~ ~ (29)

where ~s j ×  represents the cross product matrix (see Ref. [13]), δα  is the small error angle,

and

e A s s kk opt k k≡ −δ δ ~ , for any (30)

The terms δ s  and δ ~s  represent variations in the inertial and body sightlines, respectively.  The

expectation in Equation (29) can be written as

E e e A E s s A E s si j
T

opt i j
T

opt
T

i j
T� � � � � �= +δ δ δ δ~ ~ (31)

Assuming that the only errors are in the effective phase measurements reduces Equation (29) to

P I F A a s P s I F Aopt
T

j j j j
T

j

n

opt
T

body = − × × −
−

=

−∑� � � �
1 2

1

1~ ~ (32)

Now using the approximation of

~s A sj j≈ opt (33)

yields

I F A a I s s a s s Xopt
T

j j j
T

j

n

j j
j

n

j
T

− ≈ − = × × ≡
= =

∑ ∑~ ~ ~ ~� �
1 1

(34)



12

and thus the error angle covariance is given by

P X a s P s Xj j j j
T

j

n

body ≈ × ×
�
��

��

�
��

��
−

=

−∑1 2

1

1~ ~ (35)

Note that if the covariances Pj  are multiples of the identity, P Ij j= σ 2 , and then setting

aj j= −σ 2  would yield

P s s Xj j j
T

j

n

body ≈ × ×
�

�
�
��

�

	






=−

=

−

−∑σ 2

1

1

1~ ~ (36)

Therefore, in this case the covariance in Equation (36) would be identical to the covariance given

by QUEST.7  The best suboptimal weighting factor aj  in Equation (35) can be found by

minimizing the trace of Pbody.  However, this is extremely complex.  If Equation (36) is still a

good approximation, then aj  can be chosen to minimize some matrix norm of the following

J a a P Ij j j� � = − (37)

An alternative to Equation (37) is to minimize the following cost function for some matrix norm

J a a I Pj j j� � = − −1 (38)

For example, minimizing Equation (38) with a Frobenius norm results in

a P Mj j j= =−1

3

1

3
1trace trace� � � � (39)

Once a proper weight is determined, then Wahba’s problem in Equation (25) can be solved.  The

covariance of the attitude errors is given by Equation (35).

Transforming the general cost function in Equation (3) results in a suboptimal solution.  In

order to quantify the errors introduced by the suboptimal solution, the error attitude covariance

for the general cost function is derived.  This is accomplished by using results from maximum

likelihood estimation.14  The Fisher information matrix for a parameter vector x  is given by
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F E
x x

J xxx T
x

=
�
�
��

�
�
��

∂
∂ ∂

� �
true

(40)

where J x� �  is the negative log likelihood function, which is the loss function in this case.  If the

measurements are Gaussian and linear in the parameter vector, then the error covariance is given

by

P Fxx xx= −1 (41)

Since the cost function in Equation (22) is equivalent to the full cost function in Equation (3),

Equation (22) can be used to determine the covariance of the optimal solution.  First, the attitude

matrix is approximated by

A e A I A= ≈ − × + ×

��

�
��

− ×δα δα δαtrue true
1

2
2 (42)

Equations (42) and (33) are next substituted into Equations (22) and (40) to determine the Fisher

information matrix.  First-order terms vanish in the partials, and third-order terms become zero

since E δα� � = 0 .  Also, assuming that the quartic terms are negligible leads to the following

simple form for the optimal covariance

P s P sj j j
T

j

n

opt ≈ × ×
�

�
�
��

�

	






−

=

−

∑ ~ ~1

1

1

(43)

Note that the optimal covariance in Equation (43) reduces to the covariance in Equation (36)

if the condition P Ij j= σ 2  is true.  The errors introduced when using a suboptimal solution can

now be compared to the expected performance of minimizing the general cost function in

Equation (3).  Also, for the case of two baselines and two sightlines, the optimal covariance can

be derived by using the cost function in Equation (3) in the Fisher information matrix, which

leads to

P s b s b
ij

j i j i
T

ji

opt ≈ × ×
�

�
�
��

�

	




==

−

∑∑ 1
2

1

2

1

2
1

σ
~ ~� �� � (44)
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The covariance analysis can be easily extended to the case where the baselines in inertial

space are determined.  The body covariance for the transformed cost function in this case

becomes

P a b a b AQ A b a bi i
i

m

i i i
T

i
T

i

m

i i
i

m

body ≈ ×
�

�
�
�

�

	



 × × ×

�

�
�
�

�

	





=

−

= =

−

∑ ∑ ∑2

1

1

2

1

2

1

1

(45)

The error covariance for the optimal solution is given by

P b AQ A bi i
T

i
T

i

m

opt ≈ × ×
�

�
�
�

�

	





−

=

−

∑ 1

1

1

(46)



15

Simulation Results
In this section, simulation results are shown using the new algorithm and covariance

expressions.  Three case are presented.  The first case involves three baselines which are nearly

orthogonal.  The second involves three baselines which do not constitute an orthogonal set.  The

third case involves three baselines, where the first two baselines are far from constituting an

orthogonal set (i.e., nearly collinear).  Although the third case would most likely never be used in

a practical application, it provides a radical test comparison between the optimal and suboptimal

solutions.  It is assumed that the vehicle is always in the view of two GPS spacecraft with

constant and normalized sightlines given by

s sT T
1 2

1

3
1 1 1

1

2
0 1 1= = (47)

The three normalized baseline cases are given by

Case 1

b b bT T T
1 2 3

1

109
1 0 3 0 0 1 0 0 0 1= = =

.
. (48a)

Case 2

b b bT T T
1 2 3

1

2
1 1 0 0 1 0 0 0 1= = = (48b)

Case 3

b b bT T T
1 2 3

1

102
01 1 01 0 1 0 0 0 1= = =

.
. . (48c)

The noise for each phase difference measurement is assumed to have a normalized standard

deviation of σ = 0 001.  (corresponding to an attitude error of about 0.5 degrees).  Also, the

attitude of the vehicle is assumed to be Earth-pointing with a rotation of 236 deg/hr about the

vehicle’s y-axis (negative orbit-normal), while holding the remaining axis rotations to zero. The

spacecraft z-axis is defined to be pointed nadir, and the x-axis completes the triad.

If the baselines do not constitute an orthogonal set, the solution of the transformed cost

function to Wahba’s form is suboptimal.  However, the covariance analysis shown in this paper

can be used to assess the errors introduced from the transformation.  All simulation results

presented in the figures use aj  given by Equation (39).  Figure 2 shows the attitude errors and
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three-sigma bounds by solving Wahba’s form for Case 1.  This shows the excellent agreement

between theory and simulated measurement processes.  In order to quantify the error introduced

by using the suboptimal solution, the following error factor is used

f
m

P

Pk

m

=
=

∑1
1 2

1 2
1tot

body

opt

trace diag

trace diag

tot � �

� �
(49)

where mtot  represents the total number of measurements used in the simulation.  A plot of the

error factor at each time is shown in Figure 3.  Equation (49) represents the average of the curve

shown in Figure 3.  Clearly, the suboptimal solution is adequate, with a maximum error of about

3%.  A plot of the standard deviation errors for the suboptimal and optimal solutions for Case 2

is shown in Figure 4.  The optimal standard deviation error is always lower than the suboptimal

solution.  A plot of the error factor at each time is shown in Figure 5.  For this case, the

suboptimal solution can produce large errors, with a maximum error of about 35%.  This is due

to the non-orthogonal baselines, and due to the attitude of the vehicle.  Results using various

values of aj  for all three case are shown in Table 1 (the subscripts max and min denote

eigenvalues).  Clearly, various choices for the weighting factors aj  do not affect system

performance.  Also, Case 3 where the baselines are nearly collinear results in a substantial

degradation in performance when using the suboptimal solution as compared to the optimal

solution.  Therefore, the covariance analysis is extremely helpful for determining whether or not

the suboptimal and/or the optimal solution meets required performance specifications.

Figure 2  Attitude Errors and Bounds for Case 1

Figure 3  Error Factor for Case 1

Figure 4  Standard Deviation Comparison for Case 2

Figure 5  Error Factor for Case 2
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Table 1  Weighting Factor Performance Comparisons

Case 1, f Case 2, f Case 3, f

a
P

j
j

= 1

� �
max

1.014 1.151 58.13

a
P P

j
j j

=
+
2

� � � �
max min

1.014 1.151 58.16

a
P P

j
j j

=
+− −1 1

2

� � � �
max min

1.014 1.151 58.29

a
P

P
j

j

j

=
−

trace

trace

� �
� �1

1.014 1.151 58.43

a Pj j= −1

2
trace 1� � 1.014 1.150 58.13

Conclusions
The problem of determining the attitude of a vehicle using GPS phase measurements was

addressed in this paper.  A general method which transforms the general GPS cost function into a

Wahba cost function was presented.  Covariance equations for both the new method, and

methods which solve the general cost function were developed.  It was shown that the

transformation produces suboptimal attitude solutions for non-orthogonal baselines and

sightlines.  The equivalence of both covariance equations for orthogonal baselines and/or

sightlines was also shown.  Simulation results indicate that the new method is adequate for nearly

orthogonal baselines or sightlines, but can produce large errors for nearly collinear baselines or

sightlines, as compared to methods which minimize the general cost function directly.  This

paper provides a means of accessing various performance criteria, such as computational

efficiency versus attitude accuracy, for the particular application.
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Figure 1  GPS Wavelength and Wavefront Angle

Figure 2  Attitude Errors and Bounds for Case 1

Figure 3  Error Factor for Case 1

Figure 4  Standard Deviation Comparison for Case 2

Figure 5  Error Factor for Case 2



λ

b

θ

To GPS

l



0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

Time (Hr)

Y
aw

 (
D

eg
)

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

P
itc

h 
(D

eg
)

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

R
ol

l (
D

eg
)

Attitude Errors and 3 Sigma Bounds (suboptimal solution)



0 0.5 1 1.5 2 2.5 3
1.005

1.01

1.015

1.02

1.025

1.03

Time (Hr)

F
ac

to
r

Standard Deviation Factor Between Optimal and Suboptimal Solution



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

Time (Hr)

Y
aw

 (
D

eg
)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

P
itc

h 
(D

eg
)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

R
ol

l (
D

eg
)

Standard Deviation Comparison (solid=optimal, dashed=suboptimal)



0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Time (Hr)

F
ac

to
r

Standard Deviation Factor Between Optimal and Suboptimal Solution


