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Abstract
In this paper, a new motion-based algorithm for GPS integer ambiguity resolution is derived. The

algorithm represents the GPS sightline vectors in the body frame as the sum of two vectors, one
depending on the phase measurements and the other on the unknown integers. The vector containing tl
integer phases is found using a procedure developed to solve for magnetometer biases. In addition to
batch solution, this paper also provides a sequential estimate, so that a suitable stopping condition can k
found during the vehicle motion. The new algorithm has several advantages: it does not require an a:
priori estimate of the vehicle’s attitude; it provides an inherent integrity check using a covariance-type
expression; and it can sequentially estimate the ambiguities during the vehicle motion. Its only
disadvantage is that it requires at least three non-coplanar baselihesperformance of the new

algorithm is tested on a dynamic hardware simulator.
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Introduction

The use of phase difference measurements from Global Positioning System (GPS) receivers provide:
a novel approach for three-axis attitude determination and/or estimation. These measurements hav
been successfully used to determine the attitude of air-basmte-baset® and sea-basédehicles.
Since phase differences are used, the correct number of integer wavelengths between a given pair
antennas must be found. The integer ambiguities can be determined using either “instantaneous’
(motionless) or “dynamic” (motion-based) techniques. The ambiguities essentially act as integer biases
to the phase difference measurements. Once the integer ambiguities are resolved, then the attitud

determination problem can be solved.

Instantaneous methods find a solution that minimizes the error residual at a specific time by
searching through an exhaustive list of all possible integers and rejecting candidate solutions when the
residual becomes too lareRefinements can be made to the solution by restricting the search space
with knowledge of a-priori information, such as the maximum tilt the baseline should encounter.
Instantaneous methods generally rely on solving a set of Diophantine eqfiafitiesappeal of these
methods is that they provide an “instantaneous” attitude solution, limited only by computation time, and
are well suited to short baselines. However, the minimum residual does not guarantee a correct solutiol
in the presence of noiSeln fact, it is possible that instantaneous methods can report a wrong solution as
valid. This lack of integrity can cause significant problems if the sensor output is used to control a high
bandwidth actuator, such as gas jets on a spacecraft. Another consideration is that instantaneou
methods sometime require that the antenna array must be within a defined angle (typically 30 degrees) o
a reference attitude, which is often true for ground-based applications, but is less likely for space-basec
applications. All of the aforementioned limitations imply that instantaneous methods, while attractive

because of their fast solutions, are not totally acceptable for general purpose applications.

Dynamic techniques for resolving integer ambiguities involve collecting data for a given period of
time and performing a batch solution, in which the integer terms remain constant over the collection
period. These techniques rely on the fact that a certain amount of motion has occurred during the dat:
collection, either from vehicle body rotation or GPS line of sight motion. Their main disadvantage,
compared to instantaneous approaches, is that it takes time for the motion to occur, which may be on th
order of several minutes. Another consideration is that a potentially significant amount of memory is

required for the storage of the batch data collection. But, motion-based techniques also have significan



advantages over instantaneous methods. Most importantly, motion-based techniques are inherently hig
integrity methods because there are numerous checks that can be implemented into the solution before
is accepted. These include using statistical checks applied to error residuals, matrix condition number
checks, and using the closeness of the computed floating-point “integers” to actual integers as a check
The probability of an erroneous solution being reported as valid can be made as small as desired b
appropriately setting the thresholds on these integrity checks. For these reasons, motion-basec

techniques have been more widely used for on-board applications.

Traditional motion-based techniques of integer ambiguity resolution rely on the fact that either GPS
line of sight motion or vehicle motion dominates the changes in differential carrier phase measurements.
Coher! developed an algorithm, known as “quasi-static” integer resolution, that can be used when the
GPS line of sight motion and the vehicle rotation both account approximately evenly for the differential
carrier phase measurement changes. This algorithm can be adapted to almost any vehicle motion, slo
or fast, simply by varying the sample rate and the data collection time. The quasi-static method solves ¢
collection of differential phase measurements for a single attitude estimate and then considers
perturbations to the initial estimate at each measurement epoch to produce a time varying batch solutiot
to the data. Although this is a widely used algorithm, there are certain disadvantages. First, an a-priori
attitude estimate must be given. Second, the algorithm is an iterative batch estimator that may produce
erroneous estimates, depending on the accuracy of the a-priori attitude estimate. Finally, if a large
number of samples in the data collection are required to observe the motion, large-order matrix
inversions may be required. Another method (Ref. 10) performs a minimization on three Euler-angle
attitude parameters independent of each other, followed by determining the integers. This approach ha
been shown to provide better convergence than Cohen’s method and works well for non-coplanar
baselines; however, singular conditions can exist at various attitude rotations and a significant amount o

vehicle motion may be necessary for a solution.

In this paper, a new motion-based algorithm is derived. The main advantages of the new algorithm
over the prior methods include: (i) it resolves the integer ambiguities without any a-priori attitude
knowledge, (ii) it requires less computational effort, since large matrix inverses are not needed, and (iii)
it is non-iterative. The only disadvantage of the new algorithm is that it requires at least three non-
coplanar baselines. The algorithm is first shown as a batch solution, and then shown as a sequentic

solution. A covariance expression is also derived which can be used to bound the integer solution sc



that a sufficient integrity check for convergence can be developed. This is extremely useful in the
sequential formulation, since the solution can be found as the motion occurs, rather than taking a batct
solution at a specific data collection interval. For these reasons, the new algorithm provides an attractive

method for real-time ambiguity resolution.

This paper is organized as follows. First, the concept of the GPS phase difference measurement i
introduced. Next, the new motion-based algorithm is derived. The representation of the GPS sightline
vector in the body frame is reviewed; and the batch solution used to resolve the integer ambiguities is
derived, followed by the sequential solution. Finally, the new algorithm is validated by using an actual
GPS receiver with a hybrid dynamic simulator to simulate the vehicle motions of a low-altitude Earth-

orbiting spacecratft.

GPS Sensor Model
In this section, a brief background of the GPS phase difference measurement is shown. The mair
measurement used for attitude determination is the phase difference of the GPS signal received from tw
antennas separated by a baseline. The wavefront angle and wavelength are used to develop a phe

difference, as shown in Figure 1. The phase difference measurement is obtained by
b cosf= A(Ap—n) (1)

wherely is the baseline length (in cmy, is the angle between the baseline and the line of sight to the
GPS spacecrafty is the integer part of the phase difference between two antefpas,the fractional

phase difference (in cycles), andl is the wavelength (in cm) of the GPS signal. The two GPS
frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this writing, non-military

applications generally use the L1 frequency. The measured fractional phase difference can be expresse

by
A¢ = QT As+ n (2)

wherese R® is the normalized line of sight vector to the GPS spacecraft in a reference @rarﬁé,is

the baseline vector (in wavelengths), which is the relative position vector from one antenna to another,

and Ae R¥>3 is the attitude matrix, an orthogonal matrix with determinant 1 ('AI.A: I3x3)

representing the transformation between the two frames. The measurement model is given by



Agj =bl As;+ 1y + (3)

where Aiij denotes the phase difference measurement foi"ttseline and™ sightline, andw;
represents a zero-mean Gaussian measurement error with standard deaiqtiowhich IS
0.5cm/A = 0026 wavelengths for typical phase nofse.
Integer Ambiguity Resolution
In this section a new attitude-independent algorithm to resolve the integer ambiguities is presented.

The problem is first converted into a form similar to the magnetometer-bias probfen® batch

solution for this problem is shown, followed by a sequential approach.

The new algorithm begins by representing jtiesightline vector in the body frameA_sj, as the
sum of two components. The first compon@]t is a function of the measured fractional phase
measurements, and the secongql depends on the unknown integer phase differences. This
representation is accomplished by minimizing the following loss furfétion

1% L 2
As ZEZ? Agi -7 -H A_§) for F12..., N (4)
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where M is the number of baselines aml is the number of available sightlines. If at least three non-

coplanar baselines exist, the minimization of Equation (4) is straightforward and leads to

Asj=5 -6 (5a)
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Since the measurements are not perfect, Equation (5a) is replaced by the effective measurement model



§j= A+ +¢; (6)

where C| is a constant bias since the baselines are assumed constaat, sna zero-mean Gaussian

process with covarianch = E{l. This model is used for the actual attitude determinafiorich we
will not consider further in this paper.
The next step is to use an attitude-independent method to find the phase-biasx_:Jvefotoeach

sightline, which gives all the sightlines in both the body frame and the reference frame. The explicit
integer phases are not needed for this solution, but it is important to check that they are close to intege
values, as mentioned in the Introduction. In the general case, the explicit integer phases can be foun
from the attitude solution. The three-baseline cade=(3) is simpler, for in this case Equation (5c) can

be inverted to give
nj =b' ¢ (7)
With more than three baselines, however, Equation (5¢) does not have a unique soILgtiors&)the

M integer phases for sightling cannot be found fronc_tj alone. We will consider the three-baseline

case, which is the most common in practice. If more baselines are available, we are always free to sele
a three-baseline subset. Then, after the integer phases have been determined, a refined attitude estim;
can be computed using all baselines (i.e., three baselines are sufficient to determine an attitude, whicl

may then be used to resolve the integers corresponding to the other baselines).

To eliminate the dependence on the attitude, the orthogonaktyiod Equation (6) are used to give
) 2
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Next, following Alonso and Shuster, the following effective measurement and noise are’defined

(8)
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Then, the effective measurement model is



R 2
2j=25" G ‘H—? H Ty (10)

wherev; is approximately Gaussian for smgl} with mean and variance given by

pj=E{vj}=-tracd R } (11)

and

2 _f.2 2_ 4% T (- 2
of =E{f}-uf=4(3-9) R(3-g)-4j 12)
respectively. Equations (9)-(12) define an attitude-independent algorithm because they do not contair
the attitude matriA.

The negative-log-likelihood function for the bias is given by

L 2
1 . 2 2

J(_cj):_Z{z—k[zj(k)Z_sj( I<)_9+H_?H —uj( I}} +log o ( B{+I0927r} (13)
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where L is the total number of measurement epochs, and the syimtdehotes the variable at timg.

The maximum-likelihood estimate fogj, denoted byg?, minimizes the negative-log-likelihood

function, and satisfies

=0 (14)

The minimization of Equation (13) is not straightforward since the likelihood function is quartic in

Cj- A number of algorithms have been proposed for estimating the bias (see Ref. 12 for a survey). The

simplest solution is obtained by scoring, which involves a Newton-Raphson iterative approach. Another
approach avoids the minimization of a quartic loss function by using a “centered” estimate. A
statistically correct centered estimate is also derived in Ref. 12. Furthermore, Alonso and Shuster show

a complete solution of the statistically correct centered estimate that determines the exact maximurr

likelihood estimateg*j. This involves using the statistically correct centered estimate as an initial

estimate, and iterating on a correction term using a Gauss-Newton method. Although this extension tc



the statistically correct centered estimate can provide some improvements, this part is not deemec

necessary for the GPS problem since the estimated quant'rty fierrounded to the nearest integer.

Batch Solution

In this section the statistically correct centered estimate algorithm (see Ref. 12 for details) and its
application to the integer ambiguity problem are shown. First, the following weighted averages are
defined

L L
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Next, the following variables are defined
Zi(K=7(K-7. 5( k=2g ks ¥ )k jb )Ry o ( )Ry ( )k (17)

The statistically correct centered estimate now minimizes the following loss function

L
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The ambiguity for thé™ baseline ang™ sightline can be resolved by rounding the following to the

nearest integer

nj = ¢ (21)

The integer error covariance, denoted(my, can be shown to be given by

=b' R R (22)

Equation (22) can be used to develop an integrity check for the algorithm, using standard results on

hypothesis testinyf: For example, the procedure of rounding Equation (21) to the nearest integer can be

shown to have only a 0.0013 probability of selecting the wrong integer ﬁ(y‘Q_p is less than 1/2.

Sequential Formulation

This section expands upon the batch solution so that a sequential estimate of the integers can b
found. The main advantage of a sequential formulation is that the convergence (integrity) check can be
made on-the-fly (i.e., in real-time). The covariance in Equation (20) to be expandedlie-théme

point, so that

1 ~T n 1 _ +1S +
k:10' (k _Sj(k) O'?(L+1)4_](L 1)§ (L ]) (23)
_pr 1( L)+m4§j(L+1)_§jT( L+ 1)
J

From the matrix inversion lemntathe following sequential formulation for the covariance is developed
Pj(k+1)= Kj(k) Fj)(k) (24)
where

Kﬂkﬁsh—ﬂﬂqg(k+n[ (k) B K5 KD+ Lok kl}fa ) (25)

In order to derive sequential formulas for the quantities in Equation (15), first consider the following

identity



L L
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1 1,1 0)
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The estimated bias in Equation (19) can also be found in a similar manner, so that

¢! (k+2) = K; (K € (R+—5——[7 (k+)—Fj (ke 9] 2 B( ke 35 ( k- 3 (31)
oj(k+1)

Since the baselines are constant, Equations (21) and (22) can be used directly to determine the sequent

integer value and error covariance, given by

m; (k) =1 (K (32a)
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Q(K)=b"R(Kb (32b)

The complete solution proceeds as follows. First, use Equations (5b) and (5d) to represent the
sightline vectors in the body frame. Then, perform an initial batch solution using Equations (15)-(20) in
order to initialize the sequential routine (an accurate initial estimate is not required as will be seen in the
results section). Then, perform a sequential estimate for the integers using Equations (24), (25), anc

(29)-(32). Finally, continue until the covariance in Equation (32b) is below a pre-specified value.

There are many advantages of the new algorithm. First, the algorithm is fully autonomous (i.e., it
requires no a-priori information such as an a-priori attitude guess). Second, the largest matrix inverse is
of a 3x 3 matrix, which makes the algorithm computationally efficient and stable. Third, it is non-
iterative, which makes it suitable for a sequential formulation. This has a significant advantage since the
convergence can be checked during the actual motion in the vehicle. Finally, the integers for other
sightlines can be easily resolved by calling the same subroutine. Therefore, the algorithm can easily be
implemented using all available sightlines, and attitude determination can begin once the integers
corresponding to two sightlines have been resolved. For these reasons, the new algorithm provides a

attractive approach to resolve the integers.

Hardware Simulation and Results
A hardware simulation of a typical spacecraft attitude determination application was undertaken to
demonstrate the performance of the new algorithm. For this simulation, a Northern Telecom 40 channel,
4 RF output STR 2760 unit was used to generate the GPS signals that would be received at a use
specified location and velocity. The signals are then provided directly (i.e., they are not actually
radiated) to a GPS receiver that has been equipped with software tracking algorithms that allow it

operate in space (see Figure 2).

The receiver that was used was a Trimble TANS Vector; which is a 6 channel, 4 RF input
multiplexing receiver that performs 3-axis attitude determination using GPS carrier phase and line of
sight measurements. This receiver software was modified at Stanford University and NASA-Goddard to
allow it to operate in space. This receiver model has been flown and operated successfully on severe
spacecraft, including: REX-Il, OAST-Flyer, GANE, Orbcomm, Microlab, and others.

The simulated motion profile was for an actual spacecraft, the Small Satellite Technology Initiative

(SSTI) Lewis satellite, which carried an experiment to assess the performance of GPS attitude

11



determination on-orbit. Although the spacecraft was lost due to a malfunction not related to the GPS
experiment shortly after launch, this motion profile is nonetheless very representative of the types of
attitude determination applications. The orbit parameters and pointing profile used for the simulation

are given in Table 1.

Table 1 SSTI Lewis Orbit parameters

Semimajor axis (a) 6901.137 km
Inclination (i) 97.45 deg

Right Ascension of Ascending Node (RAAN) -157.1 deg
Eccentricity (e) 0.0001

Pointing profile Earth pointed
Launch date August 22, 1997

The simulated SSTI Lewis spacecraft has four GPS antennas that form three baselines. The antenr
separation distances are 0.61 m, 1.12 m, and 1.07 m, respectively. One antenna (in baseline 3) is locate
0.23 m out of plane (below) the other three antennas. On the spacecraft, the antennas are mounted «
pedestals with ground planes to minimize signal reflections and multipath. For the simulation, multipath
errors are introduced using a simple Markov-process with time constant of 5 minutes and standard

deviation of 0.026 wavelength.The baseline vectors in wavelengths are given by

2.75 0.00 ~393
by=| 164 || b,=|628| by=| 393 (33)
~012 ~017 ~123

Line biases are first determined before the new algorithm is tested to resolve the integer ambiguities.
The GPS raw measurements are processed at 1 Hz over a forty minute simulation. During the simulate
run, a minimum of three visible GPS satellites are in sight at all times. However, resolution of the

ambiguous integers for the phase measurements from any specific GPS satellite requires that it remain i
view continuously until the sequential algorithm converges. In practice, all available sightlines should

be processed, since attitude determination requires the integers to be resolved for two GPS satellite
simultaneously. The simulation contains a number of eight minute spans when sightlines to two specific

GPS satellites are continuously available for the ambiguity resolution algorithm.

As mentioned previously, the first step in the algorithm involves using the baselines and phase

difference measurements to convert the sightline vector into the body-frame, using Equations (5b) and

12



(5d). Then, a small batch run is used to initialize the sequential routine. For this case, 1 minute of date
was used to perform the initialization (simulation results indicate that convergence is possible using only
10 seconds of data). Again, only two sightlines are required to determine the attitude. Computed
solutions for the first sightline are shown in Figure 3 (actual integer values are found by rounding the

computed values to the nearest integer). For this case, the integers have been resolved within 2 minute

A plot of the 3 /Qj values is shown in Figure 4 for the first sightline (a suitable integrity check is given

when 3 /Qj is below 1/2). Clearly, the integrity check shows that the ambiguities are resolved within 5

minutes. Note, that this is a sufficiency test (i.e., the integers may be resolved well before 5 minutes,
which is seen in this case). Computed solutions for the second sightline are shown in Figure 5. For this
case, all of the ambiguities have been resolved within 5 minutes. The sharp jump just after 4 minutes is
due to a rapid change in the sequential variance in Equation (12). This jump is also present in Figure 3

but is not as pronounced as in Figure 5 beC@l]-leaS converged before this time. A plot of integrity

check for the second sightline is shown in Figure 6. The integrity check shows that the ambiguities are
resolved within 7 minutes. This hardware simulation of a spacecraft clearly demonstrates that the new
algorithm presented in this paper provides an accurate method to resolve the integer ambiguities with

even slight vehicle motion.

Conclusions
In this paper, a new algorithm was developed for GPS integer ambiguity resolution. The new

algorithm has several advantages over previously existing algorithms. First, the algorithm is attitude
independent so that no a-priori attitude estimate (or assumed vehicle motion) is required. Second, the
algorithm is sequential so that it may be implemented in real-time. Also, a suitable integrity check can
be used to determine when the determined values have converged to the correct values. Finally, th
algorithm is computationally efficient since only ax 3 n3atrix inverse is required, and the same

subroutine can be used on different sightlines. The only disadvantage of the new algorithm is that it
requires at least three non-coplanar baselines. The algorithm was tested using a GPS hardware simulat
to simulate the motions of a typical low-altitude Earth-orbiting spacecraft. Results indicated that the

new algorithm provides a viable and attractive means to effectively resolve the integer ambiguities.
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Figure 2 Hardware Simulation Block Diagram
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