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Abstract

In this paper, a new algorithm for GPS integer
ambiguity resolution is shown. The algorithm first
incorporates an instantaneous (static) integer search to
significantly reduce the search space using a geometric
inequality. Then a batch-type loss function is used to
check the remaining integers in order to determine the
optimal integer. This batch function represents the
GPS sightline vectors in the body frame as the sum of
two vectors, one depending on the phase measurements
and the other on the unknown integers. The new
algorithm has several advantages: it does not require an
a-priori estimate of the vehicle’s attitude; it provides an
inherent integrity check using a covariance-type
expression; and it can resolve the integers even when
coplanar baselines exist. The performance of the new
algorithm is tested on a dynamic hardware simulator.

Introduction

The use of phase difference measurements from
Global Positioning System (GPS) receivers provides a
novel approach for three-axis attitude determination
and/or estimation. These measurements have been
successfully used to determine the attitude of air-
based,’ space-based,z'3 and sea-based* vehicles. Since
phase differences are used, the correct number of
integer wavelengths between a given pair of antennas
must be found. The integer ambiguities can be
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determined using either “instantaneous” (motionless) or
“dynamic” (motion-based) techniques. The ambiguities
essentially act as integer biases to the phase difference
measurements. Once the integer ambiguities are
resolved, then the attitude determination problem can
be solved.’

Instantaneous methods find a solution that
minimizes the error residual at a specific time by
searching through an exhaustive list of all possible
integers and rejecting candidate solutions when the
residual becomes too large.® Refinements can be made
to the solution by restricting the search space with
knowledge of a-priori information, such as the
maximum tilt the baseline should encounter.’
Instantaneous methods generally rely on solving a set
of Diophantine equations.® The appeal of these
methods is that they provide an “instantaneous” attitude
solution, limited only by computation time, and are
well suited to short baselines. However, the minimum
residual does not guarantee a correct solution in the
presence of noise.” In fact, it is possible that
instantaneous methods can report a wrong solution as
valid. This lack of integrity can cause significant
problems if the sensor output is used to control a high
bandwidth actuator, such as gas jets on a spacecraft.
Another consideration is that instantaneous methods
sometime require that the antenna array must be within
a defined angle (typically 30 degrees) of a reference

attitude, which is often true for ground-based
applications, but is less likely for space-based
applications. All of the aforementioned limitations

imply that instantaneous methods, while attractive
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because of their fast solutions, are not totally acceptable
for general purpose applications.

Dynamic techniques for resolving integer
ambiguities involve collecting data for a given period
of time and performing a batch solution, in which the
integer terms remain constant over the collection
period. These techniques rely on the fact that a certain
amount of motion has occurred during the data
collection, either from vehicle body rotation or GPS
line of sight motion. Their main disadvantage,
compared to instantaneous approaches, is that it takes
time for the motion to occur, which may be on the order
of several minutes. Another consideration is that these
techniques may require large matrix inversions, which
can cause numerical errors. But, motion-based
techniques also have significant advantages over
instantaneous methods. Most importantly, motion-
based techniques are inherently high integrity methods
because there are numerous checks that can be
implemented into the solution before it is accepted.
These include using statistical checks applied to error
residuals, matrix condition number checks, and using
the closeness of the computed floating-point “integers”
to actual integers as a check. The probability of an
erroneous solution being reported as valid can be made
as small as desired by appropriately setting the
thresholds on these integrity checks. For these reasons,
motion-based techniques are considered to be more
robust for on-board applications.

Traditional motion-based techniques of integer
ambiguity resolution rely on the fact that either GPS
line of sight motion or vehicle motion dominates the
changes in differential carrier phase measurements.
Cohen’ developed an algorithm, known as “quasi-
static” integer resolution, that can be used when the
GPS line of sight motion and the vehicle rotation both
account approximately evenly for the differential
carrier phase measurement changes. This algorithm
can be adapted to almost any vehicle motion, slow or
fast, simply by varying the sample rate and the data
collection time. The quasi-static method solves a
collection of differential phase measurements for a
single attitude estimate and then considers perturbations
to the initial estimate at each measurement epoch to
produce a time varying batch solution to the data.
Although this is a widely used algorithm, there are
certain disadvantages.  First, an a-priori attitude
estimate must be given. Second, the algorithm is an
iterative batch estimator that may produce erroncous
estimates, depending on the accuracy of the a-priori
attitude estimate. Finally, if a large number of samples
in the data collection are required to observe the
motion, large-order matrix inversions may be required.
Another method (Ref. 10) performs a minimization on
three Euler-angle attitude parameters independent of
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each other, followed by determining the integers. This
approach has been shown to provide better
convergence than Cohen’s method and works well for
non-coplanar baselines; however, singular conditions
can exist at various attitude rotations and a significant
amount of vehicle motion may be necessary for a
solution.

A new motion-based algorithm has been recently
derived (Ref. 11), which has been shown to have
significant advantages over prior methods, including:
(i) it resolves the integer ambiguities without any a-
priori attitude knowledge, (ii) it requires less
computational effort, since large matrix inverses are not
needed, and (iii) it is non-iterative. A disadvantage of
the new algorithm is that it requires at least three non-
coplanar baselines. The algorithm was first shown as a
batch solution, and then shown as a sequential solution.
A covariance expression has also been derived which
can be used to bound the integer solution so that a
sufficient integrity check for convergence can be
developed. This is extremely useful in the sequential
formulation, since the solution can be found as the
motion occurs, rather than taking a batch solution at a
specific data collection interval. However, a significant
amount of vehicle motion is still required in order for
the integers to be observable. In this paper, the
aforementioned approach is expanded upon to use
integer searches. Also, the case of three coplaner
baselines is addressed.

This paper is organized as follows. First, the
concept of the GPS phase difference measurement is
introduced. Next, a geometric inequality is introduced
that will be used to significantly reduce the integer
search space. Then, the batch-type loss function used
to resolve the remaining integers is shown, along with a
covariance integrity check. Finally, the new algorithm
is validated by using an actual GPS receiver with a
hybrid dynamic simulator to simulate the vehicle
motions of a low-altitude Earth-orbiting spacecraft.

GPS Sensor Model

In this section, a brief background of the GPS
phase difference measurement is shown. The main
measurement used for attitude determination is the
phase difference of the GPS signal received from two
antennas separated by a baseline. The wavefront angle
and wavelength are used to develop a phase difference,
as shown in Figure 1. The phase difference
measurement is obtained by’

by cos@ = A(Ag—n)

)

where b; is the baseline length (in cm), @ is the angle
between the baseline and the line of sight to the GPS

American Institute of Aeronautics and Astronautics



spacecraft, n is the integer part of the phase difference
between two antennae, A¢ is the fractional phase

difference (in cycles), and A is the wavelength (in cm)
of the GPS signal. The two GPS frequency carriers are
L1 at 1575.42 MHz and L2 at 1227.6 MHz. As of this
writing, non-military applications generally use the L1
frequency. The measured fractional phase difference
can be expressed by

Ap=bTds+n ()

where s eR? is the normalized line of sight vector to
the GPS spacecraft in an external reference frame,
be R? is the baseline vector (in wavelengths), which is
the relative position vector from one antenna to another
expressed in the vehicle body frame, and 4 eR¥ is
the attitude matrix, an orthogonal matrix with
determinant 1 (i.e., AT 4= I5,3) representing the

transformation between the two frames. The
measurement model is given by
-~ _ 3T

where Aaij denotes the phase difference measurement
for the i baseline and ;™ sightline, and wy; represents a

zero-mean Gaussian measurement error with standard
deviation @;; which is 0.5cm/4=0.026 wavelengths

for typical phase noise.’

To GPS

Fig. 1 GPS Wavelength and Wavefront Angle

Integer Ambiguity Resolution

In this section a new attitude-independent
algorithm to resolve the integer ambiguities is
presented using static searches. This involves using a
series of tests that the possible integers must first pass,
which is used to significantly reduce the search space.

3

Then, an optimal batch-type loss function is minimized
to determine the optimal integers.

Static algorithms have an advantage in that they
provide an instantaneous solution of the integers.
However, they are prone to noise errors, which can
induce incorrect solutions. In this paper an integer
search is performed to maximize the probability that a
unique solution is the correct solution, while at the
same time reducing the search space by using normality
constraints as well as geometric constraints. First, it
assumed that either three noncoplanar baselines or three
noncoplanar  sightlines are available (if three
noncoplanar baselines exist then they should be used).
The first step involves reducing the integer search
space by using a subset of only two baselines and two
sightlines. With this subset, a significant reduction in
the search space is possible (especially for long
baselines). For example, with three baselines
(assuming x possible integers associated with each
baseline) the search space required to determine the
integers is on the order of K‘3; however, with the
reduced subset the search space is now on the order of
3x2. For this reduced subset, it can be shown from
geometry that the following inequality must be true
(using baselines b, and b,)

[0 ool > (b 52" + o[ (a5 - )
2(Agy; —m; )(Ada; —na; )by -by) (4)

ol (882, ~ns;)

Note, the same inequality can be applied using
sightlines s, and s, :

[ > o (51 -)” + (880 =)’
-2 (A%l — 1 )(A%z — 1) )(51 '55)
~ 2
+(A¢i2 - ”i2)
If the integers have been properly resolved then it can

be shown that Equation (4) reduces down to (in the
noise free case)

(&)

[(45))- (&, xéz)]z >0 ©)

This means that As i b, and b, must not lie in the

same plane. We need this condition to be able to
extract attitude information outside of the b;,b, plane.

The triple scalar product, (Agj)-(glxgz), is the

signed volume of the parallelepiped spanned by the
vectors As I by, b,; where the sign is positive, if and
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only if, the vectors form a right-handed system. This is
shown geometrically in Figure 2. The height of the

parallelepiped is given HAgjucos 4(@1 xgz,Agj), and
the base area is given by ”l_)l X Q2||. Note, Equation (6)
is almost always satisfied if the integers pass the test in
Equation (4). Equation (4) or (5) can be used to
significantly reduce the search space, since only two

baselines (or two sightlines) are considered at a time, as
opposed to considering all three simultaneously.

Fig. 2 Parallelepiped Formed by Three Vectors

The next step involves converting the sightlines
into the body frame or converting the baselines into the
reference frame. For the former the algorithm begins
by representing the jth sightline vector in the body
frame, As - as the sum of two components. The first

component § i is a function of the measured fractional

phase measurements, and the second ¢ ; depends on the

unknown integer phase differences. This representation
is accomplished by minimizing the following loss
function

s 13 Lo{y -y
2 12 Yy yoo=i 7=y 7)

i=1 7Y
for j=1,2,...,.N
where M is the number of baselines and N is the
number of available sightlines. If at least three non-
coplanar baselines exist, the minimization of Equation
(7) is straightforward and leads to

A§j=§j—gj (8a)

M
. o 1~
8= B D =5 Adyb, (8b)
i=1 Dij
M
O 1
c;=B; —5 1 b, (8¢)
i=1 @ij
L
Bj= —5bb! (8d)

Since the measurements are not perfect, Equation (8a)
is replaced by the effective measurement model

4

Ej:A§j+£j+§j 9

where ¢ j is a constant bias since the baselines are

assumed constant, and & ; is a zero-mean Gaussian

process with covariance R; = Bj_l. This model is used

for the actual attitude determination,'” which we will

not consider further in this paper.

The next step is to use an attitude-independent
method to find the phase-bias vector ¢ j for each

sightline, which gives all the sightlines in both the body
frame and the reference frame. The explicit integer
phases are not needed for this solution, but it is
important to check that they are close to integer values,
as mentioned in the Introduction. In the general case,
the explicit integer phases can be found from the
attitude solution. The three-baseline case (M =3) is
simpler, for in this case Equation (8c) can be inverted
to give

_ T
nj =b; <

(10)

With more than three baselines, however, Equation (8c)
does not have a unique solution for ¢ j» SO the M

integer phases for sightline s ; cannot be found from ¢ ;

alone. We will consider the three-baseline case, which
is the most common in practice. If more baselines are
available, we are always free to select a three-baseline
subset. Then, after the integer phases have been
determined, a refined attitude estimate can be computed
using all baselines (i.e., three baselines are sufficient to
determine an attitude, which may then be used to
resolve the integers corresponding to the other
baselines).

To eliminate the dependence on the attitude, the
orthogonality of 4 and Equation (9) are used to give

2 2 . 2
Is [ =l =Jk; ¢, -2
12 R 2

=] 28¢5 +[e)|

R 2

‘Q(SJ‘QJ)fb*ijH

Next, following Alonso and Shuster, the following
effective measurement and noise are defined"’

an

(12a)

2
J‘%y%‘%ﬂ (12b)

Then, the effective measurement model is

vy =2(8
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Z]:2

(13)

2
jE) ‘HQJH vy

where v is approximately Gaussian for small & J with

|©>

mean and variance given by

E{ }——trace{ j} (14)
and
o =B} - =43, ‘QJ)TRJ (8 -¢;)-#7 (15)

respectively. Equations (12)-(15) define an attitude-
independent algorithm because they do not contain the
attitude matrix 4.

The negative-log-likelihood function for the bias is
given by

I 1 R
Jey) :5;{%[21(")‘251(")'5/

) (16)
+ng Hz — K (k)} +1log G? (k)+1og2 72'}

where L is the total number of measurement epochs,

and the symbol k£ denotes the variable at time #; . The
maximum-likelihood estimate for ¢ , denoted by c

minimizes the negatlve—log—hkehhood function, and
satisfies

2J(¢;)
=0 (17)
Oc il
<
The minimization of Equation (16) is not

straightforward since the likelihood function is quartic
in ¢ . A number of algorithms have been proposed for

estlmatmg the bias (see Ref. 12 for a survey). The
simplest solution is obtained by scoring, which
involves a Newton-Raphson iterative approach.
Another approach avoids the minimization of a quartic
loss function by using a “centered” estimate. A
statistically correct centered estimate is also derived in
Ref. 13. Furthermore, Alonso and Shuster show a
complete solution of the statistically correct centered
estimate that determines the exact maximum likelihood

estimate g;. This involves using the statistically

correct centered estimate as an initial estimate, and
iterating on a correction term using a Gauss-Newton
method. Although this extension to the statistically
correct centered estimate can provide some
improvements, this part is not deemed necessary for the

5

is

GPS problem since the estimated quantity for n;

rounded to the nearest integer.
In this paper another approach is used. As before,

we consider the case for M =3. Equations (8b) and
(8c) are first re-written as

$,=B/'T; @, (18a)
-1
Cj:Bj Fj—] (lgb)
where
-2 )
ry=logb, @b, ob]  (19)
n;=|ny; (19b)
A<751j
D, =|Ady; (19¢)
Ads;

The loss function in Equation (16) can now be re-
written (neglecting the term independent of n 1.):

)3l )

k=1

‘2

) (20)
—ng (k)”2 + trace{Bj_1 }} +log 03 (k)}

with

0=, ) 571 0, W)
—tracez{Bj_l}

Equation (20) can now be used to directly determine
the integers without pre-computing the sightline vector
in the body frame. Equation (20) clearly indicates that
the loss function involves a scalar check on the norm

; : -1 — 5 _ 14
vector residuals (since B; 'T'; (Qj —gj) =$5;-¢;). " In

practice if n ] is real valued, then a sufficient amount of

vehicle motion must occur in order to determine the
minimum. This was the approach used in Ref. [11].
However, the solution in this paper involves checking
the remaining integers that have passed the inequality
condition in Equation (4). Since the solutions for the
components of n ; are constrained to be integers, then it

is more likely that a unique solution which minimizes
Equation (21) can be determined with minimal vehicle
motion.
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The estimate error covariance can also be
computed in order to insure that the determined integer
is statistically correct. This can be shown to be given
in the limit of infinitely large samples by

L 4 T .
Pf={ZW[9j<k>—nj][9j(k>—aj] } (22)

k:l“i
Equation (22) can be used to develop an integrity check
for the algorithm, using standard results on hypothesis
testing."””  For example, the computed integer can be
shown to have only a 0.0013 probability of selecting
the wrong integer when three times the square root of a
diagonal element of P; is less than 1/2.

The case where 3 coplanar baselines can be
determined by considering 3 non-coplanar sightlines.
A batch solution for this case can be determined using a
similar approach shown in Ref. 11; however, the
statistically correct centered estimate approach is
complex since the sightlines vary with time. Also, this
requires that the same 3 sightlines are available long
enough to determine a solution (which isn’t always
possible). The integer search approach presented here
may alleviate these difficulties. The loss function for
this case is given by

J@,-)=%i{;ﬂ\%‘l<k>Fz~<k>@f<k>—ﬂf>H2

2
oi(k
k=1 i ( ) (23)
2
_“21,"2 +trace{Sl~_1(k)H +10go*,2(k)}
where
0'12 (k) = —trace? {S;l(k)}
(24a)
T.T -3
H@,(0)=n,) T (R)S7 (RT3 (K) (@ (k) -y
L=lois, @3s, o5s]  (4)
ni
n; =\ (24¢)
ni3
Ady
;= Ad (24d)
Adi3
P = @1 88| @i $p8) t @3 5353 (24e)
For this case both I' and S vary with time. The

estimate error covariance for this case is given by
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-1

L
p,-={z%@i(m—m][@xm—mf @

k=191

Once again, this can be used to develop an integrity
check for the algorithm.

There are many advantages of the new algorithm.
First, the algorithm is fully autonomous (i.e., it requires
no a-priori information such as an a-priori attitude
guess). Second, it can be used to determine the integers
when 3 coplanar baselines exist. Third, the required
search space can be significantly reduced using
Equation (4) or (5). Finally, the integers for other
sightlines (or baselines) can be easily resolved by
calling the same subroutine. For these reasons, the new
algorithm provides an attractive approach to resolve the
integers.

Hardware Simulation and Results

A hardware simulation of a typical spacecraft
attitude determination application was undertaken to
demonstrate the performance of the new algorithm. For
this simulation, a Northern Telecom 40 channel, 4 RF
output STR 2760 unit was used to generate the GPS
signals that would be received at a user specified
location and velocity. The signals are then provided
directly (i.e., they are not actually radiated) to a GPS
receiver that has been equipped with software tracking
algorithms that allow it operate in space (see Figure 3
for details).

The receiver that was used was a Trimble TANS
Vector; which is a 6 channel, 4 RF input multiplexing
receiver that performs 3-axis attitude determination
using GPS carrier phase and line of sight
measurements. This receiver software was modified at
Stanford University and NASA-Goddard to allow it to
operate in space. This receiver model has been flown
and operated successfully on several spacecraft,
including: REX-II, OAST-Flyer, GANE, Orbcomm,
Microlab, and others.

The simulated motion profile was for an actual
spacecraft, the Small Satellite Technology Initiative
(SSTI) Lewis satellite, which carried an experiment to
assess the performance of GPS attitude determination
on-orbit. Although the spacecraft was lost due to a
malfunction not related to the GPS experiment shortly
after launch, this motion profile is nonetheless very
representative of the types of attitude determination
applications. The orbit parameters and pointing profile
used for the simulation are given in Table 1.
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Fig. 3 Hardware Simulation Block Diagram

Table 1 SSTI Lewis Orbit parameters

Semimajor axis (a) 6901.137 km
Inclination (i) 97.45 deg
Right Ascension of Ascending Node | -157.1 deg
Eccentricity (e) 0.0001
Pointing profile Earth pointed
Launch date Aug. 22, 1997

Number of Available Satellites
IS
T

2 I I I I I I I
0 5 10 15 20 25 30 35 40

Time (Min)

Fig. 4 Number of Available GPS Spacecraft
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The simulated SSTI Lewis spacecraft has four GPS
antennas that form three baselines. The antenna
separation distances are 0.61 m, 1.12 m, and 1.07 m,
respectively. One antenna (in baseline 3) is located
0.23 m out of plane (below) the other three antennas.
On the spacecraft, the antennas are mounted on
pedestals with ground planes to minimize signal
reflections and multipath. For the simulation, multipath
errors are introduced using a simple Markov-process
with time constant of 5 minutes and standard deviation
of 0.026 wavelengths.'® The baseline vectors in
wavelengths are given by

2.75 0.00 -3.93
by=| 164 || b,=|6281| by=|393| (26)
-0.12 —0.17 -123

Line biases are first determined before the new
algorithm is tested to resolve the integer ambiguities.
The GPS raw measurements are processed at 1 Hz over
a forty minute simulation. A plot of the number of
available GPS spacecraft for the simulated run is shown
in Figure 4. During the simulated run, a minimum of
three visible GPS satellites are in sight at all times.
However, resolution of the ambiguous integers for the
phase measurements from any specific GPS satellite
requires that it remain in view continuously until the
sequential algorithm converges. In practice, all
available sightlines should be processed, since attitude
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determination requires the integers to be resolved for
two GPS satellites simultaneously. The simulation
contains a number of eight minute spans when
sightlines to two specific GPS satellites are
continuously available for the ambiguity resolution
algorithm.

Since the baselines are non-coplanar, Equations (4)
and (20) will used to determine the integers. For the
simulation the following integer ambiguities are

introduced:
-6 5
m=| 1] ny=|-8 27)
3 -2

From the baseline geometry the integers are bounded
from -8 to 8. If a full search is implemented using
Equation (20) solely this would require 8192 searches
(4096 for each sightline). Equation (4) requires a total
of only 1024 searches. The integers at the initial time
that passed the inequality in Equation (4) are shown in
Table 2.

Table 2 Remaining Integers and Associated Costs

Integers Cost
6 1 3 66.2
First Baseline S 1236
373 146.3
-1 8 2 1862.3
5 -8 -2 64.0
7 -6 -3 119.5
Second Baseline 7 -5 -3 136.5
8 -8 -8 209.6
&8 -7 -7 547.4

Table 2 clearly shows how Equation (4) can be
used to dramatically reduce the search space. Only 9
remaining searches need to be used in Equation (20).
Since the computational load to do this search is
extremely low, a search can be implemented in a very
efficient manner, periodically in the background. For
this simulation the cost function in Equation (20) is
summed over time and has been checked every 30
seconds. The stopping condition is given when three
times the square root of every diagonal element of P; is

less than 1/2."" For this case, this occurred in 2 minutes
for each sightline. The associated cost for each integer
set after 2 minutes is also shown in Table 2. Clearly,
the correct integers have been found. This has clear
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advantages over the motion-based technique in Ref.
[11], which required over 6 minutes for the solution to
converge. Also, another simulation using Equations (5)
and (23) has been performed in order to investigate the
performance using 3 non-coplanar sightlines. Results
indicate that this approach give comparable results to
the results shown in Table 2.

Conclusions

In this paper, a new algorithm was developed for
GPS integer ambiguity resolution. The algorithm uses
the best qualities of both instantanecous and motion-
based techniques. It uses an instantaneous approach to
substantially reduce the search space, and then uses a
batch-type loss function to resolve the remaining
possible integers. The new algorithm has several
advantages over previously existing algorithms. First,
the algorithm is attitude independent so that no a-priori
attitude estimate (or assumed vehicle motion) is
required. Second, a suitable integrity check can be
used to determine the correct values. Finally, it can
resolve the integers even when coplanar baselines exist.
The algorithm was tested using a GPS hardware
simulator to simulate the motions of a typical low-
altitude Earth-orbiting spacecraft. Results indicated
that the new algorithm provides a viable and attractive
means to effectively resolve the integer ambiguities.
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