
 
American Institute of Aeronautics and Astronautics 

1

FAST INTEGER AMBIGUITY RESOLUTION 
FOR GPS ATTITUDE DETERMINATION 

E. Glenn Lightsey 
Senior Member AIAA 

Assistant Professor 
The University of Texas 

Department of Aerospace Engineering & Engineering Mechanics 
Austin, TX 78712-1085 

John L. Crassidis 
Senior Member AIAA 

Assistant Professor 
Department of Aerospace Engineering 

Texas A&M University 
College Station, TX 77843-3141 

F. Landis Markley 
Fellow AIAA 

Aerospace Engineer 
GNC Center, Code 570 

NASA-Goddard Space Flight Center 
Greenbelt, MD 20771

 
Abstract.  

In this paper, a new algorithm for GPS integer 
ambiguity resolution is shown.  The algorithm first 
incorporates an instantaneous (static) integer search to 
significantly reduce the search space using a geometric 
inequality.  Then a batch-type loss function is used to 
check the remaining integers in order to determine the 
optimal integer.  This batch function represents the 
GPS sightline vectors in the body frame as the sum of 
two vectors, one depending on the phase measurements 
and the other on the unknown integers.  The new 
algorithm has several advantages: it does not require an 
a-priori estimate of the vehicle’s attitude; it provides an 
inherent integrity check using a covariance-type 
expression; and it can resolve the integers even when 
coplanar baselines exist.  The performance of the new 
algorithm is tested on a dynamic hardware simulator. 

Introduction 
The use of phase difference measurements from 

Global Positioning System (GPS) receivers provides a 
novel approach for three-axis attitude determination 
and/or estimation.  These measurements have been 
successfully used to determine the attitude of air-
based,1 space-based,2-3 and sea-based4 vehicles.  Since 
phase differences are used, the correct number of 
integer wavelengths between a given pair of antennas 
must be found.  The integer ambiguities can be 
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determined using either “instantaneous” (motionless) or 
“dynamic” (motion-based) techniques.  The ambiguities 
essentially act as integer biases to the phase difference 
measurements.  Once the integer ambiguities are 
resolved, then the attitude determination problem can 
be solved.5 

Instantaneous methods find a solution that 
minimizes the error residual at a specific time by 
searching through an exhaustive list of all possible 
integers and rejecting candidate solutions when the 
residual becomes too large.6  Refinements can be made 
to the solution by restricting the search space with 
knowledge of a-priori information, such as the 
maximum tilt the baseline should encounter.7  
Instantaneous methods generally rely on solving a set 
of Diophantine equations.8  The appeal of these 
methods is that they provide an “instantaneous” attitude 
solution, limited only by computation time, and are 
well suited to short baselines.  However, the minimum 
residual does not guarantee a correct solution in the 
presence of noise.9  In fact, it is possible that 
instantaneous methods can report a wrong solution as 
valid.  This lack of integrity can cause significant 
problems if the sensor output is used to control a high 
bandwidth actuator, such as gas jets on a spacecraft.  
Another consideration is that instantaneous methods 
sometime require that the antenna array must be within 
a defined angle (typically 30 degrees) of a reference 
attitude, which is often true for ground-based 
applications, but is less likely for space-based 
applications.  All of the aforementioned limitations 
imply that instantaneous methods, while attractive 
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because of their fast solutions, are not totally acceptable 
for general purpose applications. 

Dynamic techniques for resolving integer 
ambiguities involve collecting data for a given period 
of time and performing a batch solution, in which the 
integer terms remain constant over the collection 
period.  These techniques rely on the fact that a certain 
amount of motion has occurred during the data 
collection, either from vehicle body rotation or GPS 
line of sight motion.  Their main disadvantage, 
compared to instantaneous approaches, is that it takes 
time for the motion to occur, which may be on the order 
of several minutes.  Another consideration is that these 
techniques may require large matrix inversions, which 
can cause numerical errors.  But, motion-based 
techniques also have significant advantages over 
instantaneous methods.  Most importantly, motion-
based techniques are inherently high integrity methods 
because there are numerous checks that can be 
implemented into the solution before it is accepted.  
These include using statistical checks applied to error 
residuals, matrix condition number checks, and using 
the closeness of the computed floating-point “integers” 
to actual integers as a check.  The probability of an 
erroneous solution being reported as valid can be made 
as small as desired by appropriately setting the 
thresholds on these integrity checks.  For these reasons, 
motion-based techniques are considered to be more 
robust for on-board applications.   

Traditional motion-based techniques of integer 
ambiguity resolution rely on the fact that either GPS 
line of sight motion or vehicle motion dominates the 
changes in differential carrier phase measurements.  
Cohen9 developed an algorithm, known as “quasi-
static” integer resolution, that can be used when the 
GPS line of sight motion and the vehicle rotation both 
account approximately evenly for the differential 
carrier phase measurement changes.  This algorithm 
can be adapted to almost any vehicle motion, slow or 
fast, simply by varying the sample rate and the data 
collection time.  The quasi-static method solves a 
collection of differential phase measurements for a 
single attitude estimate and then considers perturbations 
to the initial estimate at each measurement epoch to 
produce a time varying batch solution to the data.  
Although this is a widely used algorithm, there are 
certain disadvantages.  First, an a-priori attitude 
estimate must be given.  Second, the algorithm is an 
iterative batch estimator that may produce erroneous 
estimates, depending on the accuracy of the a-priori 
attitude estimate.  Finally, if a large number of samples 
in the data collection are required to observe the 
motion, large-order matrix inversions may be required.  
Another method (Ref. 10) performs a minimization on 
three Euler-angle attitude parameters independent of 

each other, followed by determining the integers.  This 
approach has been shown to provide better 
convergence than Cohen’s method and works well for 
non-coplanar baselines; however, singular conditions 
can exist at various attitude rotations and a significant 
amount of vehicle motion may be necessary for a 
solution. 

A new motion-based algorithm has been recently 
derived (Ref. 11), which has been shown to have 
significant advantages over prior methods, including: 
(i) it resolves the integer ambiguities without any a-
priori attitude knowledge, (ii) it requires less 
computational effort, since large matrix inverses are not 
needed, and (iii) it is non-iterative.  A disadvantage of 
the new algorithm is that it requires at least three non-
coplanar baselines.  The algorithm was first shown as a 
batch solution, and then shown as a sequential solution.  
A covariance expression has also been derived which 
can be used to bound the integer solution so that a 
sufficient integrity check for convergence can be 
developed.  This is extremely useful in the sequential 
formulation, since the solution can be found as the 
motion occurs, rather than taking a batch solution at a 
specific data collection interval.  However, a significant 
amount of vehicle motion is still required in order for 
the integers to be observable.  In this paper, the 
aforementioned approach is expanded upon to use 
integer searches.  Also, the case of three coplaner 
baselines is addressed.   

This paper is organized as follows.  First, the 
concept of the GPS phase difference measurement is 
introduced.  Next, a geometric inequality is introduced 
that will be used to significantly reduce the integer 
search space.  Then, the batch-type loss function used 
to resolve the remaining integers is shown, along with a 
covariance integrity check.  Finally, the new algorithm 
is validated by using an actual GPS receiver with a 
hybrid dynamic simulator to simulate the vehicle 
motions of a low-altitude Earth-orbiting spacecraft. 

GPS Sensor Model 
In this section, a brief background of the GPS 

phase difference measurement is shown.  The main 
measurement used for attitude determination is the 
phase difference of the GPS signal received from two 
antennas separated by a baseline.  The wavefront angle 
and wavelength are used to develop a phase difference, 
as shown in Figure 1.  The phase difference 
measurement is obtained by9 

 b nl cosθ λ φ= −∆b g (1) 

where bl  is the baseline length (in cm), θ  is the angle 
between the baseline and the line of sight to the GPS 
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spacecraft, n  is the integer part of the phase difference 
between two antennae, ∆φ  is the fractional phase 
difference (in cycles), and λ  is the wavelength (in cm) 
of the GPS signal.  The two GPS frequency carriers are 
L1 at 1575.42 MHz and L2 at 1227.6 MHz.  As of this 
writing, non-military applications generally use the L1 
frequency.  The measured fractional phase difference 
can be expressed by 

 ∆φ = +b As nT  (2) 

where s R∈ 3  is the normalized line of sight vector to 
the GPS spacecraft in an external reference frame, 
b R∈ 3  is the baseline vector (in wavelengths), which is 
the relative position vector from one antenna to another 
expressed in the vehicle body frame, and A R∈ ×3 3 is 
the attitude matrix, an orthogonal matrix with 
determinant 1 (i.e., A A IT = ×3 3 ) representing the 
transformation between the two frames.  The 
measurement model is given by 

 ∆
~φ ij i

T
j ij ijb As n w= + +  (3) 

where ∆~φ ij  denotes the phase difference measurement 
for the ith baseline and jth sightline, and wij  represents a 
zero-mean Gaussian measurement error with standard 
deviation ϖ ij  which is 0 5 0 026. .cm λ =  wavelengths 
for typical phase noise.9 

To GPS

θλ

bl  
Fig. 1  GPS Wavelength and Wavefront Angle 

Integer Ambiguity Resolution 
In this section a new attitude-independent 

algorithm to resolve the integer ambiguities is 
presented using static searches.  This involves using a 
series of tests that the possible integers must first pass, 
which is used to significantly reduce the search space.  

Then, an optimal batch-type loss function is minimized 
to determine the optimal integers. 

Static algorithms have an advantage in that they 
provide an instantaneous solution of the integers.  
However, they are prone to noise errors, which can 
induce incorrect solutions.  In this paper an integer 
search is performed to maximize the probability that a 
unique solution is the correct solution, while at the 
same time reducing the search space by using normality 
constraints as well as geometric constraints.  First, it 
assumed that either three noncoplanar baselines or three 
noncoplanar sightlines are available (if three 
noncoplanar baselines exist then they should be used).  
The first step involves reducing the integer search 
space by using a subset of only two baselines and two 
sightlines.  With this subset, a significant reduction in 
the search space is possible (especially for long 
baselines).  For example, with three baselines 
(assuming κ  possible integers associated with each 
baseline) the search space required to determine the 
integers is on the order of κ 3; however, with the 
reduced subset the search space is now on the order of 
3 2κ .  For this reduced subset, it can be shown from 
geometry that the following inequality must be true 
(using baselines b1 and b2 ) 
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Note, the same inequality can be applied using 
sightlines s1 and s2 : 
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 (5) 

If the integers have been properly resolved then it can 
be shown that Equation (4) reduces down to (in the 
noise free case) 

 A s b bjc h c h⋅ × >1 2
2

0  (6) 

This means that As j , b1 and b2  must not lie in the 
same plane.  We need this condition to be able to 
extract attitude information outside of the b1,b2  plane.  
The triple scalar product, As b bjc h c h⋅ ×1 2 , is the 

signed volume of the parallelepiped spanned by the 
vectors As j , b1, b2 ; where the sign is positive, if and 



 
American Institute of Aeronautics and Astronautics 

4

only if, the vectors form a right-handed system.  This is 
shown geometrically in Figure 2.  The height of the 
parallelepiped is given As b b A sj jcos ,∠ ×1 2e j , and 

the base area is given by b b1 2× .   Note, Equation (6) 
is almost always satisfied if the integers pass the test in 
Equation (4).  Equation (4) or (5) can be used to 
significantly reduce the search space, since only two 
baselines (or two sightlines) are considered at a time, as 
opposed to considering all three simultaneously.   

 

 

 

 

 

Fig. 2  Parallelepiped Formed by Three Vectors 

The next step involves converting the sightlines 
into the body frame or converting the baselines into the 
reference frame.  For the former the algorithm begins 
by representing the jth sightline vector in the body 
frame, As j , as the sum of two components.  The first 
component �s j  is a function of the measured fractional 
phase measurements, and the second c j  depends on the 
unknown integer phase differences. This representation 
is accomplished by minimizing the following loss 
function 

 
J As n b As

j N

j
iji

M

ij ij i
T

je j e j= − −

=
=
∑1

2
1

1 2

2
1

2

ϖ
φ∆~

, , ,for …

 (7) 

where M  is the number of baselines and N  is the 
number of available sightlines.  If at least three non-
coplanar baselines exist, the minimization of Equation 
(7) is straightforward and leads to 

 As s cj j j= −�  (8a) 

 � ~s B bj j
iji

M

ij i=
L
N
MM

O
Q
PP

−

=
∑1

2
1

1
ϖ

φ∆  (8b) 

 c B n bj j
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i

M
=
L
N
MM

O
Q
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−

=
∑1

2
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1
ϖ

 (8c) 

 B b bj
iji

M

i i
T=

=
∑ 1

2
1 ϖ

 (8d) 

Since the measurements are not perfect, Equation (8a) 
is replaced by the effective measurement model 

 �s As cj j j j= + + ε  (9) 

where c j  is a constant bias since the baselines are 

assumed constant, and ε j  is a zero-mean Gaussian 

process with covariance R Bj j= −1 .   This model is used 
for the actual attitude determination,12 which we will 
not consider further in this paper. 

The next step is to use an attitude-independent 
method to find the phase-bias vector c j  for each 

sightline, which gives all the sightlines in both the body 
frame and the reference frame.  The explicit integer 
phases are not needed for this solution, but it is 
important to check that they are close to integer values, 
as mentioned in the Introduction.  In the general case, 
the explicit integer phases can be found from the 
attitude solution.  The three-baseline case (M = 3) is 
simpler, for in this case Equation (8c) can be inverted 
to give 

 n b cij i
T

j=  (10) 

With more than three baselines, however, Equation (8c) 
does not have a unique solution for c j , so the M  

integer phases for sightline s j  cannot be found from c j  

alone.  We will consider the three-baseline case, which 
is the most common in practice.  If more baselines are 
available, we are always free to select a three-baseline 
subset.  Then, after the integer phases have been 
determined, a refined attitude estimate can be computed 
using all baselines (i.e., three baselines are sufficient to 
determine an attitude, which may then be used to 
resolve the integers corresponding to the other 
baselines). 

To eliminate the dependence on the attitude, the 
orthogonality of A and Equation (9) are used to give  
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Next, following Alonso and Shuster, the following 
effective measurement and noise are defined13 

 z s sj j j≡ −�
2 2

 (12a) 

 v s cj j j j j≡ − ⋅ −2
2

�e j ε ε  (12b) 

Then, the effective measurement model is  

b b1 2×  

As j  

b1 
b2  
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 z s c c vj j j j j= ⋅ − +2
2

�  (13) 

where v j  is approximately Gaussian for small ε j  with 

mean and variance given by 

 µ j j jE v R≡ = −n s n strace  (14) 

and 

  σ µ µj j j j j
T

j j j jE v s c R s c2 2 2 24≡ − = − − −o t e j e j� �  (15) 

respectively.  Equations (12)-(15) define an attitude-
independent algorithm because they do not contain the 
attitude matrix A. 

The negative-log-likelihood function for the bias is 
given by 

 

J c
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 (16) 

where L  is the total number of measurement epochs, 
and the symbol k  denotes the variable at time tk .  The 
maximum-likelihood estimate for c j , denoted by c j

* , 
minimizes the negative-log-likelihood function, and 
satisfies 

 
∂

∂
=

∗

J c

c
j

j
c j

e j
0 (17) 

The minimization of Equation (16) is not 
straightforward since the likelihood function is quartic 
in c j .  A number of algorithms have been proposed for 
estimating the bias (see Ref. 12 for a survey).  The 
simplest solution is obtained by scoring, which 
involves a Newton-Raphson iterative approach.  
Another approach avoids the minimization of a quartic 
loss function by using a “centered” estimate.  A 
statistically correct centered estimate is also derived in 
Ref. 13.  Furthermore, Alonso and Shuster show a 
complete solution of the statistically correct centered 
estimate that determines the exact maximum likelihood 
estimate c j

* .  This involves using the statistically 
correct centered estimate as an initial estimate, and 
iterating on a correction term using a Gauss-Newton 
method.  Although this extension to the statistically 
correct centered estimate can provide some 
improvements, this part is not deemed necessary for the 

GPS problem since the estimated quantity for nij  is 
rounded to the nearest integer. 

In this paper another approach is used.  As before, 
we consider the case for M = 3.  Equations (8b) and 
(8c) are first re-written as 

 �s Bj j j j= −1 Γ Φ  (18a) 

 c B nj j j j= −1 Γ  (18b) 

where 

 Γ j j j jb b b≡ − − −ϖ ϖ ϖ1
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The loss function in Equation (16) can now be re-
written (neglecting the term independent of n j ): 
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with 

 
σ j j j
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Equation (20) can now be used to directly determine 
the integers without pre-computing the sightline vector 
in the body frame.  Equation (20) clearly indicates that 
the loss function involves a scalar check on the norm 
vector residuals (since B n s cj j j j j j

− − = −1Γ Φe j � ).14  In 

practice if n j  is real valued, then a sufficient amount of 
vehicle motion must occur in order to determine the 
minimum.  This was the approach used in Ref. [11].  
However, the solution in this paper involves checking 
the remaining integers that have passed the inequality 
condition in Equation (4).  Since the solutions for the 
components of n j  are constrained to be integers, then it 
is more likely that a unique solution which minimizes 
Equation (21) can be determined with minimal vehicle 
motion. 
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The estimate error covariance can also be 
computed in order to insure that the determined integer 
is statistically correct.  This can be shown to be given 
in the limit of infinitely large samples by 

 P
k

k n k nj
j

j j j j
T

k

L
= − −
R
S|
T|

U
V|
W|=

−

∑ 4
2

1

1

σ a f a f a fΦ Φ  (22) 

Equation (22) can be used to develop an integrity check 
for the algorithm, using standard results on hypothesis 
testing.15  For example, the computed integer can be 
shown to have only a 0.0013 probability of selecting 
the wrong integer when three times the square root of a 
diagonal element of Pj  is less than 1/2. 

The case where 3 coplanar baselines can be 
determined by considering 3 non-coplanar sightlines.  
A batch solution for this case can be determined using a 
similar approach shown in Ref. 11; however, the 
statistically correct centered estimate approach is 
complex since the sightlines vary with time.  Also, this 
requires that the same 3 sightlines are available long 
enough to determine a solution (which isn’t always 
possible).  The integer search approach presented here 
may alleviate these difficulties.  The loss function for 
this case is given by 
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where 

     
σ i i

i i
T

i
T

i i i i

k S k

k n k S k k k n

2 1

3

a f a fo t
a fc h a f a f a f a fc h
= −

+ − −

−

−

trace2

Φ Γ Γ Φ
 (24a) 

 Γi i i is s s≡ − − −ϖ ϖ ϖ1
2

1 2
2

2 3
2

3  (24b) 

 n
n
n
n

i

i

i

i

≡
L

N
MMM

O

Q
PPP

1

2

3

 (24c) 

 Φ
∆
∆
∆

i

i

i

i

≡

L

N

MMM

O

Q

PPP

~
~
~

φ
φ
φ

1

2

3

 (24d) 

 S s s s s s si i
T

i
T

i
T= + +− − −ϖ ϖ ϖ1

2
1 1 2

2
2 2 3

2
3 3  (24e) 

For this case both Γ  and S  vary with time.  The 
estimate error covariance for this case is given by 

 P
k

k n k ni
i

i i i i
T

k

L
= − −
R
S|
T|

U
V|
W|=

−

∑ 4
2

1

1

σ a f a f a fΦ Φ  (25) 

Once again, this can be used to develop an integrity 
check for the algorithm. 

There are many advantages of the new algorithm.  
First, the algorithm is fully autonomous (i.e., it requires 
no a-priori information such as an a-priori attitude 
guess).  Second, it can be used to determine the integers 
when 3 coplanar baselines exist.  Third, the required 
search space can be significantly reduced using 
Equation (4) or (5).  Finally, the integers for other 
sightlines (or baselines) can be easily resolved by 
calling the same subroutine.  For these reasons, the new 
algorithm provides an attractive approach to resolve the 
integers. 

Hardware Simulation and Results 
A hardware simulation of a typical spacecraft 

attitude determination application was undertaken to 
demonstrate the performance of the new algorithm.  For 
this simulation, a Northern Telecom 40 channel, 4 RF 
output STR 2760 unit was used to generate the GPS 
signals that would be received at a user specified 
location and velocity.  The signals are then provided 
directly (i.e., they are not actually radiated) to a GPS 
receiver that has been equipped with software tracking 
algorithms that allow it operate in space (see Figure 3 
for details). 

The receiver that was used was a Trimble TANS 
Vector; which is a 6 channel, 4 RF input multiplexing 
receiver that performs 3-axis attitude determination 
using GPS carrier phase and line of sight 
measurements.  This receiver software was modified at 
Stanford University and NASA-Goddard to allow it to 
operate in space.  This receiver model has been flown 
and operated successfully on several spacecraft, 
including: REX-II, OAST-Flyer, GANE, Orbcomm, 
Microlab, and others. 

The simulated motion profile was for an actual 
spacecraft, the Small Satellite Technology Initiative 
(SSTI) Lewis satellite, which carried an experiment to 
assess the performance of GPS attitude determination 
on-orbit.  Although the spacecraft was lost due to a 
malfunction not related to the GPS experiment shortly 
after launch, this motion profile is nonetheless very 
representative of the types of attitude determination 
applications.  The orbit parameters and pointing profile 
used for the simulation are given in Table 1. 
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Fig. 3  Hardware Simulation Block Diagram 
 

Table 1  SSTI Lewis Orbit parameters 

Semimajor axis (a) 6901.137 km 

Inclination (i) 97.45 deg 

Right Ascension of Ascending Node  -157.1 deg 

Eccentricity (e) 0.0001 

Pointing profile Earth pointed 

Launch date Aug. 22, 1997 
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Fig. 4  Number of Available GPS Spacecraft 

The simulated SSTI Lewis spacecraft has four GPS 
antennas that form three baselines.  The antenna 
separation distances are 0.61 m, 1.12 m, and 1.07 m, 
respectively.  One antenna (in baseline 3) is located 
0.23 m out of plane (below) the other three antennas.  
On the spacecraft, the antennas are mounted on 
pedestals with ground planes to minimize signal 
reflections and multipath.  For the simulation, multipath 
errors are introduced using a simple Markov-process 
with time constant of 5 minutes and standard deviation 
of 0.026 wavelengths.16  The baseline vectors in 
wavelengths are given by 

 b b b1 2 3

2 75
1 64
0 12

0 00
6 28
0 17

3 93
3 93
1 23

=
−

L

N
MMM

O

Q
PPP

=
−

L

N
MMM

O

Q
PPP

=
−

−

L

N
MMM

O

Q
PPP

.
.
.

,
.
.
.

,
.

.
.

 (26) 

Line biases are first determined before the new 
algorithm is tested to resolve the integer ambiguities.  
The GPS raw measurements are processed at 1 Hz over 
a forty minute simulation.  A plot of the number of 
available GPS spacecraft for the simulated run is shown 
in Figure 4.  During the simulated run, a minimum of 
three visible GPS satellites are in sight at all times.  
However, resolution of the ambiguous integers for the 
phase measurements from any specific GPS satellite 
requires that it remain in view continuously until the 
sequential algorithm converges.  In practice, all 
available sightlines should be processed, since attitude 
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determination requires the integers to be resolved for 
two GPS satellites simultaneously.  The simulation 
contains a number of eight minute spans when 
sightlines to two specific GPS satellites are 
continuously available for the ambiguity resolution 
algorithm. 

Since the baselines are non-coplanar, Equations (4) 
and (20) will used to determine the integers.  For the 
simulation the following integer ambiguities are 
introduced: 

 n n1 2

6
1
3

5
8
2

=
−L

N
MMM

O

Q
PPP

= −
−

L

N
MMM

O

Q
PPP

,  (27) 

From the baseline geometry the integers are bounded 
from –8 to 8.  If a full search is implemented using 
Equation (20) solely this would require 8192 searches 
(4096 for each sightline).  Equation (4) requires a total 
of only 1024 searches.  The integers at the initial time 
that passed the inequality in Equation (4) are shown in 
Table 2. 

Table 2  Remaining Integers and Associated Costs 

 Integers Cost 

-6     1     3 66.2 

-3     5     3 125.6 

-3     7     3 146.3 
First Baseline 

-1     8     2  1862.3 

 5    -8    -2 64.0 

 7    -6    -3 119.5 

 7    -5    -3 136.5 

 8    -8    -8 209.6 

Second Baseline 

 8    -7    -7 547.4 
 

Table 2 clearly shows how Equation (4) can be 
used to dramatically reduce the search space.  Only 9 
remaining searches need to be used in Equation (20).  
Since the computational load to do this search is 
extremely low, a search can be implemented in a very 
efficient manner, periodically in the background.  For 
this simulation the cost function in Equation (20) is 
summed over time and has been checked every 30 
seconds.  The stopping condition is given when three 
times the square root of every diagonal element of Pj  is 
less than 1/2.11  For this case, this occurred in 2 minutes 
for each sightline.  The associated cost for each integer 
set after 2 minutes is also shown in Table 2.  Clearly, 
the correct integers have been found.  This has clear 

advantages over the motion-based technique in Ref. 
[11], which required over 6 minutes for the solution to 
converge.  Also, another simulation using Equations (5) 
and (23) has been performed in order to investigate the 
performance using 3 non-coplanar sightlines.  Results 
indicate that this approach give comparable results to 
the results shown in Table 2. 

Conclusions 
In this paper, a new algorithm was developed for 

GPS integer ambiguity resolution.  The algorithm uses 
the best qualities of both instantaneous and motion-
based techniques.  It uses an instantaneous approach to 
substantially reduce the search space, and then uses a 
batch-type loss function to resolve the remaining 
possible integers.  The new algorithm has several 
advantages over previously existing algorithms.  First, 
the algorithm is attitude independent so that no a-priori 
attitude estimate (or assumed vehicle motion) is 
required.  Second, a suitable integrity check can be 
used to determine the correct values.  Finally, it can 
resolve the integers even when coplanar baselines exist.  
The algorithm was tested using a GPS hardware 
simulator to simulate the motions of a typical low-
altitude Earth-orbiting spacecraft.  Results indicated 
that the new algorithm provides a viable and attractive 
means to effectively resolve the integer ambiguities. 
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