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Abstract

In this paper, a new and efficient algorithm is developed for attitude determination from vector
observations. The new algorithm, called the Predictive Attitude Determination (PAD) algorithm, is
derived from a general nonlinear predictive filter approach. Traditional deterministic algorithms are
shown to be suboptimal for anisotropic measurement errors. The major advantage of the PAD
algorithm is that it can be easily be applied to the case where anisotropic measurement errors exist.
Also, an analytical expression is derived for the steady-state attitude error covariance, which is
shown to be equivalent to the optimal covariance derived from maximum likelihood techniques.
Simulation studies indicate that the new algorithm is able to accurately determine the attitude of a
spacecraft, even for radically anisotropic measurement errors.

Introduction

Attitude determination refers to the identification of a proper orthogonal rotation matrix so that
the measured observations in the body frame equal the reference frame observations mapped by that
matrix into the body frame. If all the measured and reference vectors are error free, then the rotation
(attitude) matrix is the same for all sets of observations. However, if measurements errors exist,
such as noise, then a least-squares type method must be used. For this case, the most common
method for determining the attitude matrix uses a loss function first posed by Wahba [1]. This
problem involves finding an orthogonal rotation matrix which minimizes the weighted sum of the
squares of the observation residuals.

Since its origination in 1965, there have been many algorithms developed which minimize
Wahba’s loss function. The first practical method was given by Davenport’s g-method [2], which
solves for the quaternion representation of the rotation matrix. However, this method requires an
eigenvalue/eigenvector decomposition of a dimension 4 matrix, which may be computationally
intense. A more efficient method was proposed by Shuster [3], called the QUEST algorithm, which
simplifies the g-method approach by solving for the components of a Gibbs vector, and uses the fact
that any meromorphic function of a dimension 3 matrix can be represented as a quadratic in that
matrix. Other methods solve for the attitude matrix directly (e.g., see Refs. [4-5]). In particular, the
FOAM algorithm [5] has been shown to be comparable to QUEST in computational speed, and has
also been shown to be more robust in some cases. Still other methods which address Wahba’s
problem can be found in Ref. [6-8].

In Wahba’s problem each vector residual is weighted by a scalar number to reflect the relative
importance of each sensor. Shuster [9] has shown that Wahba’s problem is equivalent to a
maximum likelihood estimation problem, where the scalar weight is equal to the scalar inverse
variance of the measurement error process. Shuster [10] has further shown that a scalar variance is a
good approximation of the actual measurement errors, except in the case where the measurement
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errors are radically anisotropic. An anisotropic measurement error may be produced by a single-axis
failure or degradation in the sensor. This was evident for the Hubble spacecraft where single axis
failures occurred on both three-axis magnetometers in 1992 (unfortunately, the failures occurred on
the same axis). If these corrupt measurements are used for attitude determination, then the solution
to Wahba’s problem using scalar weighting is not optimal (as will be shown). Therefore, algorithms
such as QUEST and FOAM can produce suboptimal attitude solutions.

In this paper, a new and efficient algorithm is derived which determines the attitude for both
isotropic and anisotropic measurement errors. The algorithm is based on a predictive filtering
scheme for nonlinear systems [11]. This scheme has been successfully applied to estimate the
attitude of a spacecraft using a dynamic model for rate information [12]. The predictive filter
developed in this paper is essentially reduced to a deterministic approach, since the corrections
required to update the model are not weighted in the predictive filter loss function. Therefore, the
new algorithm is known as a Predictive Attitude Determination (PAD) algorithm. Also, an
analytical expression is derived for the attitude error covariance. It will be further shown that when
the measurement errors are isotropic, the PAD steady-state attitude error covariance is identical to
the QUEST covariance in Ref. [3].

The organization of this paper proceeds as follows. First, a summary of Wahba’s problem is
shown. Then, Wahba’s problem is generalized for anisotropic measurement errors. Also, attitude
covariance expressions are shown for the original and generalized loss functions. Next, a brief
review of the predictive filter for nonlinear systems is shown. Then, the PAD algorithm and
covariance expression are developed. Finally, the PAD algorithm is used to determine a simulated
spacecraft’s attitude using two star trackers as sensors, with a single-axis failure in one tracker.

Background

In this section, Wahba’s problem is reviewed. Also, a generalized version of Wahba’s problem
is shown, which involves anisotropic measurement errors. A covariance expression is also derived
for the generalized problem. Wahba’s original problem, modified to include the covariance
weighting [9], involves finding a proper orthogonal matrix A4 that minimizes the following loss
function

J(A):%io-i_z(éi_A’:i)T(éi_A’:i) (1)
i=1

where r; are the representations of the directions to some observed object, 12~,' are the measured
observations in the spacecraft body frame (the tilde denotes measurement), o;are the standard

deviations of the corresponding measurement errors, and # is the number of observations. Since the
attitude matrix is assumed orthogonal, the loss function in Equation (1) can be shown to be
equivalent to minimizing the following loss function

J(4)=—trace( 458" @)

where

B=Y o7 (5,. ! ) (3)

A convenient expression for the attitude matrix is the quaternion representation, defined as [13]

q= FB} (4)
q4



with

q

9,=| 0 =¢sin(0/2) (5a)
q3

q4 = 003(9/2) (5b)

where ¢ is a unit vector corresponding to the axis of rotation and € is the angle of rotation. The
quaternion satisfies a single constraint, given by
T T 2
4 9=9)39,; %91 =1 (6)
The attitude matrix is related to the quaternion by

4(q)=-2"(4)¥(q) ()

where

E(Q)E .................. (8a)

lp(g) = ) (8b)

where /3,5 is a 3x3 identity matrix. The 3x3 matrix [ql 3 x} is referred to as cross product matrix

sinceaxb=[ax]|b, with

0 —613 a
[ax]=| a3 0 —q )
—dy a 0

From Equation (2) it is clear that the quaternion representation leads to a loss function that is
quadratic in the quaternions. An efficient algorithm which minimizes this loss function is given by
the QUEST algorithm [3].

As seen in Equation (1), the 3x1 measurement errors are assumed to be isotropic, (i.e., the
covariance is assumed to be given by a scalar times the identity). The generalized version of
Wahba’s loss function for anisotropic errors can be derived using maximum likelihood. Assuming a
Gaussian distribution for the error process leads to the following generalized loss function

n

J(A):%Z(l—;i_AKi)TRi_l(éi_AKi) (10)

i=l1



where R; represents the measurement error covariance matrix of the i " measurement (for a detailed

discussion of the measurement error model see Ref. [9]). From Equation (10), it is clear that an
anisotropic covariance matrix leads to a quartic dependence if the quaternion representation is used.
A general solution can be found be using a nonlinear least-squares approach, but this may be
extremely computational intense. Another method involves finding a scalar value which minimizes
the error between the loss functions in Equations (10) and Equation (1) [14]. Therefore, algorithms
such as the g-method [2] and QUEST [3] may be used, but may produce suboptimal attitude
solutions. Other methods which determine the attitude matrix, such as FOAM [5], also yield sub-
optimal solutions in this case. The error introduced by using the scalar approach can be investigated
by deriving its attitude covariance error, which can be shown to be given by [14]

-1 -1
n n

Roay =Efoa"sal | Y a[Bix] | Y a?[bix]r[b;<] Zn‘,ai[éi <] (1)

i=1 i=1 i=1

where da represents a small angle error, and E { } denotes expectation. In actuality, b ; should be

replaced with 4, 7, , but Equation (11) is extremely accurate for low noise. Note that if R; = 0'121 ,

setting a; = o} 2 yields

-1

n
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i=l1

Therefore, in this case the covariance in Equation (11) would be identical to the covariance given by
QUEST [3].

An attitude error covariance can also be derived from the generalized loss function in Equation
(10). This is accomplished by using results from maximum likelihood estimation [9]. The Fisher
information matrix for a parameter vector x is given by

FxeE{ d J(E)} (13)

ﬁ)_cﬂgT

)i"true

where J ()_c) is the negative log likelihood function, which is the loss function in this case. If the

measurements are Gaussian and linear in the parameter vector, then the error covariance is given by
-1
Py = Fyy (14)
Now, the attitude matrix is approximated by

A= e_[égx] Airye ® (]—[5QX]+%[5QX]2)Atme (15)

Equations (15) is next substituted into Equation (10) to determine the Fisher information matrix.
First-order terms vanish in the partials, and third-order terms become zero since £ {5g} =0. Also,

assuming that the quartic terms are negligible leads to the following form for the optimal covariance
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i=1
Note that the optimal covariance in Equation (16) reduces to the covariance in Equation (12) if the
condition R; = al-zl is true. Also, the diagonal elements of covariance in Equation (16) are always

smaller or equal to the corresponding elements in Equation (11). Therefore, methods which
minimize Wahba’s original loss function for anisotropic measurement errors can produce suboptimal
results.

Predictive Attitude Determination

In this section, the predictive attitude determination (PAD) algorithm is derived. First, a brief
review of the nonlinear predictive filter is shown (see Ref. [11] for more details). Then, the filter
algorithm is reduced to a deterministic-type approach for attitude determination. Finally, a
covariance expression for the attitude errors using PAD are derived.

Predictive Filtering

In the nonlinear predictive filter it is assumed that the state and output estimates are given by a
preliminary model and a to-be-determined model error vector, given by

x(1)= £ (&(¢).1)+ G(1)d (1) (172)

3(t)=c(4(7).1) (170)

where f is a px1 model vector, £(¢)is a px1 state estimate vector, d(¢)is a /x1 model error

vector, G(¢)is a px/ model-error distribution matrix, cis a mx1 measurement vector, and p(¢) is

a mx1 estimated output vector. State-observable discrete measurements are assumed for Equation
(17b) in the following form

() =elx(t )t )+ () (18)

where j(z;) is a mx1 measurement vector at time#;, x(# ) is the true state vector, and v(#; ) is a

mx1 measurement noise vector which is assumed to be a zero-mean, Gaussian white-noise
distributed process with

E{v(t)}=0 (19a)

Efv(t)v" ()] = R (19b)

where R is a mxm positive-definite covariance matrix.

A loss functional consisting of the weighted sum square of the measurement-minus-estimate
residuals plus the weighted sum square of the model correction term is minimized, given by

J =%{J_7(tk+l)_2(tk+1)}T R_l {J_7(tk+1)_i’(fk+1)} +%QT (tk) W d(tk) (20)



where W is a [x/ weighting matrix. The necessary conditions for the minimization of Equation
(20) lead to the following model error solution

d()= —{[A(At)S()_%k )]T RTIA(A7)S (3 )+ W}_l [A(Ar)S (% )]T R! 2%, A1) = 7 (tg1) = 9 (1) ]
(21)

where X, E)_%(tk), At 1is the measurement sampling interval, S()_%)is a mx[ dimensional matrix,

and A(At) is a mxm diagonal matrix with elements given by

D;
A=A s m 22)

pi!

where p;, i=1,2,...,m, is the lowest order of the derivative of ¢; ()_%(t)) in which any component of

d(¢) first appears due to successive differentiation and substitution for x; (¢) on the right side. The

i™ component of z (£,Ar) is given by

- o Atk k
zi(g,At)zzﬁLf(cl-) (23)
k=1 "

where L]} (¢;) is the k™ Lie derivative, defined by

L (e;)=¢ for k=0
L/}(cl-):%;(q)]_‘ for k >1 0
The i row of §(%) is given by
sl-={Lgl[L?f_l(ci)},...,Lgl[L’}"_l(cl-)}}, i=12,...m (25)

where g; is the j " column of G(t) , and the Lie derivative is defined by

o7 ()

i1 __ S P
ng |:L? (ci)}:ng’ ]—1,2,...,[ (26)

Equation (26) is in essence a generalized sensitivity matrix for nonlinear systems. Therefore, given
a state estimate at time ¢, , then Equation (21) is used to process the measurement at time #;_; to find

the d(#;) to be used in [7;,7; ] to propagate the state estimate to time#; ;. The weighting matrix

W serves to weight the relative importance between the propagated model and measured quantities.
If this matrix is set to zero, then no weight is placed on the model corrections.



PAD Algorithm

In the PAD algorithm it is assumed that the model is given by the quaternion kinematics model.
PAD requires no dynamics model; it assumes that the attitude rate is adequately modeled by a
constant model error d between measurements, so that

=(¢)4 @27)

Q:

where ¢ denotes the determined quaternion. Since the body measurements (Z_)i) are used as the

required tracking trajectories, the output vector in Equation (18) is given by (dropping the subscript
i for the moment)

c(2)=4(q)r (28)

The lowest order time derivative of ¢ in Equation (28) in which any component of d first appears

in Equation (27) is one, so that p; =1. Therefore, the A and z quantities formed from Equations
(22) and (23) are given by
A=At] (29a)

2(2.A)=0 (29b)

The derivative of Equation (28) with respect to Q can be shown to be given by

jf} =-28"(¢)r(r) (30)
where
—[rx] + -r
F(Z)E ...... P (31)
SR

Therefore, the S matrix in Equation (21), which is formed using Equation (25) is given by
s=-="(a)r()=(d)=| 4(d)z] 62)

The 3x3 matrix [A(é) r x} is analogous to the sensitivity matrix used in a Kalman filter (see Ref.

[15]). This matrix has rank 2, which reflects the fact that there is no information about rotations
around the current measurement vector. For a deterministic attitude solution the weighting matrix
W is set to zero in Equation (21). Therefore, the extension for multiple vector measurement sets,
assuming that the errors between vector measurement sets are uncorrelated, is given by the
following model error

d(t"):i Z[A(Qk)zix}Rfl[A(Qk)gix} >, )rox] R B a) - 4(a, ) ) 33)



The inverse expression in Equation (33) exists only if at least two of the vector observations are not
parallel, which is equivalent to all methods which solve Wahba’s problem. The determined
quaternion can be found by integrating Equation (27) from time #; to#; ;. Since d is constant over

this interval, the discrete propagation for Equation (27) found in Ref. [16] can be used. It should be
noted that Equation (33) represents an exact linearization for an interval Ar (see Ref. [17]).
However, for practical applications the sampling rate should be well below Nyquist’s limit [18].

In order to derive an attitude error covariance from Equation (33), a propagated expression can
be derived using a similar approach found in Ref. [15]. Assuming continuous measurements and
small Az, the propagated attitude error covariance can be shown to be given by ([15], [19])

P=—[4X]P—P[Q’X]T+E{QQT}—PSTR_1SP/At (34)

where

s={[atw)eo {[a@er - [a@] | &

The measurements in PAD play two roles: 1) dynamics model replacement, similar to gyros used in
[15], and 2) actual attitude update, similar to line-of-sight observations used in [15]. Thus,

measurement errors contribute to both £ {Q QT } (similar to process noise) and to the last term in

Equation (34) (similar to the usual continuous-time Kalman filter). The Af term is due to the
conversion of the discrete-time measurements to continuous time ([19], [20]) (note, in the

limitA¢ — 0). The term E {77 nT} is a covariance due to the continuous-time measurements, with

n=a 2L A@ R [4(@)e] Y[ A(@)x R Go)

i=l1 i=l1

where v; is the continuous measurement noise with covariance R; . The expectation in Equation (34)

is therefore given by

Elnn"} =502 [a(@)r <R [4(@)ri<] (37)

Next, assuming that the transients in Equation (34) decay quickly leads to the following steady-state
condition

Elnn" |~ Ps"R s P/ A (38)
Solving for P and converting to discrete-time (i.e., using the approximation At P [21]), yields the
following discrete-time steady-state covariance

n

Foa =| 2| A(d, )rox |5 4(2, ) X]T (39)

i=1



This expression is essentially equivalent to the optimal covariance for the generalized version of
Wahba’s problem, shown by Equation (16). Therefore, the PAD algorithm is in essence equivalent
to solving Wahba’s generalized loss function. Also note that the approximation in Equation (39) is
valid only for small A¢ (i.e., well below Nyquist’s limit).

If the measurement errors are isotropic for each vector observation, then the model error in
Equation (33) can be rewritten by setting R; = O'iz I . Noting that [g x]g =0 for any a leads to the

following simple model error solution

d(tk)zé ZH:U;Z[A(%)QXT Zn:ai_z[A@k)gileéi(kﬂ) (40)

i=1 i=1
Also, the covariance in Equation (39) reduces down to
-1
Faa == 07| 4(q, )rix] (41)
i=1

which is essentially equivalent to the QUEST covariance shown in Ref. [3]. Also, since Equation
(39) or (41) is used to determine the model error, the PAD algorithm determines the steady-state
attitude error covariance as part of its solution.

Error Analysis

In this section, an error analysis is shown with respect to initial condition errors and sampling
interval. The continuous output estimate can be shown to be given by [11]

y=5d (42)

where

(il {[a@e] L] | e

and S is given by Equation (35). The error dynamics model between the measured and estimated
observations can easily be shown to be given by

.__L PRy
é= AtQ€+[1 Oly (44)

wheree=y -y, and

Q=SB 4S R (45)

Since at least two vector observations are required in the PAD algorithm, the matrix O will always

be positive semi-definite. Therefore, as long as the body observations are non-parallel and bounded,
then the error in Equation (44) is also bounded for any initial condition error. Also, the error
dynamics are a function ofl/Af¢, which means that the errors converge faster as the sampling
interval decreases, which is intuitively correct.



Spacecraft Simulation

In this section, an example is shown using PAD to determine the attitude from simulated star
tracker measurements. The star tracker measures the tangent of two angles, « and £, resulting in a

body vector given by
: tana;
b;= tan f3; (40)
\/(tan2 a; + tan? B+ 1) 1

where the z-axis of the tracker is along the boresight. The star tracker measurements are obtained by
adding Gaussian noise to tang; andtanf;, with a 3o value of 18 arc-sec. Measurements are

sampled at 1 second intervals. The theoretical measurement error covariance for the model in
Equation (46) is not isotropic. However, Shuster [10] has shown that if the noise variances on tana;

and tan f; are relatively equal and small, then the true covariance can be effectively replaced by an

isotropic matrix.

The spacecraft is assumed to be earth-pointing with a rotation rate about the spacecraft y-axis
(negative orbit normal) of 0.0011 rad/sec. The spacecraft z-axis is defined to be pointed nadir, and
the x-axis completes the triad. Two trackers are used in the simulation. The first one has its
boresight along the spacecraft y-axis, and the second has its boresight along the spacecraft x-axis. In
the first simulation it assumed that both trackers measure two stars each with about a 0.5 degree
separation between them. A plot of the attitude errors and 36 bounds using the PAD algorithm is
shown in Figure 1. These errors agree with the errors produced using the QUEST algorithm.

PAD Attitude Errors and 3-Sigma Bounds with all Stars Available
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Figure 1 PAD Attitude Errors Using Both Trackers

In the next simulation, it is assumed that the second tracker has a single axis failure intan ;. The

disadvantage of methods which solve Wahba’s original loss function is that they cannot use the
single axis information from the second tracker. This is due to the fact that a scalar measurement
error variance is assumed. Therefore, in order to use QUEST, only the first tracker measurements
are used. A plot of the attitude errors and bounds using QUEST for this case is shown in Figure 2.
Since the first tracker’s boresight is along the spacecraft y-axis, the pitch axis has the largest error.
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QUEST Attitude Errors and 3-Sigma Bounds with Tracker 1 Only
20 T | — T JEp—

30 60 90 120 150
Time (min)

Figure 2 QUEST Attitude Errors Using Tracker 1 Only

The PAD algorithm can still use the single axis information from the second tracker. This is
accomplished by using an inverse covariance matrix for that tracker given by

(7_2

Ry' = (47)

oS O O
oS O O

0
0

The (3,3) element is also set to zero since no information of the magnitude is known by the single
axis failure. A plot of the PAD pitch error and bound using two stars in the first tracker and only
one star with the single axis failure in the second tracker is shown in Figure 3 (the roll and yaw
errors are approximately the same as the one-tracker case, due to the configuration of the trackers).
Clearly, the pitch errors are reduced significantly compared with the QUEST solution in Figure 2.

PAD Pitch Error and 3-Sigma Bound (Single-Axis Failure in Tracker 2)
300 T T T T
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100
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-200
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Figure 3 PAD Pitch Error with a Single Axis Failure on Tracker 2

A plot of the 3¢ pitch error bounds from both the QUEST solution and PAD solution is shown in
Figure 4. The peaks at 45, 90, and 135 minutes for PAD are due to attitude geometry, and to the fact
that only one axis in Tracker 2 is used in the measurement. Depending on the attitude geometry, the
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PAD algorithm reduces the error by an order of magnitude from the QUEST solution. Although this
simulation represents an extreme case, it clearly proves that the PAD algorithm provides a viable
approach for attitude determination when anisotropic errors exist.

5 Comparison Between QUEST and PAD 3-Sigma Pitch Bounds
10 T T T T

— PAD
- - QUEST

Pitch (arc-sec)
=
o
N

10t I I I I
0 30 60 90 120 150
Time (min)

Figure 4 QUEST and PAD Pitch Error Bounds

Also, a test for initial condition errors was performed. A number of Monte Carlo runs was simulated
using a normalized random vector for the initial quaternion. A plot of the convergence of the PAD
algorithm for one case is shown in Figure 5. In each case, the PAD algorithm is able to converge
within seven sampling intervals. The PAD algorithm may be initialized by picking two well-
separated stars, and using TRIAD or two-observation (no iteration) QUEST or FOAM. However,
this example shows that the attitude converges even for large initial condition errors.

PAD Attitude Errors Due to Initial Condition Errors
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Figure S PAD Convergence to Initial Condition Errors

Algorithm Computational Comparisons

The PAD algorithm is compared with QUEST and FOAM for computational floating point
operations (FLOPS). In these comparisons, it is assumed that all vector observations are normalized
and have isotropic errors only. All simulations were performed using MATLAB, and all matrix
functions (such determinant, adjoint, etc.) were written out explicitly for the QUEST and FOAM
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algorithms. Also, the FOAM rotation matrix was converted to a quaternion, but this only requires 9
FLOPS. Since FOAM and QUEST do not require the attitude error covariance to calculate the
attitude, two sets of test comparisons were made. The first one calculates the FLOPS without the
covariance calculation in FOAM and QUEST, and the second calculates the FLOPS with the
covariance calculation. PAD implicitly solves for the error covariance as part of its solution, so the
number of FLOPS is the same in both sets. The number of FLOPS for n vector observations
without calculating the covariance in both QUEST and FOAM is given by

FPAD :332+67(7l—2)
FQUEST :326+30(7’l—2) (48)
FFOAM :392+30(1’l—2)

From Equation (48) it is clear that the QUEST algorithm requires the least number of FLOPS for any
number of observations. Also, FOAM requires less number of FLOPS than PAD when three or
more observations are present. The number of FLOPS for n vector observations with calculating
the covariance in both QUEST and FOAM is given by

FPAD 2332+67(l’l—2)
FQUEST :442+57(I’l—2) (49)
FFOAM 2482+30(l’l—2)

For this case, PAD requires the least number of FLOPS untiln=7. When seven or more
observations are present, then FOAM requires the least number of FLOPS. The QUEST algorithm
overcomes PAD for the least number of FLOPS when thirteen or more observations are present.
Also, FOAM overcomes QUEST for the least number of FLOPS when four or more observations are
present. This is consistent with the CPU comparison shown in Ref. [5]. These case comparisons
show that the PAD algorithm seems to be quite efficient in comparison to other attitude
determination algorithms.

An advantage of both QUEST and FOAM is that they provide a point-by-point solution,
independent of the sampling interval. As mentioned previously, PAD is a function of the sampling
interval. A test was performed in order to investigate the effects of sampling interval. It is assumed
that the propagation of the quaternion model in Equation (27) is performed at the sampling interval.
Also, both trackers with two stars each are assumed in the simulations. The quaternion propagation
frequency for an earth-point spacecraft is given by half the orbit rate. Nyquist’s upper bound with a
safety factor of 10 is about 500 seconds. Results for the 3o attitude errors produced for different
sampling intervals in PAD are shown in Table 1. This shows that the errors start to become
significant with a sampling interval of about 100 seconds, and are quite significant with a sampling
interval of 500 seconds. Although this study shows that PAD can produce large errors for large
sampling intervals, the sampling intervals used for typical on-board spacecraft applications (e.g., in a
Kalman filter) are well within the region where PAD provides accurate results.
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Table 1 PAD 3o Attitude Errors for Various Sampling Intervals

At (sec) Roll (arc-sec) | Pitch (arc-sec) | Yaw (arc-sec)

1 11 12 11
10 11 12 11

50 37 13 37

100 130 13 130

250 800 80 800

500 3000 700 3000

750 8,000 3,000 8,000

1000 30,000 600,000 30,000

Conclusions

In this paper, a new algorithm was developed for attitude determination. The major advantage of
this new algorithm over traditional algorithms, such as QUEST and FOAM, is that it is easily
applicable to the case where anisotropic measurement errors exist. Also, the algorithm is
computationally simpler than an extended Kalman filter approach, since no dynamics model is
needed. The steady-state attitude error covariance for the new algorithm was shown to be equivalent
to the optimal covariance, derived by solving a generalized form of Wahba’s problem. Also, the
attitude error covariance was shown to reduce to the QUEST covariance when isotropic conditions
exist. Simulation studies indicated that the PAD algorithm provides a viable approach for attitude
determination even when radically anisotropic errors exist. Finally, the PAD algorithm seems to be
computationally comparable to both the QUEST and FOAM algorithms when isotropic
measurement errors exist for all observations.
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