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DECENTRALIZED ATTITUDE ESTIMATION USING A
QUATERNION COVARIANCE INTERSECTION APPROACH

John L. Crassidis,∗ Yang Cheng,†

Adam M. Fosbury,‡ and Christopher K. Nebelecky§

This paper derives an approach to combine estimates and covariances for decentral-
ized attitude estimation using a quaternion parameterization. The approach is based
on the covariance intersection method, which is modified to maintain quaternion nor-
malization in the combination process. A simple simulationresult is provided where
local extended Kalman filters are used on two star trackers, each running with com-
mon gyro measurements. The covariance intersection approach is shown to provide
more accurate estimates than either of the local filters.

INTRODUCTION

Decentralized estimation is an important topic in a data fusion system composed of several pro-
cessing nodes. The key to a decentralized approach is that, even though communication links may
exist between some of the nodes, none of the nodes has knowledge about the overall network topol-
ogy [1]. This has the advantage on not relying on a common communication system, which upon
failure can cause the whole node structure to also be inoperable. Another advantage of decentral-
ized estimation is that nodes can easily be added or deleted in the network without requiring drastic
changes to the overall topology. The main disadvantage of decentralized estimation is that since
some of the nodes may be using redundant information, their respective state estimates may be
correlated and the fusion process cannot assume independence.

A simple example of a decentralized estimation approach involves a spacecraft system that has
two star trackers, each running an extended Kalman filter using common gyro measurements. The
state vector involves the overall spacecraft attitude and gyro biases. The star observations between
the two trackers are clearly independent processes, but since each filter uses common gyro measure-
ments, correlations will exist. The correlations are automatically accounted for in the calculation of
the Kalman gain through the cross-correlation covariance terms when a single centralized filter is
processing all star observations and gyro measurements simultaneously. However maintaining con-
sistent cross covariances is not possible in a decentralized system where estimates using redundant
data are combined. This can yield a covariance that will underestimate the actual errors.

An elegant solution to the consistency problem is the covariance intersection (CI) approach [2].
The authors of this work describe the approach using a geometric interpretation of the Kalman filter,
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considering the covariance ellipses of a two-dimensional state vector. When the cross covariance is
known exactly, the fused estimate’s covariance always layswithin the intersection of the individual
covariances. An analogy here is that the form of the estimateand covariance is identical to the
standard Kalman filter when independence is given and generalizes to a colored-noise Kalman filter
[3] when there are known nonzero cross correlations. When the cross covariance is unknown, a
consistent estimate is one whose covariance encloses the intersection region. Note that a family of
solutions is possible and one can be chosen by minimizing theexpected errors by some means, such
as minimizing the trace of the combined covariance matrix. In the CI approach a scalar weighted
average of the covariance matrices is used. When combining two estimates, only a one-dimensional
search is required verses one that involves the whole parameter space in the matrix weighted case.
Fortunately, the standard CI approach is found to be optimal, in the trace minimization sense, even
in the general weighted case [4]. The CI is however conservative in that its error ellipse is larger than
the true one. The largest ellipsoid algorithm [5] avoids this by creating the largest ellipse that will
fit within the intersection of the covariances, which is always more optimistic than the CI algorithm
[5,6], but consistency is yet to be established for this approach.

An important technology that benefits from decentralized estimation involves spacecraft forma-
tion flying, which uses a set of smaller and generally cheaperspacecraft working in cooperation to
achieve a mission objective. The first known recorded study of formation flying involves the now
well-known concept of using multiple spacecraft to form an interferometer for synthetic aperture
applications [7]. References [8] and [9] provide an in-depth survey of guidance and control issues
in early and modern day spacecraft formation flying applications. By using decentralized schemes,
the entire formation is less vulnerable to individual spacecraft failures both at the estimation and
control levels [10]. Most decentralized spacecraft formation flying applications focus on relative
position information. For example, [11] shows a study usingGPS signals in a decentralized setting
and lays the foundation for hierarchic clustering to mitigate scaling problems for larger fleets. Ref-
erence [12] employs the CI approach to develop relative spacecraft position and velocity estimates
using relative position measurements. A centralized Kalman filter for full state estimation, which
includes both relative position and attitude, using only relative line-of-sight observations is shown
in [13].

For spacecraft attitude estimation, the four-dimensionalquaternion [14] is the attitude parameter-
ization of choice for several reasons: 1) it is free of singularities, 2) the attitude matrix is quadratic
in the quaternion components, and 3) the kinematics equations is bilinear and an analytic solution
exists for the propagation. However, since a four-dimensional vector is used to describe three di-
mensions, the quaternion components cannot be independentof each other, which is shown by the
fact that the quaternion must have unit norm. This leads to problems when attempting to average a
set of quaternions, which is further compounded by the 2:1 mapping of the rotation group. Refer-
ence [15] presents an approach for determining the average norm-preserving quaternion from a set
of weighted quaternions, which is accomplished by performing an eigenvalue/eigenvector decom-
position of a matrix composed of the given quaternions and weights. Independence is inherently
implied in the solution. In this paper, the quaternion averaging algorithm is extended to handle
appended state vectors. In particular, a new CI combinationapproach is derived that preserves
quaternion normalization during the solution process. Thebasic idea is to perform the CI operation
over the nonlinear manifold of the unit sphere.

The organization of this paper is as follows. First, the CI approach is summarized and then
re-derived from a loss-function point of view. Next, a CI approach that fuses a single quaternion



and other quantities is derived that maintains normalization of the fused quaternion. A square root
version is also derived that provides a better conditioned approach from a numerical viewpoint.
Theory to construct a CI approach to handle the case ofn > 1 quaternions is then developed.
Finally, simulation results for the single quaternion caseare shown using a two star-tracker system,
with each tracker incorporating common gyro measurements in their decentralized nodes.

COVARIANCE INTERSECTION

This section summarizes the CI approach (see [2] for more details), which is rooted in the concept
of Gaussian intersection [16]. Consider two estimate-covariance pairs,{a, Paa} and{b, Pbb}. The
true values of each are denoted with an overbar, with

P̄aa = E{ã ãT}, P̄ab = E{ã b̃T }, P̄bb = E{b̃ b̃T } (1)

whereã , a− ā andb̃ , b− b̄, which are the state errors andE{·} is the expectation operator. It
is assumed that the estimates fora andb are consistent, so thatPaa − P̄aa ≥ 0 andPbb − P̄bb ≥ 0.
This means thatPaa − P̄aa andPbb − P̄bb are positive semi-definite matrices. A consistent estimate
formed by fusinga andb is given by

P−1
cc = ωP−1

aa + (1 − ω)P−1
bb

(2a)

c = ωPccP
−1
aa a + (1 − ω)PccP

−1
bb

b (2b)

whereω ∈ [0, 1] is a scalar weight. The requirement forω ensures that the covariancePcc ≥ 0,
Paa ≥ Pcc, andPbb ≥ Pcc. Reference [2] proves thatPcc − P̄cc ≥ 0 for all Pab andω, where
P̄cc = E{c̃ c̃T } with c̃ , c − c̄. The weight can be found using a simple optimization scheme that
minimizes the trace or the determinant ofPcc. The trace and the determinant ofPcc characterize the
size of the Gaussian uncertainty ellipsoid associated withPcc. In two-dimensional cases, the former
is approximately proportional to the squared perimeter of the ellipse and the latter is proportional
to the squared area of the ellipse. Consider the identitylog(det Pcc) = tr(log Pcc), wheretr is the
matrix trace operator. Using the fact that the logarithm function is monotonic, it can be seen that
minimizing the determinant ofPcc is equivalent to minimizing the trace of the matrix logarithm of
Pcc, not to minimizing the trace ofPcc. Minimizing the trace or the determinant ofPcc is a convex
optimization problem. This means that the cost function hasonly one local optimum ofω in the
range of[0, 1], which is also the global optimum.

Loss Function Point of View

The CI solution can be determined from a loss function point of view. The usefulness of this
perspective will be made clear in the next section. Considerminimizing the following loss function:

J(c) = ω(c − a)T P−1
aa (c − a) + (1 − ω)(c − b)T P−1

bb (c − b) (3)

The loss function is identical to that of fusing two uncorrelated estimates with dilated covariances
Paa/ω andPbb/(1 − ω), respectively. Minimizing Eq. (3) with respect toc results in

ω(c − a)T P−1
aa + (1 − ω)(c − b)T P−1

bb = 0 (4)

Taking the transpose and rearranging yields
(

ωP−1
aa + (1 − ω)P−1

bb

)

c = ωP−1
aa a + (1 − ω)P−1

bb b (5)



Using the definition ofPcc from Eq. (2a) we obtain

c = Pcc[ωP−1
aa a + (1 − ω)P−1

bb
b] (6)

which is identical to Eq. (2b). Note that whenω = 0.5 the loss function is equivalent to maximum
likelihood estimation with the assumed independence property applied.

Fusion of Multiple Estimates

It is straightforward to apply the CI approach to fuse multiple estimates. The CI algorithm closely
resembles an electrical resistance calculation within a parallel architecture. Given a set ofn esti-
mates{x1,x2, . . . ,xn} and associated covariances{P1, P2, . . . , Pn}, a consistent estimate of the
fused estimate and covariance is given by

c = Pcc

n
∑

i=1

ωiP
−1
i xi (7a)

P−1
cc = ω1P

−1
1 + ω2P

−1
2 + · · · + ωnP−1

n (7b)

where the weights satisfy
∑n

i=1 ωi = 1 andωi ∈ [0,1]. The weightsωi can be found by minimizing
the trace or the determinant ofPcc subject to the aforementioned constraints. The bounded opti-
mization problem is convex and can be solved efficiently using, for example, CVX, the MATLAB
software for disciplined convex programming [17].

ATTITUDE ESTIMATION VIA COVARIANCE INTERSECTION

In this section the CI approach is extended to attitude estimation. The objective is to fusen
attitude estimates with unknown correlations to yield a single quaternion estimate. It is assumed
that theith state vector,xi, is composed of a quaternion,qi, and other quantities,bi, such as
gyro biases. A standard multiplicative quaternion Kalman filter is employed, where the covariance
matrix, denoted byPi, is the reduced order form for the small half-attitude errors and errors for the
remainder quantities [18]. Clearly, Eq. (7a) cannot be directly employed in this case because the
resulting quaternion will not be guaranteed to have unit norm. For simplicity, we assume that the
covariance after the CI update is of the form Eq. (7b), independent of the updated state estimate.
The optimal weights used in Eq. (7a) are determined by minimizing the trace or the determinant of
the covariance of the assumed form.

A method to average quaternions is presented in [15], which also shows its relation to maximum
likelihood estimation. The loss function is given by

J(q) =

n
∑

i=1

qT Ξ(qi)P−1
qqi

ΞT (qi)q (8)

subject to the constraint1 − qT q = 0. The matrixΞ(q) is defined by

Ξ(q) ,

[

q4I3×3 + [ρ×]

−ρT

]

(9)

whereρ denotes the vector part of the quaternion andq4 is the scalar part, i.e.q , [ρT q4]
T . The

magnitude ofΞT (qi)q is the absolute value of the sine of the half-error angle [15]. The matrix



Pqqi
is the3 × 3 covariance matrix of the vector part of the error quaternioncorresponding toqi.

The solution approach uses a Lagrange multiplier to handle the equality constraint. The average
quaternion is given by finding the eigenvector corresponding to the maximum eigenvalue of the
matrix

M = −
n

∑

i=1

Ξ(qi)P−1
qqi

ΞT (qi) (10)

A straightforward implementation of the quaternion averaging algorithm cannot be applied to
the problem with appended state vectors, i.e. state vectorsthat include quantities other than the
quaternion. To overcome this issue the following function is maximized:

J(∆x) = −
n

∑

i=1

ωi ∆xT
i P−1

i ∆xi (11)

where
∑n

i=1 ωi = 1, ωi ∈ [0,1] and

x ,

1
[

q

b

]

4

nb

(12a)

∆xi ,

1




ΞT (qi)q

b− bi





3

nb

(12b)

P−1
i ,

3 nb




Pqqi
Pqbi

PT
qbi

Pbbi





3

nb

(12c)

It has been assumed thatP−1
i is nonsingular. Note that the vectorb can be of any dimension,

denoted bynb. For spacecraft attitude estimation applications with gyros, this vector may contain
a combination of gyro biases, scale factors and misalignment parameters. It is known thatqi and
−qi represent the same attitude. However, changingqi (or q) to−qi (or −q) in Eq. (11) alters the
value ofJ(x) unlessPqbi

is a null matrix. Care therefore needs to be taken in preparing the attitude
data. The basic idea is to have all theqi point largely to the same direction (hereqi are treated the
same way as the line-of-sight vectors).

The quaternion constraint is handled using the method of Lagrange multipliers. The appended
objective function is now

J(∆x) = −
n

∑

i=1

ωi∆xT
i P−1

i ∆xi + λ(1 − qT q) (13)

The necessary conditions for maximization of Eq. (13) are

∂J

∂b
= −2

n
∑

i=1

ωi{qT Ξ(qi)Pqbi
+ (b − bi)

TPbbi
} = 0 (14a)

∂J

∂q
= −2

n
∑

i=1

ωi{qT Ξ(qi)Pqqi
ΞT (qi) + Ξ(qi)Pqbi

(b − bi)} − 2λqT = 0 (14b)

∂J

∂λ
= 1 − qT q = 0 (14c)



Expanding Eq. (14a), and taking the transpose and solving for b yields

b = B−1
bb (d − BT

qbq) (15)

where the following definitions have been used:

Bbb ≡
n

∑

i=1

ωiPbbi
(16a)

d ≡
n

∑

i=1

ωiPbbi
bi (16b)

Bqb ≡
n

∑

i=1

ωiΞ(qi)Pqbi
(16c)

Substituting Eq. (15) into Eq. (14b) with similar manipulations yields

(Bqq − BqqB−1
bb Bqq + λI4×4)q = c − BqbB−1

bb d (17)

where

Bqq ≡
n

∑

i=1

ωiΞ(qi)Pqqi
ΞT (qi) (18a)

c ≡
n

∑

i=1

ωiΞ(qi)Pqbi
bi (18b)

The definitions presented in Eqs. (16) and (18) are formed such thatx can be expressed as




Bqq + λI4×4 Bqb

BT
qb Bbb









q

b



 =





c

d



 (19)

subject to the constraint
qTq = 1 (20)

The matrixB formed by the elements in Eq. (19) is

B =





Bqq Bqb

BT
qb Bbb



 ,





∑n
i=1 ωiΞ(qi)Pqqi

ΞT (qi)
∑n

i=1 ωiΞ(qi)Pqbi

∑n
i=1 ωiPT

qbi
ΞT (qi)

∑n
i=1 ωiPbbi



 (21)

which is a positive semi-definite matrix. It is singular onlywhen all of theqi are identical. As will
be seen, the motivation for expressing the maximization in the form of Eq. (19) is that it is easily
extendible when fusing more then one quaternion.

From Eq. (17), define the following:

Z , Bqq − BqbB−1
bb BT

qb (22a)

g , c −BqbB−1
bb d (22b)

Note thatZ is a positive semi-definite matrix. Maximizing the objective function has now been
reduced to the solution of the following set of consistent Lagrange equations:

(Z + λI4×4)q = g (23a)

qTq = 1 (23b)



SOLUTION TO THE LAGRANGE EQUATIONS

The Lagrange equations in Eq. (23) have been studied in detail. In this section we consider several
solutions.

Secular Equation

First consider an eigenvalue decomposition ofZ = QV QT whereV is a diagonal matrix of
eigenvalues,V , diag(δ1, . . . , δ4), and Q is the associated matrix of eigenvectors satisfying
QT Q = QQT = I. Substituting the eignvalue decomposition forZ in Eq. (23a) and rearrang-
ing yields

QV QT q = −λQQT q + g (24)

If Eq. (24) is pre-multiplied byQT and defining the following[4 × 1] vectors:

u ≡ QT q (25a)

a ≡ QT g (25b)

then Eq. (23a) becomes
V u = −λu + a (26)

BecauseV is diagonal we can now solve for each of theui values:

ui =
ai

δi + λ
(27)

Usingq = Qu, the normalization constraint becomes

qT q = uT u =

4
∑

i=1

(

ai

δi + λ

)2

= 1 (28)

Equation (28) represents an explicit secular function inλ. The explicit secular function is an8th

degree polynomial inλ which must be solved. In [19] it is shown that the optimalλ is the maximum
real zero of Eq. (28). In order to solve Eq. (28), a robust rootfinder is necessary. Onceλmax is
determined, the quaternion and vectorb are determined by

q = (Z + λmaxI4×4)
−1g (29a)

b = B−1
bb (d − BT

qbq) (29b)

Note that the preceding approach is fundamentally the same as that used in the extended QUEST
algorithm [21].

Whenλ is solved iteratively, a good initial guess is important forconvergence and computational
efficiency. A good approximate solution forλ can be found if the correlations between the quater-
nion and other states are small, i.e.Bqb =

∑n
i=1 ωi Ξ(qi)Pqbi

is smaller than the other terms in
Eqs. (23). An approximate quaternion, denoted byqapp, is given by finding the eigenvector asso-
ciated with the maximum eigenvalue of the matrixM = −Bqq. Pre-multiplying Eq. (23a) byqapp
and solving forλ gives the approximation

λapp = qT
appg − qT

app Z qapp (30)



which can be used as a starting guess for the actualλ in an iterative scheme. Note that because the
quaternion and its negative represent the same rotation, then Eq. (30) should be checked using both
qappand−qapp to see which one produces a higher value ofλapp. In many cases,λapp = 0 is a good
initial guess as well [22]. Other iterative schemes can be found in [23–25].

Quadratic Eigenvalue Problem

Rather than solving an explicit secular function inλ, the Lagrange equations can be reduced to
a quadratic eigenvalue problem (QEP) [19]. This is due to thefact that the Lagrange equations
are consistent (equality in the norm constraint). If the Lagrange equations are inconsistent, the
QEP could still be used in order to define the spectrum for which the solution lays. The QEP
is well known because of its many applications to dynamic systems and structural analysis [28].
In many cases one can then reduce the QEP to a standard eigenvalue problem (SEP), for which
solution techniques are well known. Begin by solving Eq. (23a) for q and substituting the result
into Eq. (23b), which gives

gT (Z + λI4×4)
−2g = 1 (31)

Define a new[4 × 1] vectorγ as
γ , (Z + λI4×4)

−2g (32)

Equation (31) can then be written as
gT γ = 1 (33)

Pre-multiplying Eq. (32) by(Z + λI4×4)
2 gives

(Z + λI4×4)
2γ = g (34)

Finally multiplying each side of Eq. (34) by unity using Eq. (33) gives

(Z + λI4×4)
2γ = ggT γ (35)

Equation (35) is the associated QEP for the Lagrange equations of Eq. (23). Reference [19] goes
through several rigorous proofs to show that the maximum eigenvalue of the associated QEP is the
unique solution for the Lagrange equations. As stated, the QEP can be transformed into a SEP with
relative ease. Define the[4 × 1] vectorη as

η , (Z + λI4×4)γ (36)

Substitutingη into Eq. (35) and rearranging slightly yields

Zη − gT g γ = −λη (37)

Rearranging Eq. (36) results in
Zγ − η = −λγ (38)

Defining the vectorξ , [γT ηT ]T allows Eqs. (37) and (38) to be written as

−
[

Z −I4×4

−gT g Z

]

ξ = λξ ⇒ Aξ = λξ (39)

Equation (39) is an SEP and(λ, ξ) are an associated right eigenpair ofA. Because we have an
augmented[8 × 1] vectorξ, there will be 8 eigenpairs. This is consistent with the results of the



secular equation. Again the correct value forλ is the largest real eigenvalue. After determining the
largest eigevalue, Eq. (29) can be used directly to findq andb. Note that determination of the fused
covariancePcc is done prior to determination ofq andb, and has no effect other then the weightω
to the CI algorithm.

Square Root Formulation of CI

If all the qi vectors are close to each other, then the matrix(Z +λI4×4) is close to being singular.
To alleviate this problem a square root formulation is derived in this section based on the techniques
in [29]. First consider that the error-state vector∆xi can be written as

∆x ,

[

ΞT (qi)q
b − bi

]

=

[

Ξ(qi) 03×nb

0nb×4 Inb×nb

]T [

q

b − bi

]

(40)

Using the definition forx from Eq. (12) and defining

zi ,

[

04×1

bi

]

(41a)

Ψi ,

[

Ξ(qi) 04×nb

0nb×3 Inb×nb

]

(41b)

allows the objective function in Eq. (11) to be written as

J(x) = −
n

∑

i=1

ωi (x − zi)
T ΨiP

−1
i ΨT

i (x − zi) (42)

Define the positive semi-definite matrixWi as

Wi = ωiΨiP
−1
i ΨT

i (43)

BecauseWi is positive semi-definite we can compute its matrix square root as

Wi = CT
i Ci (44)

The matrix square root is assisted noting thatWi is symmetric. Computing the eigenvalue decom-
position ofWi gives

Wi = QiΣ
2
i Q

T
i (45)

whereΣi is a diagonal matrix of the singular values ofWi. Comparing Eqs. (44) and (45) yields

Ci = ΣiQ
T
i (46)

DistributingCi into Eq. (42), the objective function is

J(x) = −
n

∑

i=1

(Cix − Cizi)
T (Cix − Cizi) (47)

The cost function

J(x) = −
n

∑

i=1

(Cix − Cizi)
T (Cix − Cizi) (48)



can be written as

J(x) = − (Sx − z)T (Sx − z) − r2 (49)

for someS, z andr. The proof of this relationship is now shown. The summation in Eq. (47) can
be rewritten as

−
n

∑

i=1

(Cix − Cizi)
T (Cix − Cizi) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











C1

C2
...

Cn











x −











C1z1

C2z2
...

Cnzn











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(50)

where||·||2 denotes the 2-norm. Note for any vectory we have||y||22 = yT y. Now suppose we have
an orthogonal matrixU such thatUUT = UT U = I. The 2-norm of the vectory is unaffected by
multiplication withU as

∣

∣

∣

∣UT y
∣

∣

∣

∣

2

2
=

(

UT y
)T (

UT y
)

= yT UUT y = yT y = ||y||22 (51)

Following the results of Eq. (51), pre-multiply the argument of Eq. (50) by some orthogonal matrix
QT :

−
n

∑

i=1

(Cix − Cizi)
T (Cix − Cizi) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

QT











C1

C2
...

Cn











x − QT











C1z1

C2z2
...

Cnzn











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(52)

Now consider the[n(nb + 4) × (nb + 5)] matrixG

G ,











C1 C1z1

C2 C2z2
...

...
Cn Cnzn











(53)

A QR decomposition ofG results in an[n(nb + 5) × (nb + 5)] orthogonal matrixQ and an upper
triangular matrixR partitioned as

R =

(nb+4) 1
[

S z
0 r

]

(nb+4)

1
(54)

whereS is upper triangular. MultiplyingQR = G by QT results in

R = QT











C1 C1z1

C2 C2z2
...

...
Cn Cnzn











(55)



BecauseQT left-multipliesG we have

[

S
0

]

= QT











C1

C2

...
Cn











(56a)

[

z
r

]

= QT











C1z1

C2z2
...

Cnzn











(56b)

Substituting Eq. (56) into Eq. (52) yields

J(x) = −
∣

∣

∣

∣

∣

∣

∣

∣

[

S
0

]

x −
[

z
r

]
∣

∣

∣

∣

∣

∣

∣

∣

2

2

(57)

Equation (57) can also be written as

J(x) = −
∣

∣

∣

∣

∣

∣

∣

∣

[

Sx − z
r

]
∣

∣

∣

∣

∣

∣

∣

∣

2

2

= − ||(Sx − z)||22 − r2

= − (Sx − z)T (Sx − z) − r2

(58)

Once again the quaternion norm constraint is handled using the method of Lagrange multipliers.
Here the constraint is defined as

xT

[

I4×4 04×nb

0nb×4 0nb×nb

]

x , xT Iqx = 1 (59)

which is equivalent to Eq. (14c). The appended objective function is

J(x) = − (Sx − z)T (Sx − z) − r2 + λ(1 − xT Iqx) (60)

Taking the partial derivatives result in the following conditions to maximize the objective function:

∂J(x)

∂x
:
(

STS + λIq

)

x = ST z (61a)

∂J(x)

∂λ
: xT Iqx = 1 (61b)

The solution for the square root approach hinges on the knowledge that the two representations
of the objective function, Eqs. (60) and (13) must be equivalent. It then follows that their respective
necessary conditions, Eqs. (61) and (14) must also be equivalent. Therefore,

B = STS (62a)
[

c
d

]

= ST z (62b)



In what follows we will relate certain quantities of the square root approach with the standard
approach shown previously. First, start off by defining

S−1 , S =

4 nb




Sqq Sqb

0 Sbb





4

nb

(63)

The matrixZ can be written in terms of the partitions ofS as

Z−1 = SqqS
T
qq + SqbS

T
qb (64)

To prove this relationship, recall from the previous sections the following:

B =





Bqq Bqb

BT
qb Bbb



 (65a)

Z = Bqq − BqbB−1
bb

BT
qb (65b)

Now consider blockwise inversion of the following generic matrix

[

A B
C D

]−1

=





(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1



 (66)

Taking the inverse ofB and consulting Eq. (66) we find thatZ−1 is the top-left block ofB−1. That
is

B−1 =

[

Z−1 ·
· ·

]

(67)

where the dot (·) simply represents some quantity. From Eq. (62a)B−1 can also be expressed as

B−1 =
(

STS
)−1

= S−1S−T = SST (68)

Carrying out the blockwise matrix multiplication from Eq. (68) using Eq. (63) results in

B−1 =







SqqS
T
qq + SqbS

T
qb SqbS

T
bb

SbbS
T
qb SbbS

T
bb






(69)

Then from Eq. (67) it follows that Eq. (64) is true.

The vectorg can be written as
g = Z

[

Sqq Sqb

]

z (70)

This is proven by first recalling from our previous derivation, thatg is independent ofλ, shown from
Eq. (22). With this knowledge we setλ = 0. Solving Eq. (23a) directly yields

q̌ = Z−1g (71)

whereq̌ is the optimal quaternion estimate to the unconstrained problem. If we consider Eq. (61)
in the unconstrained case then we have

x = S−1z (72)



Substituting Eq. (63) yields
[

q̌

b̌

]

=

[[

Sqq Sqb

]

z
Sbb z

]

(73)

Comparing top block of Eq. (73) with Eq. (71) we conclude

g = Z
[

Sqq Sqb

]

z

which completes the proof.

The matrixZ−1 can be expressed as the product of a triangular matrix and itstranspose

Z−1 = RT
z Rz (74)

whereRz is a triangular matrix. Consider thatZ−1 from Eq. (64) can be written as

Z−1 = MT M (75)

where

M , QT





ST
qq

ST
qb



 (76)

andQ is an orthogonal matrix. Pre-multiplying Eq. (76) byQ results in

QM =





ST
qq

ST
qb



 (77)

From Eq. (77) we see thatQ andM are the results of aQR decomposition of
[

Sqq Sqb

]T
. With

Rz , M the proof is complete.

For the secular-equation based approach, the eigenvalue decomposition ofZ is needed. We look
to exploit the fact that we can now representZ as a square root factor. The eigenvalue decomposition
of Z is Z = QV QT . BecauseZ is positive definite we can take the square root of the eigenvalue
matrixV :

Z = QΣΣQT (78)

whereΣ is the diagonal matrix of singular values,Σ , diag(σ1, . . . , σn). If there exists some
orthogonal matrixU , then Eq. (78) is equivalent to

Z = QΣUT UΣQT (79)

Comparing Eqs. (74) and (79) we see thatU,Σ andV are the results of a singular value decompo-
sition ofR−1

z . Substituting Eq. (78) into Eq. (70) gives

g = QΣ2QT
[

Sqq Sqb

]

z (80)

From Eq. (25b)
a = QT g = Σ2QT

[

Sqq Sqb

]

z (81)



Givena and the values ofδi , σ2
i , one can now solve the secular equation, Eq. (28) forλ. Once the

the optimal value ofλ is determined, the optimalx is computed using

x =
(

STS + λIq

)−1 ST z (82)

from Eq. (61a). The matrix inverse can be computed effectively as follows. Define

Z , STS + λIq (83)

WhenZ is symmetric, positive definite, it can be characterized by aCholesky factorization

Z = LTL (84)

whereL is defined by four rank-one Cholesky updates [31] ofS with the four update vectors being
the columns of

[

sign(λ)
√

|λ|I4×4

0nb×4

]

After the Cholesky updates then the optimalx is computed as

x = L−1L−TSz (85)

The square-root formulation presented in the preceding sections can be summarized as follows:

1. CalculateCi andzi from Eqs. (46) and (41a), respectively.

2. Form the matrixG using Eq. (53).

3. ComputeS andz based on theQR decomposition ofG.

4. Compute andS = S−1 and partition as in Eq. (63).

5. ComputeRz using aQR decomposition of
[

Sqq Sqb

]T
.

6. ComputeQ, Σ andU from a singular value decomposition ofR−1
z .

7. Computea from Eq. (81) andδi = σ2
i from Σ.

8. Solve the secular equation, Eq. (28) forλ.

9. ComputeL basked on four rank-one Cholesky updates ofS.

10. Compute the optimalx using Eq. (85).

The matrix inverse needs to be replaced by the Penrose-Moorepseudo-inverse when the matrix is
singular.



Practical Issues

All the approaches are derived under the assumption that(Z + λmaxI) is nonsingular and that
the optimal quaternion satisfiesq = (Z + λmaxI4×4)

−1g. When(Z + λmaxI) is singular, which
occurs whenλmax equals the negative of the minimum eigenvalue ofZ, the optimal quaternion may
take a more complex form. Definēq = (Z + λmaxI4×4)

†g, where† denotes the Penrose-Moore
pseudo-inverse. The following observations help determine the optimal quaternion [22]:

1. If l = ‖q̄‖ = 1, thenq = q̄.

2. If l = ‖q̄‖ < 1, then(Z + λmaxI4×4) is singular, andq = q̄ + t, wheret is in the null space
of Z and of magnitude

√
1 − l2. Note that in this case the solution is non-unique because of

the ambiguity in the sign oft.

In some instances it is also found that the norm ofq does not equal unity. To alleviate this problem
in implementation of any of the aforementioned routines, a simple normalization of the quaternion
was performed. Note that this will not change the result of the fusion as the method of Lagrange
multipliers was used to conserve the quaternion norm. In some instances deviation from unity can
be caused by numerical issues and in other cases, the quaternion multiplied by some scale factor.

MULTIPLE ATTITUDE ESTIMATION OF A SPACECRAFT FORMATION

In decentralized attitude estimation of a formation of three or more spacecraft, estimates con-
sisting of spacecraft attitude quaternions and other (unconstrained) quantities are combined by the
CI approach. The challenge for the CI approach comes from themultiple attitude quaternion con-
straints. In this section, a case of relative attitude estimation of a formation of three spacecraft is
considered. The more general case can be treated similarly.The state vector is composed of two
relative attitudesq(1) andq(2), with q(1)T q(1) = 1 andq(2)T q(2) = 1, and unconstrained quan-
tities b. It is assumed that the estimates originate fromn sources. Define the estimate, error, and
associated covariance of theith source as

xi ,

1














q
(1)
i

q
(2)
i

bi















4

4

nb

, ∆xi ,

1














ΞT (q
(1)
i )q(1)

ΞT (q
(2)
i )q(2)

b − bi















3

3

nb

(86a)

P−1
i ,

3 3 nb
















P
q(1)q

(1)
i

P
q(1)q

(2)
i

Pq(1)bi

PT

q(1)q
(2)
i

P
q(2)q

(2)
i

Pq(2)bi

PT
q(1)bi

PT
q(2)bi

Pbbi

















3

3

nb

(86b)

The objective function to be maximized is of the same form as that used in the single quaternion
case, Eq. (13). Augmenting the constraint function with thetwo quaternion constraints gives

J(∆x) = −
n

∑

i=1

ωi∆xT
i P−1

i ∆xi + λ1

[

1 − q(1)T q(1)
]

+ λ2

[

1 − q(2)T q(2)
]

(87)



with λ1 andλ2 being Lagrange multipliers. The necessary conditions are found, after taking the
required partial derivatives and can be arranged into the following form















Bq(1)q(1) + λ1I4×4 Bq(1)q(2) Bq(1)b

BT
q(1)q(2) Bq(2)q(2) + λ2I4×4 Bq(2)b

BT
q(1)b

BT
q(2)b

Bbb



















q(1)

q(2)

b



 =





c(1)

c(2)

d



 (88a)

q(1)T q(1) = 1 (88b)

q(2)T q(2) = 1 (88c)

where

Bq(1)q(1) ,

n
∑

i=1

ωiΞ(q
(1)
i )P

q(1)q
(1)
i

ΞT (q
(1)
i ) (89a)

Bq(1)q(2) ,

n
∑

i=1

ωiΞ(q
(1)
i )P

q(1)q
(2)
i

ΞT (q
(2)
i ) (89b)

Bq(1)b ,

n
∑

i=1

ωiΞ(q
(1)
i )Pq(1)bi

(89c)

Bq(2)q(2) ,

n
∑

i=1

ωiΞ(q
(2)
i )P

q(2)q
(2)
i

ΞT (q
(2)
i ) (89d)

Bq(2)b ,

n
∑

i=1

ωiΞ(q
(2)
i )Pq(2)bi

(89e)

Bbb ,

n
∑

i=1

ωiPbbi
(89f)

and

c(1) ,

n
∑

i=1

ωi Ξ(q
(1)
i )Pq(1)bi

bi (90a)

(90b)

c(2) ,

n
∑

i=1

ωi Ξ(q
(2)
i )Pq(2)bi

bi (90c)

(90d)

d ,

n
∑

i=1

ωi Pbbi
bi (90e)

The goal is to solve the above equations for the optimalλ1, λ2, q(1), q(2), andb. As in the
one-quaternion case in the previous section, there are manycritical points satisfying the necessary



conditions. The optimal set maximizes the objective function. One strategy for finding the optimal
solution is to use a general-purpose root-finder to solve forλ1, λ2, q(1), q(2), andb simultaneously.
However, that does not make use of the structure of the problem and is computationally expensive.
A more theoretically sound solution follows the proceduresin the previous section.

1. Express the optimalb in terms of the optimalq(1) andq(2) from Eq. (88):

b = B−1
bb

(

d− BT
q(1)b

q(1) − BT
q(2)b

q(2)
)

(91)

2. Expressq(1) andq(2) in terms of known quantities:
[

q(1)

q(2)

]

= (D + Λ)−1h (92)

where

D ,

[

D11 D12

D21 D22

]

=

[

Bq(1)q(1) Bq(1)q(2)

BT
q(1)q(2) Bq(2)q(2)

]

−
[

Bq(1)b

Bq(2)b

]

B−1
bb

[

BT
q(1)b

BT
q(2)b

]

(93)

Λ =

[

λ1I4×4 04×4

04×4 λ2I4×4

]

(94)

h ,

[

h(1)

h(2)

]

=

[

c(1) − Bq(1)bB−1
bb

d

c(2) − Bq(2)bB−1
bb d

]

(95)

3. Solve the following two equations forλ1 andλ2 using, for example, SOLVE of MATLAB or
NSolve of Mathematica:

hT (D + Λ)−1

[

I4×4 04×4

04×4 04×4

]

(D + Λ)−1h = 1 (96a)

hT (D + Λ)−1

[

04×4 04×4

04×4 I4×4

]

(D + Λ)−1h = 1 (96b)

4. Compute the optimalq(1) andq(2) in terms of the optimalλ1 andλ2 using Eq. (92).

5. Computeb using Eq. (91).

The optimum set of zeros will now be defined. The optimal set ofzeros{λ1, λ2} are now shown
to be the ones with the maximum sum. Becauseq(1), q(2), andb are functions ofλ1 and λ2,
the objective function is a function ofλ1 andλ2. Substituting Eq. (91) into the objective function
Eq. (87), and with the use of the definitions in Eqs. (89) and (93) yields

Js(λ1, λ2) = −
[

q(1)T q(2)T
]

D
[

q(1)

q(2)

]

+ 2
[

q(1)T q(2)T
]

h (97)

whereJs is the state-dependent part of the objective function. Substituting

h = (D + Λ)

[

q(1)

q(2)

]

(98)



from Eq. (92) allows the objective function to be written as

Js(λ1, λ2) =
[

q(1)T q(2)T
]

D
[

q(1)

q(2)

]

+ 2(λ1 + λ2) (99)

Next consider two sets of zeros{λ1, λ2} and{λ′
1, λ

′
2} which correspond to quaternion estimates

[q(1) q(2)] and[q(1)′T q(2)′T ], respectively. From Eq. (98) it follows that

h = (D + Λ)

[

q(1)

q(2)

]

= (D + Λ′)

[

q(1)′

q(2)′

]

(100)

Equation (100) can also be written as

0 = (D + Λ)

[

q(1)

q(2)

]

− (D + Λ′)

[

q(1)′

q(2)′

]

(101)

Pre-multiplying both sides by[q(1)′T − q(1)T , q(2)′T − q(2)T ] and rearranging yields

[

q(1)T q(2)T
]

D
[

q(1)

q(2)

]

−
[

q(1)′T q(2)′T
]

D
[

q(1)′

q(2)′

]

= (λ′
1 + λ′

2) − (λ1 + λ2) (102)

Equation (99) can then be written as

[

q(1)T q(2)T
]

D
[

q(1)

q(2)

]

= Js(λ1, λ2) − 2(λ1 + λ2) (103)

Using Eq. (103) for each respective set of zeros in Eq. (102) leads to

Js(λ1, λ2) − Js(λ′
1, λ

′
2) = [(λ′

1 + λ′
2) − (λ1 + λ2)] + 2[(λ1 + λ2) − (λ′

1 + λ′
2)]

= (λ1 + λ2) − (λ′
1 + λ′

2)
(104)

From Eq. (104) it is clear that the optimal set of zeros(λ1, λ2) is the set with the maximum sum.

STAR TRACKER SIMULATION RESULTS

In this section results using two star trackers with gyros are shown. The spacecraft is assumed to
be in low-Earth orbit with zero inclination. The trackers are pointed±45 degrees facing away from
the Earth. Each tracker is assumed to have an 8 degree field-of-view and can observe stars down to
magnitude 6 with a maximum of 10 stars at any time. The+45 degree (north) tracker observations
are corrupted with zero-mean Gaussian white noise using a standard deviation of 3.5 arc-sec, while
the−45 degree (south) tracker observations have noise with a standard deviation of 35 arc-sec. A
sampling interval of 1 second is assumed for the star observations and gyro measurements. Each
tracker is running its own extended Kalman filter using a common gyro. Details of the Kalman filter
employed can be found in [3]. The estimated quantities are the spacecraft’s attitude and three gyro
biases, i.e.x = [qT bT ]T .

The CI algorithm was used as previously derived. The weightω was found using a simple 1-D
bounded optimization routine to minimize the trace ofPcc as defined in Eq. (2a). It was found
that minimizing the trace ofPcc provides superior results to minimizing the determinant ofPcc, see
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Figure 1 Comparisons of Minimization Routines and Optimal CI Weights

Figure 1(a). Minimizing the sum of the trace elements squared was also investigated but found to
yield no improvement over minimizingtr(Pcc). The weights associated with minimizing the tr(Pcc)
can be seen in Figure 1(b). During the transient stage, the CIestimate relies more on the north
tracker, which is more accurate than the south tracker. As the filter converges each filter’s estimate
is weighted nearly equally.

The estimated error results can be seen in Figure 2. Figure 2(a) shows the3σ attitude bounds
for the north only, south only and global filters as compared to the CI solution. The global filter
represents a centralized extended Kalman filter which processes all available star and gyro mea-
surements. Clearly, the CI bounds are lower than either tracker alone but greater then that of the
centralized filter. These simulation results confirm that the CI approach is somewhat conservative in
the computation of the fused covariance. The 3-axis attitude errors and respective3σ bounds can be
seen in Figure 2(b). The results from the secular equation algorithm (the square root implementa-
tion is identical to the standard implementation of the secular equation algorithm for this example)
is juxtaposed with those from the QEP algorithm. The resultsare identical without increased mag-
nification.

Simulations are also run assuming that both star trackers have the same noise standard deviation
of 3.5 arc-sec. This was done in order to test the numerical properties of the proposed algorithms.
Figure 3 shows the estimation results. As seen the CI weightsthe results from each filter almost
equally. Also, note the rather large improvement in the3σ attitude bounds obtained by fusing the
two estimates as opposed to the more subtle improvement whenthe noise parameters were unequal.
From the 3-axis attitude errors we see that the QEP algorithmhas some instances where the errors
are outside the3σ bounds. The jumps are instantaneous and last for only one time step. These
are due to a singular(Z + λI4×4) matrix as discussed previously. This occurs when the attitude
estimates from the north and south local filters are almost identical. It should also be noted that
in this case, the maximumλ contained an insignificant imaginary component. When this occurred
only the real part ofλ was used.
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Figure 2 Estimation Errors and Bounds for CI
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Figure 3 Hard Case Simulation. Both Star Trackers have Noise with Standard Devi-
ation of 3.5 arc-sec

CONCLUSIONS

A challenge for fusing estimates from multiple sources of a decentralized system arises from
the correlation of the estimates. Tracking the correlationof the estimates may be impractical or
impossible in certain applications. The CI method is a simple yet effective approach in fusing



multiple estimates of unknown correlation. It guarantees that the updated estimate is consistent,
although the estimate tends to be conservative. When applied to attitude estimation, the CI method
involves solving a quadratic programming problem with one or more quadratic equality constraints
that the attitude quaternions must have unity norm. The Lagrange multipliers are used to augment
the objective function with the equality constraints. Whenthere is only one quaternion constraint,
the solution is obtained by solving the secular equation or aquadratic eigenvalue problem. A square
root formulation of the secular-equation based approach isalso derived. The star tracker simulation
results illustrate the effectiveness of the CI method for single attitude quaternion estimation.
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