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DECENTRALIZED ATTITUDE ESTIMATION USING A
QUATERNION COVARIANCE INTERSECTION APPROACH

John L. Crassidis,* Yang Cheng,’
Adam M. Fosbury,* and Christopher K. Nebelecky?

This paper derives an approach to combine estimates andaoss for decentral-
ized attitude estimation using a quaternion parametéosizal he approach is based
on the covariance intersection method, which is modifieddamiain quaternion nor-
malization in the combination process. A simple simulatiesult is provided where
local extended Kalman filters are used on two star trackars) eunning with com-
mon gyro measurements. The covariance intersection agpi®ahown to provide
more accurate estimates than either of the local filters.

INTRODUCTION

Decentralized estimation is an important topic in a dat@éofusystem composed of several pro-
cessing nodes. The key to a decentralized approach is et tlrough communication links may
exist between some of the nodes, none of the nodes has krgadéaut the overall network topol-
ogy [1]. This has the advantage on not relying on a common aamization system, which upon
failure can cause the whole node structure to also be inbjgeré&nother advantage of decentral-
ized estimation is that nodes can easily be added or deletbée network without requiring drastic
changes to the overall topology. The main disadvantage adrdealized estimation is that since
some of the nodes may be using redundant information, tespective state estimates may be
correlated and the fusion process cannot assume indepmnden

A simple example of a decentralized estimation approacblveg a spacecraft system that has
two star trackers, each running an extended Kalman filtelgusbmmon gyro measurements. The
state vector involves the overall spacecraft attitude amd biases. The star observations between
the two trackers are clearly independent processes, lmg sach filter uses common gyro measure-
ments, correlations will exist. The correlations are awtoally accounted for in the calculation of
the Kalman gain through the cross-correlation covariaroms when a single centralized filter is
processing all star observations and gyro measurementdtaimaously. However maintaining con-
sistent cross covariances is not possible in a decentlatizgtem where estimates using redundant
data are combined. This can yield a covariance that will testanate the actual errors.

An elegant solution to the consistency problem is the cavae intersection (Cl) approach [2].
The authors of this work describe the approach using a geinirgerpretation of the Kalman filter,
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considering the covariance ellipses of a two-dimensiotzévector. When the cross covariance is
known exactly, the fused estimate’s covariance alwaysvatgn the intersection of the individual
covariances. An analogy here is that the form of the estiraatecovariance is identical to the
standard Kalman filter when independence is given and géresdo a colored-noise Kalman filter
[3] when there are known nonzero cross correlations. Wherctbss covariance is unknown, a
consistent estimate is one whose covariance enclosest#insgation region. Note that a family of
solutions is possible and one can be chosen by minimizingxtpected errors by some means, such
as minimizing the trace of the combined covariance matrixthe Cl approach a scalar weighted
average of the covariance matrices is used. When combiwimgstimates, only a one-dimensional
search is required verses one that involves the whole pagasgace in the matrix weighted case.
Fortunately, the standard CI approach is found to be optimahe trace minimization sense, even
in the general weighted case [4]. The Cl is however consgevat that its error ellipse is larger than
the true one. The largest ellipsoid algorithm [5] avoids thy creating the largest ellipse that will
fit within the intersection of the covariances, which is aleanore optimistic than the Cl algorithm
[5, 6], but consistency is yet to be established for this eagin.

An important technology that benefits from decentralizeithregion involves spacecraft forma-
tion flying, which uses a set of smaller and generally cheapacecraft working in cooperation to
achieve a mission objective. The first known recorded stddgranation flying involves the now
well-known concept of using multiple spacecraft to form ateiferometer for synthetic aperture
applications [7]. References [8] and [9] provide an in-tiegirvey of guidance and control issues
in early and modern day spacecraft formation flying appbcest By using decentralized schemes,
the entire formation is less vulnerable to individual spaaf failures both at the estimation and
control levels [10]. Most decentralized spacecraft foioraflying applications focus on relative
position information. For example, [11] shows a study usBRSS signals in a decentralized setting
and lays the foundation for hierarchic clustering to mitggscaling problems for larger fleets. Ref-
erence [12] employs the ClI approach to develop relativeespaftt position and velocity estimates
using relative position measurements. A centralized Kalffiiger for full state estimation, which
includes both relative position and attitude, using onhatiee line-of-sight observations is shown
in [13].

For spacecraft attitude estimation, the four-dimensigpualternion [14] is the attitude parameter-
ization of choice for several reasons: 1) it is free of siagtiks, 2) the attitude matrix is quadratic
in the quaternion components, and 3) the kinematics equaisbilinear and an analytic solution
exists for the propagation. However, since a four-dimaraioector is used to describe three di-
mensions, the quaternion components cannot be indepeotieath other, which is shown by the
fact that the quaternion must have unit norm. This leadsdblpms when attempting to average a
set of quaternions, which is further compounded by the 2:fipimg of the rotation group. Refer-
ence [15] presents an approach for determining the avem@ge-preserving quaternion from a set
of weighted quaternions, which is accomplished by perfogran eigenvalue/eigenvector decom-
position of a matrix composed of the given quaternions anghte. Independence is inherently
implied in the solution. In this paper, the quaternion agar@ algorithm is extended to handle
appended state vectors. In particular, a new CI combinajgoroach is derived that preserves
guaternion normalization during the solution process. @édmEc idea is to perform the Cl operation
over the nonlinear manifold of the unit sphere.

The organization of this paper is as follows. First, the Cprapch is summarized and then
re-derived from a loss-function point of view. Next, a Cl apgch that fuses a single quaternion



and other quantities is derived that maintains normabratif the fused quaternion. A square root
version is also derived that provides a better conditionggi@ach from a numerical viewpoint.
Theory to construct a Cl approach to handle the case of 1 quaternions is then developed.
Finally, simulation results for the single quaternion caszshown using a two star-tracker system,
with each tracker incorporating common gyro measuremaerttseir decentralized nodes.

COVARIANCE INTERSECTION

This section summarizes the Cl approach (see [2] for mogglglgtwhich is rooted in the concept
of Gaussian intersection [16]. Consider two estimate-damae pairs{a, P,,} and{b, Py}. The
true values of each are denoted with an overbar, with

paa = E{ééT}> Pab = E{QBT}v pbb = E{B BT} (l)

wherea £ a —a andb £ b — b, which are the state errors afg -} is the expectation operator. It

is assumed that the estimates #andb are consistent, so th#&,, — P,, > 0 and Py, — Py, > 0.
This means thaP,, — P,, and Py, — Py, are positive semi-definite matrices. A consistent estimate
formed by fusinga andb is given by

Pl=wP '+ (1 -w)Pyt (2a)
c=wP..Pgla+ (1 —w)P.Py'b (2b)

wherew € [0, 1] is a scalar weight. The requirement forensures that the covarianég. > 0,
P,, > P.., andPy, > P... Reference [2] proves tha®.. — P.. > 0 for all P,;, andw, where
P.. = E{¢&"} with ¢ £ ¢ — ¢. The weight can be found using a simple optimization schédrae t
minimizes the trace or the determinant/®f.. The trace and the determinant@f. characterize the
size of the Gaussian uncertainty ellipsoid associated ®ithin two-dimensional cases, the former
is approximately proportional to the squared perimetehefdllipse and the latter is proportional
to the squared area of the ellipse. Consider the idehtgtfdet P..) = tr(log P..), wheretr is the
matrix trace operator. Using the fact that the logarithmcfiom is monotonic, it can be seen that
minimizing the determinant aP.. is equivalent to minimizing the trace of the matrix loganitiof
P.., not to minimizing the trace aP... Minimizing the trace or the determinant 6. is a convex
optimization problem. This means that the cost function drag one local optimum ofv in the
range of{0, 1], which is also the global optimum.

L oss Function Point of View

The CI solution can be determined from a loss function pofntiew. The usefulness of this
perspective will be made clear in the next section. Considaimizing the following loss function:

J(c) =w(c— a)TPa_al(c —a)+ (1 —w)(c— b)TPbgl(c —Db) (€))

The loss function is identical to that of fusing two uncoateld estimates with dilated covariances
P,,/wandPy/(1 — w), respectively. Minimizing Eq. (3) with respect ¢results in

wic—a) Pl +(1-w)(c—b'P,'=0 (4)
Taking the transpose and rearranging yields

(wP'+ (1 —w)Py')c=wPla+ (1-w)Py'b (5)



Using the definition of?,.. from Eq. (2a) we obtain
¢ = P wP'a+ (1 —w)Py,'b (6)

which is identical to Eq. (2b). Note that when= 0.5 the loss function is equivalent to maximum
likelihood estimation with the assumed independence ptppg@plied.

Fusion of Multiple Estimates

Itis straightforward to apply the Cl approach to fuse mugtigstimates. The Cl algorithm closely
resembles an electrical resistance calculation withinrallgh architecture. Given a set af esti-
mates{xy, X2, ..., Xn} and associated covariancgB,, P, ..., P,}, a consistent estimate of the
fused estimate and covariance is given by

n
C=Pe > wiP'x; (7a)
i=1
Pl=wi Pl 4 woPy o w, Pt (7b)

where the weights satisfy"" ; w; = 1 andw; € [0,1]. The weightsu; can be found by minimizing
the trace or the determinant &f. subject to the aforementioned constraints. The boundedd opt
mization problem is convex and can be solved efficiently gisiar example, CVX, the MATLAB
software for disciplined convex programming [17].

ATTITUDE ESTIMATION VIA COVARIANCE INTERSECTION

In this section the CI approach is extended to attitude esiim. The objective is to fuse
attitude estimates with unknown correlations to yield ajldmuaternion estimate. It is assumed
that thei" state vectorx;, is composed of a quaternior,, and other quantitiesh;, such as
gyro biases. A standard multiplicative quaternion Kalm#arfis employed, where the covariance
matrix, denoted byP;, is the reduced order form for the small half-attitude esramd errors for the
remainder quantities [18]. Clearly, Eq. (7a) cannot beatliyeemployed in this case because the
resulting quaternion will not be guaranteed to have unitmoFor simplicity, we assume that the
covariance after the Cl update is of the form Eq. (7b), indejpat of the updated state estimate.
The optimal weights used in Eq. (7a) are determined by miiirgithe trace or the determinant of
the covariance of the assumed form.

A method to average quaternions is presented in [15], wHadhshows its relation to maximum
likelihood estimation. The loss function is given by

J(@) =Y q"Z(a) Pl = (ai)q (8)
=1

subject to the constrairit— q”'q = 0. The matrix=(q) is defined by

[1]

= T

(q) 2 [Q4I3x_3p+ [PX]} o)

wherep denotes the vector part of the quaternion ané the scalar part, i.ey £ [p” q]”. The
magnitude of=7(q;)q is the absolute value of the sine of the half-error angle.[TBje matrix



P,, is the3 x 3 covariance matrix of the vector part of the error quaterriorresponding tey;.
The solution approach uses a Lagrange multiplier to harieeqjuality constraint. The average
quaternion is given by finding the eigenvector correspapdmthe maximum eigenvalue of the
matrix

n

M == "E(a) P Z" (@) (10)

i=1

A straightforward implementation of the quaternion averggalgorithm cannot be applied to
the problem with appended state vectors, i.e. state vetttatsinclude quantities other than the
qguaternion. To overcome this issue the following functi®miaximized:

J(Ax) = Zwl AXTP LAx; (12)
i=1

where}"" | w; =1, w; € [0,1] and

alql 4
X = [b} o (12a)
1
ET(Q@)Q 3
Ax; = (12b)
b — b;
3 ny
Pyq; qui 3
Pl A (12¢)
Pg;h Pbbi

It has been assumed thl§3;‘1 is nonsingular. Note that the vectbrcan be of any dimension,
denoted byn,. For spacecraft attitude estimation applications withogythis vector may contain
a combination of gyro biases, scale factors and misalighip@rameters. It is known thaf; and
—q; represent the same attitude. However, changin@r q) to —q; (or —q) in Eq. (11) alters the
value of J(x) unlessP,, is a null matrix. Care therefore needs to be taken in pregdhia attitude
data. The basic idea is to have all #jepoint largely to the same direction (hejjigare treated the
same way as the line-of-sight vectors).

The quaternion constraint is handled using the method ofdrege multipliers. The appended
objective function is now

J(AX) = szAxTP AX; + A1 —q7q) (13)
=1
The necessary conditions for maximization of Eq. (13) are

= = —2sz{q E(9;)Pgv, + (b —bi) Py} = 0 (14a)

5 = 2 sz{q E(9;)Pgq, = (QZ) + E(d;)Pgp,; (b — b;) } — oxaql =0 (14b)

oJ

a)\_l—qq 0 (14c)



Expanding Eg. (14a), and taking the transpose and solvinigy yeelds
b =B,'(d - BLa) (15)

where the following definitions have been used:

By = > wiPu, (16a)
i=1
d=) " wiPu,b (16b)
=1
By = Z wi=(d;)Pyb; (16¢)
i=1
Substituting Eq. (15) into Eq. (14b) with similar manipidais yields
(Byg — BygBiy Byg + Muxa)q = € — BBy, 'd (17)
where
By = Zwia(qi)PQQiET(qi) (18a)
i=1
c= Z w;Z(;) Pgp, bi (18b)
=1

The definitions presented in Egs. (16) and (18) are formel gwatx can be expressed as

qu + AMaxa qu q C
= (19)
BL Byl [b] |d

q'q=1 (20)
The matrixB formed by the elements in Eq. (19) is

|:qu qu} R |:E?1wiE(Qi)quiET(Qi) E?lwiE(Qi)qul}
B: pr—

Bl, Bu i wiP, BT (ai) >y wiPo

which is a positive semi-definite matrix. It is singular omien all of theq; are identical. As will
be seen, the motivation for expressing the maximizatioménform of Eq. (19) is that it is easily
extendible when fusing more then one quaternion.

subject to the constraint

(21)

From Eq. (17), define the following:
Z £ Byg — BuBy,' BL, (22a)
g2 c— ByB,,'d (22b)

Note thatZ is a positive semi-definite matrix. Maximizing the objeetifunction has now been
reduced to the solution of the following set of consistengiamge equations:

(Z + Muxa)a =9 (23a)
qTq =1 (23b)



SOLUTION TO THE LAGRANGE EQUATIONS

The Lagrange equations in Eq. (23) have been studied in.det#iis section we consider several
solutions.

Secular Equation

First consider an eigenvalue decompositionZof= QV Q" whereV is a diagonal matrix of
eigenvalues,V £ diag(dy,...,d4), and Q is the associated matrix of eigenvectors satisfying
QTQ = QQT = I. Substituting the eignvalue decomposition 6rin Eq. (23a) and rearrang-
ing yields

QVQTg=-2QQ"q+g (24)
If Eq. (24) is pre-multiplied byQ” and defining the following4 x 1] vectors:
u=Q7%q (25a)
a=Q’g (25b)
then EqQ. (23a) becomes
Vu=—-X\u+a (26)

Becausé/ is diagonal we can now solve for each of thevalues:

a;

TS

(27)

Uj

Usingg = Qu, the normalization constraint becomes

4 2
To Ty a; _
qq_““_§:<&+x>"l @9

i=1

Equation (28) represents an explicit secular function.iriThe explicit secular function is agi”
degree polynomial it which must be solved. In [19] it is shown that the optima$ the maximum
real zero of Eq. (28). In order to solve Eq. (28), a robust fowter is necessary. Oncg,.x IS
determined, the quaternion and vedbaare determined by

q=(Z+ >\maxI4><4)_lg (29a)
b=5,'(d-Bq) (29b)

Note that the preceding approach is fundamentally the santiead used in the extended QUEST
algorithm [21].

When\ is solved iteratively, a good initial guess is importantéonvergence and computational
efficiency. A good approximate solution farcan be found if the correlations between the quater-
nion and other states are small, &y, = > ', w; Z(q;) Py, is smaller than the other terms in
Egs. (23). An approximate quaternion, denotedgly, is given by finding the eigenvector asso-
ciated with the maximum eigenvalue of the matVt = —B,,. Pre-multiplying Eq. (23a) by,
and solving for\ gives the approximation

Aapp = qupg - qup Z Qapp (30)



which can be used as a starting guess for the agtiralan iterative scheme. Note that because the
guaternion and its negative represent the same rotatien,Ely. (30) should be checked using both
qappand—qappto see which one produces a higher valug . In many cases)app = 0 is a good
initial guess as well [22]. Other iterative schemes can baddn [23—-25].

Quadratic Eigenvalue Problem

Rather than solving an explicit secular functionlinthe Lagrange equations can be reduced to
a quadratic eigenvalue problem (QEP) [19]. This is due toféioe that the Lagrange equations
are consistent (equality in the norm constraint). If the laage equations are inconsistent, the
QEP could still be used in order to define the spectrum for Wit solution lays. The QEP
is well known because of its many applications to dynamidesys and structural analysis [28].
In many cases one can then reduce the QEP to a standard d&igepvablem (SEP), for which
solution techniques are well known. Begin by solving Eq.a)2f®r q and substituting the result
into EqQ. (23b), which gives

0 (Z + Myxy)2g=1 (31)

Define a new4 x 1] vectory as
72 (Z+ Mixa) %9 (32)

Equation (31) can then be written as
gy=1 (33)

Pre-multiplying Eq. (32) by Z + A4« 4)? gives
(Z +Maxa)y =9 (34)
Finally multiplying each side of Eq. (34) by unity using Eg§3] gives
(Z + Maxa)*y = 99" (35)

Equation (35) is the associated QEP for the Lagrange eaqsatibEq. (23). Reference [19] goes
through several rigorous proofs to show that the maximurareiglue of the associated QEP is the
unique solution for the Lagrange equations. As stated, the Gan be transformed into a SEP with
relative ease. Define thé x 1] vectorn as

N2 (Z+ Muxa)y (36)

Substitutingn into Eq. (35) and rearranging slightly yields

Zn—-g'gy = (37)
Rearranging Eq. (36) results in
Zy—m=—-X\y (38)
Defining the vectot = [yT n”]7 allows Egs. (37) and (38) to be written as
Z —I4><4:|
- = = A€ =)\ 39
[_ng 7 | €=AE §=X¢ (39)

Equation (39) is an SEP ar(d, &) are an associated right eigenpair.4f Because we have an
augmented8 x 1] vectorg, there will be 8 eigenpairs. This is consistent with the ltssof the



secular equation. Again the correct value Xas the largest real eigenvalue. After determining the
largest eigevalue, Eg. (29) can be used directly todiatidb. Note that determination of the fused
covarianceP,. is done prior to determination a@f andb, and has no effect other then the weight
to the Cl algorithm.

Square Root Formulation of ClI

If all the g, vectors are close to each other, then the m&fix- A1, ) is close to being singular.
To alleviate this problem a square root formulation is detiin this section based on the techniques
in [29]. First consider that the error-state vecfox; can be written as

='(a)a] _ [E(@) Osn,|' [ a
A 7 _ 7 Xnp
Ax= { b—b; } B [Oan4 Ian"J {b - bl] (40)

Using the definition fox from Eq. (12) and defining

72 PﬁQ] (412)
oA E(ql) 04)(711,
\IIZ N |:0an3 ITLban:| (41b)

allows the objective function in Eq. (11) to be written as

J(X) = — f: wi (x —z)" w0, P71l (x - 7) (42)
i=1

Define the positive semi-definite matfid; as
Wi = w; ¥, P! (43)
Becausé/V; is positive semi-definite we can compute its matrix squaot as
Wi =CiC; (44)

The matrix square root is assisted noting thigtis symmetric. Computing the eigenvalue decom-
position of W; gives
Wi = QisiQ! (45)

where; is a diagonal matrix of the singular valueslof. Comparing Egs. (44) and (45) yields
Ci =%Qf (46)

Distributing C; into Eq. (42), the objective function is
J(X) = — Z (OZX — CZ‘ZZ')T (CZX — szz) (47)
i=1

The cost function

J(X) = — zn: (OZX — CZ‘ZZ')T (CZX — szz) (48)
=1



can be written as
J(X) = — (Sx —2)T (8x — z) — 1 (49)

for someS, z andr. The proof of this relationship is now shown. The summatioig. (47) can
be rewritten as

2

Ch Cizy
n C Csz
S (Cx—Cz) T (Cx—Cz)=— ||| Cx-| (50)
=1 . .
C, C

2

where||-||, denotes the 2-norm. Note for any vecyowe have]|y| |§ = yTy. Now suppose we have
an orthogonal matri¥/ such that7U” = UTU = I. The 2-norm of the vectoy is unaffected by
multiplication withU as

2 T
|U™y]l, = UTy)" (UTy) =y"UUTy =yTy = |lyll; (51)
Following the results of Eq. (51), pre-multiply the argurnehEg. (50) by some orthogonal matrix

QT:

2

Cl 0121
n C Caz
S (Cx - Ciz) T (Cx—Cz) = —||Q7 | | x-Q" | (52)
i=1 : :
Ch, Ch )
Now consider thén(n;, +4) x (np + 5)] matrixg
G Cizy
02 0222
g= 1. . (53)
Cn Cnzn

A QR decomposition of results in arin(n;, + 5) x (np + 5)] orthogonal matrixQ and an upper
triangular matrixR partitioned as

(nb+4) 1

Szl (et
el

whereS is upper triangular. Multiplying) R = G by Q7 results in

Cl 0121

T CQ 0222
R=Q" | . . (55)

Cc, C,z,



Because&)” left-multiplies G we have

C
HECAn (56a)

C
[Z] _of 229 (56b)

(57)

Equation (57) can also be written as
2
2
= —[(Sx—2)[); —

so0=-[>77 (59
= —(Sx—2)T (Sx—2) —r?

Once again the quaternion norm constraint is handled usiagntethod of Lagrange multipliers.
Here the constraint is defined as

x’ {[4” 04”‘*’} x & x Ix =1 (59)

Oan4 OTLb XNy
which is equivalent to Eq. (14c). The appended objectivetian is
JX) = — (Sx—2) (Sx—2) —r2 + A1 — xTIx) (60)

Taking the partial derivatives result in the following cdiwhs to maximize the objective function:

agi’() (STS + M) x = 8"z (61a)
OJ(X) . r, o
- X Ix=1 (61b)

The solution for the square root approach hinges on the laudgye that the two representations
of the objective function, Eqgs. (60) and (13) must be eqgeivallt then follows that their respective
necessary conditions, Eqgs. (61) and (14) must also be denivd herefore,

B=STs (62a)
H — 5Tz (62b)



In what follows we will relate certain quantities of the sguaoot approach with the standard
approach shown previously. First, start off by defining

4 np
Sqq Sab| 4
S128= (63)
0 Sp| ™
The matrixZ can be written in terms of the partitions Sfas
Z71 = SeqSt + SipSy (64)
To prove this relationship, recall from the previous sewithe following:
Byq Bgb
B = (65a)
B:fb By
Z = Byg — BuBy,' BL, (65b)
Now consider blockwise inversion of the following generiatnix
[A B] -1 (A—BDtC)! —(A-BD™'C)"'BD™!
— (66)
¢ D -D7'Cc(A-BD"'C)"' D '4+ D7 'C(A-BD'C)"'BD™!
Taking the inverse oB and consulting Eq. (66) we find that~! is the top-left block of3~!. That
is
-1
Bl — {Z | } 67)

where the dot-| simply represents some quantity. From Eq. (62a} can also be expressed as

1

B l=(sTs) =s5'sT=g5" (68)

Carrying out the blockwise matrix multiplication from E&8) using Eq. (63) results in
Sqqsg; + quS(% SpSE
B! = (69)
Sbbsg;, Spy Sk
Then from Eq. (67) it follows that Eq. (64) is true.

The vectorg can be written as
9=7 [Sqq qu] z (70)

This is proven by first recalling from our previous derivatithatg is independent ok, shown from
Eq. (22). With this knowledge we sat= 0. Solving Eq. (23a) directly yields
q=27"g (71)

whereq is the optimal quaternion estimate to the unconstrainetleno. If we consider Eq. (61)
in the unconstrained case then we have
x=8"!z (72)



Substituting Eq. (63) yields

- [

Comparing top block of Eq. (73) with Eq. (71) we conclude
9=2 [Sqq qu] z

which completes the proof.

The matrixZ~"! can be expressed as the product of a triangular matrix atitspose
Z~'= RIR. (74)

whereR, is a triangular matrix. Consider that—! from Eq. (64) can be written as

Zl =M"M (75)
where
T
Sqq
M£QT (76)
Sab
and( is an orthogonal matrix. Pre-multiplying Eq. (76) Byresults in
St
QM = (77)
Sab

From Eq. (77) we see th& and M are the results of R decomposition of S, qu]T. With
R. £ M the proof is complete.
For the secular-equation based approach, the eigenvateengesition ofZ is needed. We look
to exploit the fact that we can now represgras a square root factor. The eigenvalue decomposition

of Zis Z = QVQT. Because? is positive definite we can take the square root of the eideava
matrix V:

Z =QxxQ" (78)

whereY is the diagonal matrix of singular values, £ diag(oy,...,0,). If there exists some
orthogonal matrix/, then Eq. (78) is equivalent to

Z =QxUTuxqQ" (79)

Comparing Egs. (74) and (79) we see thab: andV are the results of a singular value decompo-
sition of R . Substituting Eq. (78) into Eq. (70) gives

9=QX%Q" [Syy Sp)z (80)

From Eqg. (25b)
a=Q"g=2%Q" [Syy Sp)z (81)



Givenaand the values of; = o2, one can now solve the secular equation, Eq. (28)\f@nce the
the optimal value of\ is determined, the optimalis computed using

x= (8T8 + A1) "' 87z (82)
from Eq. (61a). The matrix inverse can be computed effelgtiae follows. Define
Z2428Ts + ), (83)
When Z is symmetric, positive definite, it can be characterized Bhalesky factorization
zZ=r"r (84)
where/ is defined by four rank-one Cholesky updates [31Fafith the four update vectors being

the columns of
[Sign()\)\/ ])\]I4X4]
Oan4

After the Cholesky updates then the optima$ computed as

x=L"trTS8z (85)
The square-root formulation presented in the precedintiossccan be summarized as follows:

1. CalculateC; andz; from Egs. (46) and (41a), respectively.
2. Form the matrixg using Eg. (53).

3. ComputeS andz based on thé) R decomposition of;.

4. Compute and = S~! and partition as in Eq. (63).
5. Computerz, using aQ R decomposition of S, qu]T

6. ComputeR, ¥ andU from a singular value decomposition Bf .
7. Computea from Eq. (81) and); = o2 from X.

8. Solve the secular equation, Eqg. (28) for

9. ComputeL basked on four rank-one Cholesky updates of

10. Compute the optimad using Eq. (85).

The matrix inverse needs to be replaced by the Penrose-Msewedo-inverse when the matrix is
singular.



Practical 1ssues

All the approaches are derived under the assumption(fiat A\max/) is nonsingular and that
the optimal quaternion satisfies= (Z + Amaxlax4) " 'g. When(Z + Amaxl) is singular, which
occurs whemnax equals the negative of the minimum eigenvaluéZpthe optimal quaternion may
take a more complex form. Defirg = (Z + )\maxl4x4)Tg, wheret denotes the Penrose-Moore
pseudo-inverse. The following observations help deteerttie optimal quaternion [22]:

1. Ifi=||q|| =1, thenq = q.

2. If I =|q]| < 1, then(Z + Amaxlax4) is singular, andy = q + t, wheret is in the null space
of Z and of magnitude/1 — 2. Note that in this case the solution is non-unique because of
the ambiguity in the sign of.

In some instances itis also found that the normg dbes not equal unity. To alleviate this problem
in implementation of any of the aforementioned routinesyrgke normalization of the quaternion
was performed. Note that this will not change the result efftision as the method of Lagrange
multipliers was used to conserve the quaternion norm. Inesimstances deviation from unity can
be caused by numerical issues and in other cases, the qaaterualtiplied by some scale factor.

MULTIPLE ATTITUDE ESTIMATION OF A SPACECRAFT FORMATION

In decentralized attitude estimation of a formation of ¢hog more spacecraft, estimates con-
sisting of spacecraft attitude quaternions and other (ustcained) quantities are combined by the
Cl approach. The challenge for the Cl approach comes frormtliéple attitude quaternion con-
straints. In this section, a case of relative attitude estion of a formation of three spacecratft is
considered. The more general case can be treated simildig.state vector is composed of two
relative attitudesy™ andq®, with qW7q™ = 1 andq??Tq® = 1, and unconstrained quan-
tities b. It is assumed that the estimates originate frorsources. Define the estimate, error, and
associated covariance of tie source as

1 1

[qM] 4 [=7(qM)qM] 3
X; L q2(2) 4, Ax; £ ET(qu))q(Z) 3 (863.)
L b; i b L b — b; ] b
3 3 ny

’Pq(l)q/gl) Pq(l)QEQ) Pq(l)bz 3

-1 a T
P = Pqu)q@) Piog® P, | 3 (86b)

i

T T np
L Pq(l)bi 7Dq@)bi Pob;

The objective function to be maximized is of the same formhas tised in the single quaternion
case, Eq. (13). Augmenting the constraint function withttix@ quaternion constraints gives

J(Az) = =3 wiAxI P A% + A |1 - q(l)Tq(l)} T [1 _ g7 q<2>] (87)
i=1



with A\; and \; being Lagrange multipliers. The necessary conditions aued, after taking the
required partial derivatives and can be arranged into thawfimg form

[ B,y + Atlaxa B, B,y ]
a1 [e®
Bl o By + Xolaxa By | (@ | = |c®@ (88a)
b d
B;Fu)b 85(2% Bbb ]
qMTqM =1 (88b)
where

B,w,m = ZwiE(qE”)Pq<1>q,§1>ET(q§”) (89a)

i=1
Byngo 2 Y wiE@)P, ), 0= (a) (89b)

=1
B,y = Zwﬁ(qﬁ”)?’m (89c)

=1

B 242 = ZwiE(qu))Pq@)q?)ET(qu)) (89d)

i=1
B, = Z%E(qu))%(z)bi (89e)

=1
By £ wiPy, (89f)
=1
and
c® 230 E(qV) P, bi (90a)
i=1
(90b)
c® 23" 0 E(q) Py, bi (90c)
=1
(90d)
d= Z w; P, b (90e)
=1

The goal is to solve the above equations for the optital\s, gV, g2, andb. As in the
one-quaternion case in the previous section, there are aréinal points satisfying the necessary



conditions. The optimal set maximizes the objective furctiOne strategy for finding the optimal
solution is to use a general-purpose root-finder to solvé foh,, g, g?), andb simultaneously.
However, that does not make use of the structure of the probled is computationally expensive.
A more theoretically sound solution follows the procedurethe previous section.

1. Express the optimal in terms of the optimag*) andq‘? from Eq. (88):

b= 85" (d-BL,a") - Bl ,a?) (91)

2. Expressy') andq® in terms of known quantities:

q® .

{q(z)} =(D+A)"h (92)
where
D11 Dio Bwgm Bywge B,y ot ot .

DES — ‘g 9 q B B B 93
|:D21 D22:| Bg—él)q@) Bq@)q@) Bq(2)b bb |: q¢Vb q2b ( )

[ AMlaxa Ogxa
A= [ Ogx4 )\2I4><4:| (94)

T h®| T |e®@ _Bq<2)b3§,ld

3. Solve the following two equations fog and\, using, for example, SOLVE of MATLAB or
NSolve of Mathematica:

hT(D—I—A)_l |:I4><4 04><4:| ('D—I—A)_lh -1 (963.)
O4xa  Osx4

hY(D + A)~! {04“ 04X4] (D+A)"h=1 (96b)
O4xa  Laxa

4. Compute the optimaj") andq(® in terms of the optimal; and\, using Eq. (92).

5. Computeb using Eq. (91).

The optimum set of zeros will now be defined. The optimal seepbs{ A, \,} are now shown
to be the ones with the maximum sum. Becau$®, q?, andb are functions of\; and \s,

the objective function is a function of; and A,. Substituting Eg. (91) into the objective function
Eq. (87), and with the use of the definitions in Eqgs. (89) ar&) y&elds

1)
T (A1, A2) = = [qT q@)T}D[z@J*?[qu a®”]h (97)

whereJ? is the state-dependent part of the objective function. tBubag

h=(D+A) {qu)} (98)
= q?



from Eq. (92) allows the objective function to be written as

(1)

J (M, A2) = [qWT T D [3(2)} +2(A1 + A2) (99)

Next consider two sets of zerds\1, A2} and{\, \;} which correspond to quaternion estimates
[V q@]and[qV'T q@'T], respectively. From Eq. (98) it follows that

q g
h=(D+A) [ (2)} =(D+ AN 2y (100)
q q
Equation (100) can also be written as
1 9%
0=(D+A) [3(2)] —(D+A) 2(2),] (101)

Pre-multiplying both sides bjg™'”" — qM7 | q@'T — q(37] and rearranging yields

wr g1 p [1V] g @] p |9 o Sy (102)
R q@| e q q@r| = P12 = (at )

Equation (99) can then be written as

0
[q)T q@T] D [2@)] = J*(A1, A2) — 2(A1 + Ag) (103)

Using Eq. (103) for each respective set of zeros in Eq. (1€&)4 to

TP(A1, A2) = TP AG) = [(A] 4+ A5) — (A1 + M)l 4 2[(A1 + A2) = (A] + A9)]

= (A1 A2) — (A1 +29) (104)

From Eq. (104) it is clear that the optimal set of zefas, \2) is the set with the maximum sum.

STAR TRACKER SIMULATION RESULTS

In this section results using two star trackers with gyr@ssimown. The spacecraft is assumed to
be in low-Earth orbit with zero inclination. The tracker® @ointed+45 degrees facing away from
the Earth. Each tracker is assumed to have an 8 degree figldvofand can observe stars down to
magnitude 6 with a maximum of 10 stars at any time. ¥ degree (north) tracker observations
are corrupted with zero-mean Gaussian white noise usirgnaatd deviation of 3.5 arc-sec, while
the —45 degree (south) tracker observations have noise with aatdrtviation of 35 arc-sec. A
sampling interval of 1 second is assumed for the star obsemgaand gyro measurements. Each
tracker is running its own extended Kalman filter using a cammyro. Details of the Kalman filter
employed can be found in [3]. The estimated quantities a&epfacecraft’s attitude and three gyro
biases, i.ex = [q” b7]T.

The CI algorithm was used as previously derived. The weightas found using a simple 1-D
bounded optimization routine to minimize the tracef as defined in Eqg. (2a). It was found
that minimizing the trace of,. provides superior results to minimizing the determinanPgf see
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Figure 1(a). Minimizing the sum of the trace elements sqliavas also investigated but found to
yield no improvement over minimizing (P..). The weights associated with minimizing thef)
can be seen in Figure 1(b). During the transient stage, thesthate relies more on the north
tracker, which is more accurate than the south tracker. Adiltier converges each filter's estimate
is weighted nearly equally.

The estimated error results can be seen in Figure 2. FigalesBpws the3o attitude bounds
for the north only, south only and global filters as compaethe Cl solution. The global filter
represents a centralized extended Kalman filter which gesseall available star and gyro mea-
surements. Clearly, the Cl bounds are lower than eithekeraglone but greater then that of the
centralized filter. These simulation results confirm that@h approach is somewhat conservative in
the computation of the fused covariance. The 3-axis agigrdors and respectidz bounds can be
seen in Figure 2(b). The results from the secular equatigori#thm (the square root implementa-
tion is identical to the standard implementation of the &goequation algorithm for this example)
is juxtaposed with those from the QEP algorithm. The resarisidentical without increased mag-
nification.

Simulations are also run assuming that both star trackess th@ same noise standard deviation
of 3.5 arc-sec. This was done in order to test the numericgdguties of the proposed algorithms.
Figure 3 shows the estimation results. As seen the CI wetbktsesults from each filter almost
equally. Also, note the rather large improvement in 3reattitude bounds obtained by fusing the
two estimates as opposed to the more subtle improvement thbemise parameters were unequal.
From the 3-axis attitude errors we see that the QEP algotithenrsome instances where the errors
are outside th&c bounds. The jumps are instantaneous and last for only oreedtap. These
are due to a singularZ + Al4x4) matrix as discussed previously. This occurs when the déitu
estimates from the north and south local filters are almaaitidal. It should also be noted that
in this case, the maximurk contained an insignificant imaginary component. When tbh@uoed
only the real part oA was used.
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Figure3 Hard Case Simulation. Both Star Trackershave Noisewith Standard Devi-
ation of 3.5 arc-sec

CONCLUSIONS

A challenge for fusing estimates from multiple sources ofeaeitralized system arises from
the correlation of the estimates. Tracking the correlatbthe estimates may be impractical or
impossible in certain applications. The Cl method is a samt effective approach in fusing



multiple estimates of unknown correlation. It guarantded the updated estimate is consistent,
although the estimate tends to be conservative. When dgpliattitude estimation, the ClI method

involves solving a quadratic programming problem with onenore quadratic equality constraints

that the attitude quaternions must have unity norm. Theadragg multipliers are used to augment
the objective function with the equality constraints. Wiltleare is only one quaternion constraint,

the solution is obtained by solving the secular equationguaairatic eigenvalue problem. A square
root formulation of the secular-equation based approaals@sderived. The star tracker simulation

results illustrate the effectiveness of the Cl method fogls attitude quaternion estimation.

REFERENCES

[1] S. J. Julier and J. K. Uhlmann, “General DecentralizethFausion with Covariance Intersection (Clifandbook
of Multisensor Data Fusion (D. L. Hall and J. Llinas, eds.), ch. 12, Boca Raton, FL: CREsBy 2001.
[2] S.J.Julier and J. K. Uhlmann, “A Non-Divergent EstinsatiAlgorithm in the Presence of Unknown Correlations,”
Proceedings of the American Control Conference, Vol. 4, Albuguerque, NM, June 1997, pp. 2369-2373.
[3] J.L.Crassidis and J. L. Junkin®ptimal Estimation of Dynamic Systems. Boca Raton, FL: Chapman & Hall/CRC,
2004.
[4] L. Chen, P. O. Arambel, and R. K. Mehra, “Estimation Undiétknown Correlation: Covariance Intersection
Revisited,”|EEE Transactions on Automatic Control, Vol. 47, Nov. 2002, pp. 1879-1882.
[5] A.R. Benaskeur, “Consistent Fusion of Correlated DatarSes,”Proceedings of the 28th Annual Conference of
the IEEE Industrial Electronics Society, Vol. 4, Sevilla, Spain, Nov. 2002, pp. 2652-2656.
[6] D.Smithand S. Singh, “Approaches to Multisensor Datai6iin Target Tracking: A SurveylEEE Transactions
on Knowledge and Data Engineering, Vol. 18, Dec. 2006, pp. 1696-1710.
[7] G. B. Sholomitsky, O. F. Prilulsky, and V. G. Rodin, “lafiRed Space Interferomete28th International Astro-
nautical Congress of the International Astronautical Federation, Prague, Czechoslovakia, Sept. 1977. IAF-77-68.
[8] D.P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A Survey afc®graft Formation Flying Guidance and Control (Part
1): Guidance,”Proceedings of the American Control Conference, Vol. 2, Denver, CO, June 2004, pp. 1733-1739.
[9] D.P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A Survey afcggraft Formation Flying Guidance and Control (Part
I1): Control,” Proceedings of the American Control Conference, Vol. 4, Boston, MA, June-July 2004, pp. 2976—
2985.
[10] J. R. Carpenter, “Decentralized Control of SatelligrRations,”International Journal of Robust and Nonlinear
Control, Vol. 12, No. 2-3, 2002, pp. 141-161.
[11] P. Ferguson and J. How, “Decentralized Estimation Atgms for Formation Flying Spacecrafifl AA Guidance,
Navigation, and Control Conference, Austin, TX, Aug. 2003. AIAA-2003-5442.
[12] P. O. Arambel, C. Rago, and R. K. Mehra, “Covariance risgetion Algorithm for Distributed Spacecraft State
Estimation,”Proceedings of the American Control Conference, Vol. 6, Arlington, VA, June 2001, pp. 4398-4403.
[13] S.-G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosbury, and..JJunkins, “Kalman Filtering for Relative Spacecraft
Attitude and Position EstimationJournal of Guidance, Control, and Dynamics, Vol. 30, Jan.-Feb. 2007, pp. 133—
143.
[14] M. D. Shuster, “A Survey of Attitude Representationdgurnal of the Astronautical Sciences, Vol. 41, Oct.-Dec.
1993, pp. 439-517.
[15] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshmakeraging Quaternions,Journal of Guidance, Control,
and Dynamics, Vol. 30, July-Aug. 2007, pp. 1193-1196.
[16] J. K. Uhlmann, “General Data Fusion for Estimates withkbown Cross Covariances3PIE AeroSense Confer-
ence, Vol. 2755, 1996, pp. 165-173.
[17] M. Grant and S. Boyd, “CVX: MATLAB software for disciptied convex programming,” (web page and software).
http://stanford.edu/ ~boyd/cvx
[18] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “KalmEiltering for Spacecraft Attitude EstimationJburnal of
Guidance, Control, and Dynamics, Vol. 5, Sept.-Oct. 1982, pp. 417-429.
[19] W. Gander, G. H. Golub, and U. von Matt, “A Constrainegé&ivalue Problem[inear Algebra and its Applica-
tions, 1989, pp. 815 — 839.
[20] D.C. Sorenson, “Newton’s Method with a Model Trust RegModification,”SIAM Journal on Numerical Analysis,
Vol. 19, No. 2, 1982, pp. 409—-426.
[21] M. L. Psiaki, “Attitude-Determination Filtering viaXfended Quaternion EstimationJburnal of Guidance, Con-
trol, and Dynamics, Vol. 23, March-April 2000, pp. 206—-214.



[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]
[31]

Z.Zhang and Y. Huang, “A Projection Method for Least Sogs Problems with A Quadratic Equality Constraint,”
S AM Journal of Matrix Analysis and Applications, Vol. 25, No. 1, 2003, pp. 188-212.

D. M. Sima, S. V. Huffel, and G. H. Golub, “RegularizedtablLeast Squares Based on Quadratic Eivenvalue
Problem Solvers,BIT Numerical Mathematics, Vol. 44, December 2004, pp. 793—-812.

G. H. Golub and U. von Matt, “Quadratically Constrainedast Squares ad Quadratic Problenidimerische
Mathematik, Vol. 59, 1991, pp. 561 — 180.

M. R. Abdel-Aziz and M. M. EI-Amen, “Solving Large-S@{Constrained Least Squares ProblerAgplied Math-
ematics and Computation, Vol. 137, No. 2-3, 2003, pp. 571-587.

W. Gander, “Least Squares with A Quadratic Constraitimerische Mathematik, Vol. 36, 1981, pp. 291-307.

G. H. Golub, “Some Modified Matrix Eigenvalue ProbleiS,AM Review, Vol. 15, No. 2, 1973, pp. 318 — 334.

F. Tisseur and K. Meerbergen, “The Quadratic Eigereduoblem,"SIAM Review, \ol. 43, No. 2, 2001, pp. 235—
286.

G. J. BiermanFactorization Methods for Discrete Sequential Estimation, ch. 4. Orlando, FL: Academic Interna-
tional Press, 1977.

D. C. Lay,Linear Algebra and Its Applications. Boston, MA: Pearson/Addison-Wesley, 2003.

The Mathworks MATLAB Help: Cholesky Update (cholupdate).



