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AUTONOMOUS ORBIT NAVIGATION OF TWO
SPACECRAFT SYSTEM USING RELATIVE LINE OF SIGHT
VECTOR MEASUREMENTS’

Jo Ryeong Yim', John L. Crassidis*, John L. Junkins®

Autonomous orbit navigation of two spacecraft system is considered with the
relative line-of-sight vector measurements between two spacecraft system.
Observability of the system with the available measurements is investigated
using the linear observability analysis, and the relative state variable
observability is obtained. Error covariance analysis based on the extended
Kalman filter is considered, and the position and velocity state estimations of
two spacecrafts are obtained by using the extended Kalman filter. The estimation
results show that the position can be estimated with an accuracy of about 200 m
and the velocity about 0.2 m/sec. This estimation result is confirmed through the
Monte-Carlo simulation. The results clearly show that a fully autonomous on-
board orbit navigation system is feasible by using an electro-optical means for
measuring the relative LOS vector.

INTRODUCTION

When we consider orbit determination and the operation cost, automating
navigation and navigation-related operations using only on-board measurements can
greatly reduce total system cost and assure mission continuity if ground tracking or
communication is interrupted. Estimating orbits without the aid of Earth-based systems
or other Earth orbiting resources is obviously needed. We seek to establish a new
approach for fully autonomous orbit navigation (or orbit determination). Autonomous
orbit navigation is not a new concept. The characteristics of autonomous navigation are
described by 1) self-contained, 2) operating in real time, 3) non-radiating, and 4) not
depending on Earth operations.' Moreover, the ideal autonomous navigation makes use
of only on-board measurements of signals from mother nature - with no external signals
required from other ground-based or orbiting systems. Early development of
autonomous orbit navigation systems was mainly based upon line-of-sight (LOS)
measurement to stars for attitude and orbit determination combining measurements
from a star sensor, a Sun sensor or an Earth sensor or some combination of these
sensors. Markley suggested the possibility of removing the star cameras in order to save
the costs for hardware and software for autonomous orbit determination of Earth-
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orbiting spacecraft without ground tracking, and also presented that the measurement
combination of the Sun sensor and landmarks gives accuracy as good as that from the
combination of star sensing and landmarks.” Also, Markley showed the possibility to
determine the attitude and orbit of two spacecraft using landmarks (using Earth sensor)
and inter-satellite data (using an angle sensor and range sensor), along with a Sun
sensor.” A batch estimator was designed based upon nonlinear least squares to
autonomously determine the orbits of two spacecraft from measurements of the relative
position vector from one spacecraft to the other.” The estimator uses a time series of the
inertially-referenced relative position vectors between two spacecrafts. Extending the
study in Ref. (4), the relative LOS vector between two spacecrafts was considered for
state estimates without distance information.” Based on the Ref. (5), this research deals
with the observability of the two spacecraft system with only relative LOS vector
measurement, and some result of covariance analysis and an extended Kalman filter.

SYSTEM DESCRIPTIONS

The standard two body orbit model is used for the model of state vectors. The
dynamical model for the translational motion of a spacecraft moving under the
influence of the Earth’s gravitational force and in the presence of an arbitrary
perturbation a, can be written as the sixth order nonlinear system of differential

equations
F=v (1a)
13=—,ur/r3+ad (1b)
where the vectors r = [x, y,z]T and v = [)'c, Vv, Z']T denote the inertial position and velocity
vectors of a spacecraft in the geocentric coordinate system in which the center of both
orbits is the center of the Earth, » =+/x”+y”+2z” and uis the gravitational mass

constant of the Earth. Figure 1 shows the graphical concept of the orbits of two
spacecraft orbiting the Earth, in which the only measurement is the relative LOS vector
] », between the two spacecrafts. Let S/A and S/B be a main spacecraft 4 and a second
spacecraft B. Then each position vector of S/A and S/B can be written as

ry=r AiA (2a)

Fp =T, BiB (2b)
Then, the LOS vector from S/A to S/B relative to the inertial unit vectors n is

I,,=cos®,, cos®, i +cos®,, sind, i, +sinO, a, (3)
This LOS vector measurement is also assumed to be measured in the inertial reference
frame not in the rotating body frame (which implicitly assumes accurate inertial attitude
knowledge). The measurement from this LOS vector can be expressed as

Dy, = tan_l[(yB - yA)/(xB Xy )] (4a)
©,, =sin"(z, = 2,)/(r.) (4b)

where @, is a relative azimuth angle, ®,, is a relative elevation angle between the two

spacecrafts and r,, = |rBA| = [(xB — Xy )2 +(y3 — Va4 )2 + (ZB —Zy )ZT/Z-



Figure 1 Orbit and Measurement Configuration

OBSERVABILITY ANALYSIS

Checking the observability is important because it is a way to evaluate the
feasibility of the system such that the measurement set can enable reliable state
estimation. The computational method makes use of a condition number of the
associated observability matrix.® The condition number, N._, that is the ratio of the
singular values of the observability matrix can be obtained by dividing the largest
singular value by the smallest singular value. Experience suggests that a condition
number greater than N, =210, for this problem, is usually not observable. From the

above Eq. (4), the partial derivatives of measurement angles with respect to each state
used for the observability analysis can be obtained by
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where X =[X,,¥,,2,,X,,V 45 Z45X55V5>Z5:Xp5 V5> Z5] -

Assumptions of Known Attitude Information
We consider the case that the relative LOS vector I s, 10 the inertial reference

frame is the only available measurement for estimating 12 states (three position and
three velocity state variables for S/A, and three position and three velocity state
variables for S/B). It is assumed that one of two spacecraft (S/A) knows its attitude
information with respect to the inertial reference frame, i.e., S/A continuously measures
its attitude information. The reason for assuming the inertial measurement is to make
the system observable using only relative LOS measurement. Without attitude
information, the LOS vector measurement should be in the rotating S/A body frame,
and the system is not observable for the state estimates. Markley already proved that the
two spacecraft in the same orbiting plane is not observable without the J2 perturbation,



since inclination information is lost for the spherical Earth assumption.* We considered
this attitude knowledge effect, when the J2 perturbation is not included in the dynamical
equation. For this case, the orbit configuration of two spacecraft can have an infinite
number of possibilities representing the exactly same relative motion measurements,
since inclination and the longitude of ascending node are not unique without the J2
effect. However, in the presence of the J2 perturbations, the orbit precession effect is a
unique function of inclination, which proves to make the system more observable. In
order to check this, a pair of orbit system (two orbit system (a)) is chosen as shown in
Table 1. Figure 2 shows the angle measurements in the LVLH frame with respect to
variation of ascending node including J2 with both inclinations iy = iz = 45 deg. Even if
the J2 perturbation is included for the analysis the measurements are not unique and the
system is still unobservable with the measurements in the LVLH frame (the condition
number is about 10'7). Figure 3 shows that the inertial angle measurements can be
separated even without J2 perturbation. Therefore, this two spacecraft system requires
knowledge of attitude information of one of two spacecraft. For the inertial
measurement when the attitude information of S/A is available, the position and
velocity vectors of two spacecraft system is numerically observable without the J2
perturbation even if the two orbits are in the same orbiting plane (as long as inclination
is not equal to 0 deg for both spacecraft) and the eccentricity is not 0 for at least one of
two spacecraft (for this case, the condition number is about 1012, which means
observable). When two orbits are not in the same plane, the system is completely
observable without J2 perturbation. Including J2 makes the system more observable and
the higher inclination configuration for both spacecraft is more observable than the
lower inclination configuration. The system is weakly observable when two orbits are
on the same plane and have the same eccentricity.

Table 1
THE TWO ORBIT SYSTEM (a)
a (km e i(deqg) Q(deq) w(deq) My(deq) Period (sec)
S/A 15x10* 0.1 45 30 20 5.0 1.8283 x10*
S/B 15x10* 0.1 45 30 10 1.0 1.8283 x10*
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Figure 2 Angle Measurements with J2 in the LVLH frame
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Figure 3 Angle Measurements without J2 in the inertial frame

Numerical Observability Analysis

A pair of nominal trajectories as two reference orbits is arbitrarily chosen to carry out
the example observability analysis and to study convergence of an extended Kalman
filter. The initial position and velocity of S/A are r,, =[5100,5700,2400] km and

v, =|-4.84,2.42,4.52] km/sec, and for S/B are r,,=[6000,5100,500] km and
Vg = [— 5.14,5.14, - O.S]km/sec along with the corresponding orbital elements in Table

2. Figure 4 shows the nominal two orbit trajectories.

Table 2
THE TWO ORBIT SYSTEM (b)
a (km) e i(deq) Q2(deq) w(deqg) Mpy(deq) Period (sec)

S/A 8.01x10®° 0.00078 45.05 29.93 1329 -107.74 7,140
S/B 8.31x10°  0.099 5.15 9480 199.0 -54.13 7,540

Earth
S/A
~. | — S/B

y(km) -1 -1 x (km)

Figure 4 Orbit Trajectories of Two Orbit System (b)



The observability of the nominal two orbit system (b) is investigated by obtaining
the condition number of singular values. The largest singular value is 63.3 and the

smallest singular value is 7.00x107'°, and therefore, the condition number for the case

is9.1x10" . The state variables corresponding to each singular value can be found from
the singular vector matrix V of the singular value decomposition. A state variable
corresponding to a larger singular value is more observable than a state variable
corresponding to a smaller value. For the two spacecraft system, the well observable
states are zZ,, Z,, X,,X,, and the less observable states are z,,y,, y,. A property of
this two orbit system is that the states for the two orbits are coupled to each other such
that if z,, x, are the most observable state variables then zZ,, x, are also observable
with almost same degree. As a whole, it can be concluded that the velocity components
of S/A and S/B are the most observable and the position of S/A (z,,y,) is the least

observable.

The observablility of the two spacecraft system with respect to varying orbital
elements was checked. The measurement is only the relative LOS vector between the
spacecrafts. In order to check this orbital element effect on the observability, the two
orbit system (a) with comparably larger semimajor axis than the two orbit system (b) is
used for considering the physically meaningful orbit configuration for the case of
varying eccentricity (with large eccentricity). For gaining knowledge of the effect of
semimajor axis on observability, while the semimajor axis of S/A is retained at 15,000
km, only the semimajor axis of S/B is changed from 10,000 km to 20,000 km at 1,000
km intervals and the nominal values of other orbital elements are used. The condition
numbers are obtained from the observability matrices. Investigating the condition
numbers reveals that when two spacecraft are comparably close, the observability
decreases since the two orbits are influenced to about the same degree by the
nonspherical Earth assumption such that the system is less observable when the two
orbits are in the same orbiting plane. The most observable state variables are the
velocity components for both orbitsz,, Z,, except at semimajor axis equal to 12,000
km (%, ,%x,)and 13,000 km ( y,, y,). The least observable state variables are apparently
the position y, and y, and for some cases x, and x,. Since the semimajor axes are
not equal; the periods of the two orbits differ. As a consequence, the LOS vector
between these spacecrafts will be obstructed by the Earth part of the time. This visibility
issue was not considered here but obviously must be in practice.

In order to obtain the effect of eccentricity on observablility, the eccentricity of
S/A and S/B varies from 0.1 to 0.6 at intervals 0.1 with the fixed semimajor axis of
15,000 km for both orbits. For obtaining the observability result from the effect of only
eccentricity, the inclination for both orbits is set to be 0 deg and eccentricity 0 is
avoided for the system to be more observable (i.e., having relatively smaller condition
number) and to show the reasonable range of condition numbers. The result reveals that
the observability degrades when the two orbits have the same eccentricity, while the
observability increases on the whole when the difference of eccentricity between two
spacecrafts increases. The most observable state variables are the same, Z,, Z, as the

case for variation of semimajor axis and the least observable are x, for high eccentricity



of S/B and y, for high eccentricity of S/A. Again, for the least observable state
variables arex,, y,.

For inclination, the inclination of S/A and S/B varies from 10 deg to 80 deg with
10 deg intervals. In order to extract the pure effect of inclination, the eccentricity of
orbits is assumed to be zero. It is found that when the nonzero eccentricity is used, the
result obtained shows some different trends. The system is weakly observable when the
orbits have the same inclination. For the lower inclination (10 deg) of S/A, as the
inclination of S/B goes higher, the most observable state variables are changed from z,

or z, to x,, ¥, and y,. For the medium inclination (20 deg ~ 40 deg) of S/A, the most
observable state variable is Z, for almost inclination cases of S/B with several
exceptions. For the case of the higher inclination of S/A and the lower inclination of
S/B, the most observable state variable is x, . For the high inclination of S/A (80 deg),
the most state variable is y, for the inclination 10 deg ~ 30 deg of S/B, and it is x, for
the higher inclination (> 40 deg) of S/B. When the two orbits are in the same plane, i.e.,
having same inclinations, the most observable state variable is Z,up to the inclination
50 deg and for the higher inclination, it is changed tox, . For the lower inclination of
S/A and the higher inclination of S/B, y; is the least observable, and for the higher
inclination of S/A and the lower inclination of S/B, x, is the least observable. When the
two orbits are in the same plane, z, is the least observable up to 40 deg inclination and
for higher inclination, it changes to y, .

ERROR COVARIANCE ANAYSIS

Error covariance analysis based on an extended Kalman filter was considered in
order to infer the filter performance with solely the initial state error and the
measurement error. The covariance propagation from an extended Kalman filter’® is
introduced in this section and also used in the next section for the Kalman filter
simulation studies. The standard orbit model in Eq. (1) can be written in the general
state equation form which can be used for the state propagation in the filter as

x = f(x,t)+w(t), L, <t<t, (6)
where x is a state vector and w is a white Gaussian process noise term. In general, the
discrete measurement equation can be expressed for the filter as

Ve =h(x.t)+v, (7)
where y, is a measurement vector and v, is a measurement noise which is assumed to
be a white Gaussian noise ﬁrocess. The error covariance matrix can be expressed as

P(0)= E[[30) - x@)][#(0) - x)] | ®)
When the first-order expansion is used for the above nonlinear equations, Egs. (6) and
(7), we have

ox = Fox +Gw (9a)

W, =Hdo+v, (9b)



where the Jacobians are F = (1, G= al, H= % and we assume a zero mean white
ox ow ox
noise process and measurement noise with known covariance matrices:
E{wa}zQ (10a)
Epw, }=R (10b)

where w and v are assumed to be uncorrelated with each other and with their previous
values over time, and Q and R are the process noise covariance matrix and the
measurement noise covariance matrix, respectively. Then the state covariance with
initial state error and measurement error propagates with time wusing the
nonhomogeneous Lyapunov differential equation

P=FP+PF" +GOG" (11)
and for a discrete time the covariance is alternatively represented by
P, =®PO" + GOG' (12)

The forward propagated state covariance of Eq. (12) is updated when the measurement
is available as follows

b= [I_Kka]Pk_ (13a)
K, =P H'|H P H' +R] (13b)
where P is an error covariance matrix before the update which comes from the

integration of the Eq. (11) or from the calculation of the Eq. (12) and P, is an updated
error covariance matrix. For covariance propagation, the state vector is propagated
using Eq. (6) and the linearized matrices /' and H are evaluated with respect to the true

nominal state values since the state estimates are not performed.
The error covariance is propagated with 5% initial state error for each state

variable, the relative LOS measurement error standard deviation of 1.75x107 rad, and
the process noise covarianceQ =1x107" -1, ,,. The propagation results are shown in

Figures 5 and 6. In order to show obviously the convergence trend, a logarithmic (base
10) scale is used for the y-axis, the square roots of the covariance errors. Table 3 shows
the covariance error at final time, and the largest error is for y, and z,.

S/A Position Error (km)
o

S/A Velocity Error (km/sec)

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time (sec) Time (sec)

Figure 5 Covariance Propagation of $/4
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Figure 6 Covariance Propagation of S/B

Table 3
COVARIANCE PROPAGATION ERROR
S/A  Covariance Error S/B  Covariance Error

X, 0.0343 (km) X, 0.0242 (km)
v, 0.0444 (km) v, 0.0425 (km)
z, 0.0165 (km) z, 0.0509 (km)

X, 224x10°(km/sec) x; 4.61x107° (km/sec)
v, 6.04x10°(km/sec) ¥, 1.48x107°(km/sec)
z, 6.93x107°(km/sec) z, 6.24x107°(km/sec)

The effect of measurement frequency on the covariance error propagation has
been checked by using the different measurement sampling time dt = 100, 50, 20, 10,
and 5 seconds with the same initial and final time, and obtaining the final time
covariance error (Table 4). As expected, using the smaller measurement time step
gives a more accurate covariance error. The final time covariance error decreases when
the smaller sampling time (and a greater number of measurements) is used.
Nonetheless, the accuracy improvement is not so effective as much as the
measurement sampling time decreases for the calculation. This is the reason that the
sampling time 20 second is chosen for the measurement updates.

Table 4
COVARIANCE PROPAGATION ERROR VS. MEASUREMENT FREQUENCY

Sampling Time (sec) Position Error (km) Velocity Error (km/sec)

100 0.189 2.26x10™"
50 0.143 1.86x107"
20 0.0916 1.23x10™*
10 0.0674 9.06x107°
5 0.0534 7.06x107



For measurement accuracy, only the relative LOS vectors are considered as
available measurements, measured in the inertial reference system. By changing the

LOS measurement accuracy from o, =1.75x107 rad (Case 1), o, =1.75x107" rad

(Case 2), and o, =1.75x 107 rad (Case 3), the final time covariance error for each state

is obtained as shown in Table 5. As the accuracy of the relative LOS vector is degraded
by one order of magnitude, the final time covariance error increases about one order. It
means that the accuracy of the state estimation directly depends on the accuracy of
measurement sensor, as expected. Therefore, the development of accurate LOS sensors
is very essential to this system estimates.

Table 5
COVARIANCE PROPAGATION ERROR VS. MEASUREMENT ACCURACY
Cases Position Error (km) Velocity Error (km/sec)

Case 1 0.0916 1.23x10™*
Case 2 0.902 1.22x107°
Case 3 9.02 1.22x1072

EXTENDED KALMAN FILTER

The extended Kalman filter simulation is performed for the two spacecraft system.
Since in the previous section, some part of an extended Kalman filter has already been
introduced, we introduce only the state update part. In the extended Kalman filter, the
state can be updated when new measurements are available using the equation®:

$ =%+ K[ - n (5] (14)
where the superscripts * and ~ denote the estimates after the measurement update and the
propagated estimates at the update time, respectively, and K, is a gain at the

measurement time update given by

K, =P H[|[H P H] +R] (15)
and here P, is an updated error covariance matrix
B =l1-K.H P 16)

and B is an error covariance matrix before the update which comes from the integration
of the following equation

P=FP+PF" +GOG". (17)
Also, the state propagation is given by the following equation
x= f(x,1). (18)

Equations (14)-(18) represent the extended Kalman filter that is used to estimate the
orbital position and velocity. We note that the nonlinear system in Eq. (18) is integrated

forward as the updated nominal trajectory estimate from x;  to X, obtain to use in the

update of Eq. (14). The various jacobians and state transition matrices (used in the
covariance updates and Kalman gain) are all evaluated using the most recent nominal
state trajectory estimates.

10



Using the nominal orbit introduced in the previous section, the state estimate is

obtained with 1% initial state estimate error and initial covariance with 2.5x 10 for
position vector and 0.01 for velocity vector such as

R, 0
R) — 0,4 6x6 (19)
06><6 1)0,3
where P, = P, , = diag(2.5x10°,2.5x10°,2.5x10°,0.1%,0.12,0.1%).

The process noise covariance Q is assumed to be 1x107" -1, , and the measurement
error covariance for the filter is used
(1.75x107f 0

0 (1.75x10°°f
Figures 7 and 8 show the Kalman filter estimation results and Table 6 shows a final
time 30 covariance error when the state is estimated with covariance propagation.
Using only the relative LOS vectors, the orbit estimation of the position and velocity for

two spacecrafts can be obtained with the accuracy of better than 200 m for the position
and better than 0.2 m/sec for the velocity.

R= (20)
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Figure 8 State Estimation of S/B
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Table 6
THREE o ESTIMATION ERROR AT FINAL TIME
S/A Estimation Error S/B Estimation Error

X, 0.101 (km) X, 0.0706 (km)
v, 0.122 (km) v, 0.137 (km)
z, 0.0484 (km) z, 0.149 (km)

X, 6.16x107°(km/sec) X, 1.47x107*(km/sec)
v, 1.80x107*(km/sec) ¥y, 4.50x10°°(km/sec)
z, 2.06x10*(km/sec) 2z, 1.89x10°*(km/sec)

In order to confirm the filter convergence and the observability result, we
performed a “Monte-Carlo” analysis by doing 1,000 iterations of the extended Kalman
filter with independently sampled initial condition and measurement errors. This finite
sample may be considered “small,” and while the Monte-Carlo statistics are not well
converged, they should give some indication of the reasonableness of the covariance
analysis and observability ranking. In order to check the global estimation error and the
steady state error, we computed two different covariance errors; one is the covariance
error for all measurement time, and the other is the covariance error for only after the
estimate of Kalman filter is stabilized (steady state error). After many trials of Kalman
filtering, we found that the filter shows the steady state estimate error after the half
period. We calculated the covariance error from Monte-Carlo simulation using the
following equation

R S Sl )l )4 ) | o

where x(t ].) is the true state value at time j, X, (t ].) is the estimation state value for i

Kalman filter iteration at time j, m is the number of total measurements, 501, and N is
the total iteration number, 1,000. We have found that the filter works well within 1%
initial estimation error. Therefore, for each iteration, one random number with Gaussian
normal distribution is generated from the random number generator, multiplied by 0.01
in order to decrease the size, then each state variable is multiplied by the scaled random
number, and the resultant values are used for the initial deviation from the true initial
conditions. By using this process, we can almost ensure that the initial estimation error
can arbitrarily be chosen and bounded within 1% error from the true initial values.
Figures 9 and 10 show the trace of P, obtained for all times and the trace of P, for the
steady state with respect to the iteration number N, respectively. The trace of Py
converges after 200 iterations and stability up to 1,000 iterations after all. Tables 7 and
8 show the mean covariance error for all times and the steady state covariance error
from the Monte Carlo simulation. The steady state values of the trace P, are
comparatively smaller than the all time trace of P, since the trace represents the
converged values for all state variables. Therefore if the estimation of the states for one
iteration results in a little bit larger error, the large estimation error dominates
considerably the accumulated trace of steady state P), obtained for several iterations. All
we can conclude is that the qualitative trends of the observability analysis are “fairly
consistent” with the small sample Monte-Carlo results.

12



Table 7
MEAN COVARIANCE ERROR
S/A Covariance Error S/B  Covariance Error

X, 7.52 (km) X, 8.54 (km)
v, 11.5 (km) v, 11.8 (km)
z, 7.59 (km) z, 1.76 (km)

x, 0.0107 (km/sec) i, 0.0111 (km/sec)
y, 0.0103 (km/sec) y, 0.0143 (km/sec)

z, 0.0100 (km/sec) z, 2.16x10°%(km/sec)

Table 8
STEADY STATE COVARIANCE ERROR
S/A  Covariance Error S/B  Covariance Error

X, 0.0913 (km) X, 0.137 (km)
v, 0.343 (km) v, 0.121 (km)
z, 0.173 (km) z, 0.331 (km)

x, 1.12x10%(km/sec) x; 1.05x107*(km/sec)
v, 1.82x10*(km/sec) ¥, 1.11x107*(km/sec)
z, 215x10*(km/sec) z, 1.72x107*(km/sec)
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CONCLUSION

Autonomous spacecraft orbit navigation was considered for two spacecraft system
using the relative LOS vector between two spacecrafts. Observability of the system was
checked in the sense of numerical method. In the computational study, this system
requires knowledge of attitude information of one of two spacecrafts. For the inertial
measurement when the attitude information of S/A is available, the two spacecraft
system can be observable without J2 perturbation as long as two orbits are not in the
same orbiting plane i = 0 deg. Including J2 makes the system more observable and the
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higher inclination configuration for both spacecraft is more observable than the lower
inclination configuration. The system is weakly observable when two orbits are on the
same plane and have the same eccentricity. Error covariance analysis based on an
extended Kalman filter was considered and the estimation accuracy directly depends
almost linearly on the accuracy of the relative LOS vector measurement. For the
nominal two spacecraft system, the extended Kalman filter simulations were performed
and the filter estimation was obtained with an accuracy of about 200 m for the position
and about 0.2 m/sec for the velocity. This estimation results were confirmed by the
Monte-Carlo simulation. The concept of two spacecraft orbit estimation can be
extended to orbit estimation for formation flying spacecraft system, and the relative
position estimation in the spacecraft body frame can be considered as further research.
Throughout this research, the results clearly show that a fully autonomous on-board
orbit navigation system is feasible by using an electro-optical means for measuring the
relative LOS vector.
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