
 1

AAS 04-257 
 
 
 
 

AUTONOMOUS ORBIT NAVIGATION OF TWO  
SPACECRAFT SYSTEM USING RELATIVE LINE OF SIGHT 

VECTOR MEASUREMENTS* 
 

Jo Ryeong Yim†, John L. Crassidis‡, John L. Junkins§ 
 

Autonomous orbit navigation of two spacecraft system is considered with the 
relative line-of-sight vector measurements between two spacecraft system. 
Observability of the system with the available measurements is investigated 
using the linear observability analysis, and the relative state variable 
observability is obtained. Error covariance analysis based on the extended 
Kalman filter is considered, and the position and velocity state estimations of 
two spacecrafts are obtained by using the extended Kalman filter. The estimation 
results show that the position can be estimated with an accuracy of about 200 m 
and the velocity about 0.2 m/sec. This estimation result is confirmed through the 
Monte-Carlo simulation. The results clearly show that a fully autonomous on-
board orbit navigation system is feasible by using an electro-optical means for 
measuring the relative LOS vector. 

 
INTRODUCTION 

When we consider orbit determination and the operation cost, automating 
navigation and navigation-related operations using only on-board measurements can 
greatly reduce total system cost and assure mission continuity if ground tracking or 
communication is interrupted. Estimating orbits without the aid of Earth-based systems 
or other Earth orbiting resources is obviously needed. We seek to establish a new 
approach for fully autonomous orbit navigation (or orbit determination). Autonomous 
orbit navigation is not a new concept. The characteristics of autonomous navigation are 
described by 1) self-contained, 2) operating in real time, 3) non-radiating, and 4) not 
depending on Earth operations.1 Moreover, the ideal autonomous navigation makes use 
of only on-board measurements of signals from mother nature - with no external signals 
required from other ground-based or orbiting systems. Early development of 
autonomous orbit navigation systems was mainly based upon line-of-sight (LOS) 
measurement to stars for attitude and orbit determination combining measurements 
from a star sensor, a Sun sensor or an Earth sensor or some combination of these 
sensors. Markley suggested the possibility of removing the star cameras in order to save 
the costs for hardware and software for autonomous orbit  determination of Earth-
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orbiting spacecraft without ground tracking, and also presented that the measurement 
combination of the Sun sensor and landmarks gives accuracy as good as that from the 
combination of star sensing and landmarks.2 Also, Markley showed the possibility to 
determine the attitude and orbit of two spacecraft using landmarks (using Earth sensor) 
and inter-satellite data (using an angle sensor and range sensor), along with a Sun 
sensor.3 A batch estimator was designed based upon nonlinear least squares to 
autonomously determine the orbits of two spacecraft from measurements of the relative 
position vector from one spacecraft to the other.4 The estimator uses a time series of the 
inertially-referenced relative position vectors between two spacecrafts. Extending the 
study in Ref. (4), the relative LOS vector between two spacecrafts was considered for 
state estimates without distance information.5 Based on the Ref. (5), this research deals 
with the observability of the two spacecraft system with only relative LOS vector 
measurement, and some result of covariance analysis and an extended Kalman filter.  

 
SYSTEM DESCRIPTIONS 

The standard two body orbit model is used for the model of state vectors. The 
dynamical model for the translational motion of a spacecraft moving under the 
influence of the Earth’s gravitational force and in the presence of an arbitrary 
perturbation da  can be written as the sixth order nonlinear system of differential 
equations 

vr =&                                                                                                  (1a) 
darv +−= 3/ rµ&                                                                                 (1b) 

where the vectors [ ]Tzyx ,,=r  and [ ]Tzyx &&& ,,=v  denote the inertial position and velocity 
vectors of a spacecraft in the geocentric coordinate system in which the center of both 
orbits is the center of the Earth, 222 zyxr ++=  and µ is the gravitational mass 
constant of the Earth. Figure 1 shows the graphical concept of the orbits of two 
spacecraft orbiting the Earth, in which the only measurement is the relative LOS vector 

BAl̂  between the two spacecrafts. Let S/A and S/B be a main spacecraft A and a second 
spacecraft B. Then each position vector of S/A and S/B can be written as  

AAA r lr ˆ=                                                                                             (2a) 

BBB r lr ˆ=                                                                                             (2b) 
Then, the LOS vector from S/A to S/B relative to the inertial unit vectors n̂  is  

321 ˆsinˆsincosˆcoscosˆ nnnl BABABABABABA Θ+ΦΘ+ΦΘ=                     (3) 
This LOS vector measurement is also assumed to be measured in the inertial reference 
frame not in the rotating body frame (which implicitly assumes accurate inertial attitude 
knowledge). The measurement from this LOS vector can be expressed as 

( ) ( )[ ]ABABBA xxyy −−=Φ − /tan 1                                                       (4a) 
( ) ( )[ ]BAABBA zz r/sin 1 −=Θ −                                                              (4b) 

where BAΦ is a relative azimuth angle, BAΘ  is a relative elevation angle between the two 

spacecrafts and ( ) ( ) ( )[ ] .
2/1222

ABABABBABA zzyyxxr −+−+−== r   
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Figure 1 Orbit and Measurement Configuration  

 

OBSERVABILITY ANALYSIS 

Checking the observability is important because it is a way to evaluate the 
feasibility of the system such that the measurement set can enable reliable state 
estimation. The computational method makes use of a condition number of the 
associated observability matrix.5,6 The condition number, cN , that is the ratio of the 
singular values of the observability matrix can be obtained by dividing the largest 
singular value by the smallest singular value. Experience suggests that a condition 
number greater than 1610≅cN , for this problem, is usually not observable. From the 
above Eq. (4), the partial derivatives of measurement angles with respect to each state 
used for the observability analysis can be obtained by 

x∂
Φ∂ BA                                                                                                (5a)  

 
x∂

Θ∂ BA                                                                                                (5b) 

where T
BBBBBBAAAAAA zyxzyxzyxzyx ],,,,,,,,,,,[ &&&&&&=x .  

 
Assumptions of Known Attitude Information 

We consider the case that the relative LOS vector BAl̂  in the inertial reference 
frame is the only available measurement for estimating 12 states (three position and 
three velocity state variables for S/A, and three position and three velocity state 
variables for S/B). It is assumed that one of two spacecraft (S/A) knows its attitude 
information with respect to the inertial reference frame, i.e., S/A continuously measures 
its attitude information. The reason for assuming the inertial measurement is to make 
the system observable using only relative LOS measurement. Without attitude 
information, the LOS vector measurement should be in the rotating S/A body frame, 
and the system is not observable for the state estimates. Markley already proved that the 
two spacecraft in the same orbiting plane is not observable without the J2 perturbation, 
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since inclination information is lost for the spherical Earth assumption.4 We considered 
this attitude knowledge effect, when the J2 perturbation is not included in the dynamical 
equation. For this case, the orbit configuration of two spacecraft can have an infinite 
number of possibilities representing the exactly same relative motion measurements, 
since inclination and the longitude of ascending node are not unique without the J2 
effect. However, in the presence of the J2 perturbations, the orbit precession effect is a 
unique function of inclination, which proves to make the system more observable. In 
order to check this, a pair of orbit system (two orbit system (a)) is chosen as shown in 
Table 1. Figure 2 shows the angle measurements in the LVLH frame with respect to 
variation of ascending node including J2 with both inclinations iA = iB = 45 deg. Even if 
the J2 perturbation is included for the analysis the measurements are not unique and the 
system is still unobservable with the measurements in the LVLH frame (the condition 
number is about 1017). Figure 3 shows that the inertial angle measurements can be 
separated even without J2 perturbation. Therefore, this two spacecraft system requires 
knowledge of attitude information of one of two spacecraft. For the inertial 
measurement when the attitude information of S/A is available, the position and 
velocity vectors of two spacecraft system is numerically observable without the J2 
perturbation even if the two orbits are in the same orbiting plane (as long as inclination 
is not equal to 0 deg for both spacecraft) and the eccentricity is not 0 for at least one of 
two spacecraft (for this case, the condition number is about 1012, which means 
observable). When two orbits are not in the same plane, the system is completely 
observable without J2 perturbation. Including J2 makes the system more observable and 
the higher inclination configuration for both spacecraft is more observable than the 
lower inclination configuration. The system is weakly observable when two orbits are 
on the same plane and have the same eccentricity.  
 

Table 1  
THE TWO ORBIT SYSTEM (a) 

 a (km) e i (deg) Ω (deg) ω (deg) M0 (deg) Period (sec) 
S/A 4101.5× 0.1 45 30 20 5.0 4101.8283×  
S/B 4101.5× 0.1 45 30 10 1.0 4101.8283×  
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Figure 2 Angle Measurements with J2 in the LVLH frame  
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Figure 3 Angle Measurements without J2 in the inertial frame  
 

Numerical Observability Analysis 
A pair of nominal trajectories as two reference orbits is arbitrarily chosen to carry out 
the example observability analysis and to study convergence of an extended Kalman 
filter. The initial position and velocity of S/A are [ ]2400,5700,51000, =Ar km and 

[ ]52.4,42.2,84.40, −=Av km/sec, and for S/B are [ ]500,5100,60000, =Br km and 
[ ]5.0,14.5,14.50, −−=Bv km/sec along with the corresponding orbital elements in Table 

2. Figure 4 shows the nominal two orbit trajectories.  
 

Table 2  
THE TWO ORBIT SYSTEM (b) 

 a (km) e i (deg) Ω (deg) ω (deg) M0 (deg) Period (sec)
S/A 3108.01×  0.00078 45.05 29.93 132.9 -107.74 7,140 
S/B 3108.31×  0.099 5.15 94.80 199.0 -54.13 7,540 
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Figure 4 Orbit Trajectories of Two Orbit System (b) 
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The observability of the nominal two orbit system (b) is investigated by obtaining 
the condition number of singular values. The largest singular value is 63.3 and the 
smallest singular value is ,1000.7 10−×  and therefore, the condition number for the case 
is 10101.9 × . The state variables corresponding to each singular value can be found from 
the singular vector matrix V of the singular value decomposition. A state variable 
corresponding to a larger singular value is more observable than a state variable 
corresponding to a smaller value. For the two spacecraft system, the well observable 
states are Az& , Bz& , Ax& , Bx& , and the less observable states are Az , Ay , By . A property of 
this two orbit system is that the states for the two orbits are coupled to each other such 
that if Az& , Ax& are the most observable state variables then Bz& , Bx&  are also observable 
with almost same degree. As a whole, it can be concluded that the velocity components 
of S/A and S/B are the most observable and the position of S/A ( Az , Ay ) is the least 
observable. 

The observablility of the two spacecraft system with respect to varying orbital 
elements was checked. The measurement is only the relative LOS vector between the 
spacecrafts. In order to check this orbital element effect on the observability, the two 
orbit system (a) with comparably larger semimajor axis than the two orbit system (b) is 
used for considering the physically meaningful orbit configuration for the case of 
varying eccentricity (with large eccentricity). For gaining knowledge of the effect of 
semimajor axis on observability, while the semimajor axis of S/A is retained at 15,000 
km, only the semimajor axis of S/B is changed from 10,000 km to 20,000 km at 1,000 
km intervals and the nominal values of other orbital elements are used. The condition 
numbers are obtained from the observability matrices. Investigating the condition 
numbers reveals that when two spacecraft are comparably close, the observability 
decreases since the two orbits are influenced to about the same degree by the 
nonspherical Earth assumption such that the system is less observable when the two 
orbits are in the same orbiting plane. The most observable state variables are the 
velocity components for both orbits Az& , Bz& , except at semimajor axis equal to 12,000 
km ( Bx& , Ax& ) and 13,000 km ( By& , Ay& ). The least observable state variables are apparently 
the position Ay  and By  and for some cases Ax  and Bx . Since the semimajor axes are 
not equal; the periods of the two orbits differ. As a consequence, the LOS vector 
between these spacecrafts will be obstructed by the Earth part of the time. This visibility 
issue was not considered here but obviously must be in practice. 

In order to obtain the effect of eccentricity on observablility, the eccentricity of 
S/A and S/B varies from 0.1 to 0.6 at intervals 0.1 with the fixed semimajor axis of 
15,000 km for both orbits. For obtaining the observability result from the effect of only 
eccentricity, the inclination for both orbits is set to be 0 deg and eccentricity 0 is 
avoided for the system to be more observable (i.e., having relatively smaller condition 
number) and to show the reasonable range of condition numbers. The result reveals that 
the observability degrades when the two orbits have the same eccentricity, while the 
observability increases on the whole when the difference of eccentricity between two 
spacecrafts increases. The most observable state variables are the same, Az& , Bz&  as the 
case for variation of semimajor axis and the least observable are Ax  for high eccentricity 
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of S/B  and By  for high eccentricity of S/A. Again, for the least observable state 
variables are Ax , By . 

For inclination, the inclination of S/A and S/B varies from 10 deg to 80 deg with 
10 deg intervals. In order to extract the pure effect of inclination, the eccentricity of 
orbits is assumed to be zero. It is found that when the nonzero eccentricity is used, the 
result obtained shows some different trends. The system is weakly observable when the 
orbits have the same inclination. For the lower inclination (10 deg) of S/A, as the 
inclination of S/B goes higher, the most observable state variables are changed from Az&  
or Bz&  to Ax& , By&  and Ay& . For the medium inclination (20 deg ~ 40 deg) of S/A, the most 
observable state variable is Bz&  for almost inclination cases of S/B with several 
exceptions. For the case of the higher inclination of S/A and the lower inclination of 
S/B, the most observable state variable is Bx& . For the high inclination of S/A (80 deg), 
the most state variable is By& for the inclination 10 deg ~ 30 deg of S/B, and it is Bx& for 
the higher inclination (> 40 deg) of S/B. When the two orbits are in the same plane, i.e., 
having same inclinations, the most observable state variable is Az& up to the inclination 
50 deg and for the higher inclination, it is changed to Bx& . For the lower inclination of 
S/A and the higher inclination of S/B, By  is the least observable, and for the higher 
inclination of S/A and the lower inclination of S/B, Bx  is the least observable. When the 
two orbits are in the same plane, Az  is the least observable up to 40 deg inclination and 
for higher inclination, it changes to By . 

 
ERROR COVARIANCE ANAYSIS  

Error covariance analysis based on an extended Kalman filter was considered in 
order to infer the filter performance with solely the initial state error and the 
measurement error. The covariance propagation from an extended Kalman filter7,8 is 
introduced in this section and also used in the next section for the Kalman filter 
simulation studies. The standard orbit model in Eq. (1) can be written in the general 
state equation form which can be used for the state propagation in the filter as 

kk ttttt <<+= −1),(),( wxfx&                                                      (6) 
where x  is a state vector and w is a white Gaussian process noise term. In general, the 
discrete measurement equation can be expressed for the filter as 

kkkkk t vxhy += ),(~                                                                              (7) 
where ky~  is a measurement vector and kv is a measurement noise which is assumed to 
be a white Gaussian noise process. The error covariance matrix can be expressed as 

( ) [ ][ ][ ]TttttEtP )()(ˆ)()(ˆ xxxx −−=                                                     (8) 
When the first-order expansion is used for the above nonlinear equations, Eqs. (6) and 
(7), we have  

wxx GF += δδ&                                                                                  (9a) 
kk H vxy += δδ~                                                                                   (9b) 
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where the Jacobians are 
x
f
∂
∂

≡F , 
w
f

∂
∂

≡G , 
x
h
∂
∂

≡H  and we assume a zero mean white 

noise process and measurement noise with known covariance matrices: 
{ } QE T =ww                                                                                     (10a) 
{ } RE T

kk =vv                                                                                    (10b) 
where w and v are assumed to be uncorrelated with each other and with their previous 
values over time, and Q and R are the process noise covariance matrix and the 
measurement noise covariance matrix, respectively. Then the state covariance with 
initial state error and measurement error propagates with time using the 
nonhomogeneous Lyapunov differential equation 

TT GQGPFFPP ++=&                                                                     (11) 
and for a discrete time the covariance is alternatively represented by 

TT
k GQGPP +ΦΦ=−                                                                         (12) 

The forward propagated state covariance of Eq. (12) is updated when the measurement 
is available as follows 

[ ] −+ −= kkkk PHKIP                                                                          (13a) 
[ ]RHPHHPK T

kkk
T
kkk += −−                                                               (13b) 

where −
kP is an error covariance matrix before the update which comes from the 

integration of the Eq. (11) or from the calculation of the  Eq. (12) and +
kP is an updated 

error covariance matrix. For covariance propagation, the state vector is propagated 
using Eq. (6) and the linearized matrices F and H are evaluated with respect to the true 
nominal state values since the state estimates are not performed.  

The error covariance is propagated with 5% initial state error for each state 
variable, the relative LOS measurement error standard deviation of 51075.1 −× rad, and 
the process noise covariance 1212

15101 ×
− ⋅×= IQ . The propagation results are shown in 

Figures 5 and 6. In order to show obviously the convergence trend, a logarithmic (base 
10) scale is used for the y-axis, the square roots of the covariance errors. Table 3 shows 
the covariance error at final time, and the largest error is for Ay  and Bz . 
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Figure 5 Covariance Propagation of S/A 
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Figure 6 Covariance Propagation of S/B 

 
Table 3  

COVARIANCE PROPAGATION ERROR 
S/A Covariance Error S/B Covariance Error 

Ax 0.0343 (km) Bx 0.0242 (km) 

Ay 0.0444 (km) By 0.0425 (km) 

Az 0.0165 (km) Bz 0.0509 (km) 

Ax& 5102.24 −× (km/sec) Bx& 5−×104.61 (km/sec) 
Ay& 5106.04 −× (km/sec) By& 5101.48 −× (km/sec) 
Az& 5−×106.93 (km/sec) Bz& 5−×106.24 (km/sec) 

 
The effect of measurement frequency on the covariance error propagation has 

been checked by using the different measurement sampling time dt = 100, 50, 20, 10, 
and 5 seconds with the same initial and final time, and obtaining the final time 
covariance error (Table 4). As expected, using the smaller measurement time step 
gives a more accurate covariance error. The final time covariance error decreases when 
the smaller sampling time (and a greater number of measurements) is used. 
Nonetheless, the accuracy improvement is not so effective as much as the 
measurement sampling time decreases for the calculation.  This is the reason that the 
sampling time 20 second is chosen for the measurement updates.  

 
Table 4 

COVARIANCE PROPAGATION ERROR VS. MEASUREMENT FREQUENCY 
Sampling Time (sec) Position Error  (km) Velocity Error (km/sec) 

100 0.189 4102.26 −×  
50 0.143 4−×101.86  
20 0.0916 4−×101.23  
10 0.0674 5−×109.06  
5 0.0534 5−×107.06  
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For measurement accuracy, only the relative LOS vectors are considered as 
available measurements, measured in the inertial reference system. By changing the 
LOS measurement accuracy from 51075.1 −×=aσ rad (Case 1), 41075.1 −×=aσ rad 
(Case 2), and 31075.1 −×=aσ rad (Case 3), the final time covariance error for each state 
is obtained as shown in Table 5. As the accuracy of the relative LOS vector is degraded 
by one order of magnitude, the final time covariance error increases about one order. It 
means that the accuracy of the state estimation directly depends on the accuracy of 
measurement sensor, as expected. Therefore, the development of accurate LOS sensors 
is very essential to this system estimates.  

 
Table 5 

COVARIANCE PROPAGATION ERROR VS. MEASUREMENT ACCURACY 
Cases Position Error  (km) Velocity Error (km/sec) 
Case 1 0.0916 4101.23 −×  
Case 2 0.902 3101.22 −×  
Case 3 9.02 2101.22 −×  

 

EXTENDED KALMAN FILTER  

The extended Kalman filter simulation is performed for the two spacecraft system. 
Since in the previous section, some part of an extended Kalman filter has already been 
introduced, we introduce only the state update part. In the extended Kalman filter, the 
state can be updated when new measurements are available using the equation8:  

( )[ ]−−+ −+= kkkkkk K xhyxx ˆ~ˆˆ                                                                 (14) 
where the superscripts + and - denote the estimates after the measurement update and the 
propagated estimates at the update time, respectively, and kK is a gain at the 
measurement time update given by 

[ ]RHPHHPK T
kkk

T
kkk += −−                                                                 (15) 

and here +
kP is an updated error covariance matrix 

[ ] −+ −= kkkk PHKIP                                                                              16) 
and −

kP is an error covariance matrix before the update which comes from the integration 
of the following equation  

.TT GQGPFFPP ++=&                                                                    (17) 
Also, the state propagation is given by the following equation  

( ).,ˆ tx xf=&                                                                                         (18) 
Equations (14)-(18) represent the extended Kalman filter that is used to estimate the 
orbital position and velocity. We note that the nonlinear system in Eq. (18) is integrated 
forward as the updated nominal trajectory estimate from +

−1ˆ kx to −
kx̂ obtain to use in the 

update of Eq. (14). The various jacobians and state transition matrices (used in the 
covariance updates and Kalman gain) are all evaluated using the most recent nominal 
state trajectory estimates. 
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Using the nominal orbit introduced in the previous section, the state estimate is 
obtained with 1% initial state estimate error and initial covariance with 3105.2 × for 
position vector and 0.01 for velocity vector such as 









=

×

×

B

A

P
P

P
,066

66,0
0 0

0
                                                                              (19) 

where ( )222333
,0,0 1.0,1.0,1.0,102.5,102.5,102.5diag ×××== BA PP . 

The process noise covariance Q is assumed to be 1212
15101 ×

− ⋅× I  and the measurement 
error covariance for the filter is used 

( )
( ) 









×
×=

−

−

25

25

1075.10
01075.1R                                                    (20) 

Figures 7 and 8 show the Kalman filter estimation results and Table 6 shows a final 
time 3σ covariance error when the state is estimated with covariance propagation. 
Using only the relative LOS vectors, the orbit estimation of the position and velocity for 
two spacecrafts can be obtained with the accuracy of better than 200 m for the position 
and better than 0.2 m/sec for the velocity. 

 

0 2000 4000 6000 8000 10000
-5

0

5
S/A Position Error

x 
E

rro
r (

km
)

0 2000 4000 6000 8000 10000
-5

0

5

y 
E

rro
r (

km
)

0 2000 4000 6000 8000 10000
-5

0

5

Time (sec)

z 
E

rro
r (

km
)

0 2000 4000 6000 8000 10000
-0.1

0

0.1
S/A Velocity Error

x 
E

rro
r (

km
/s

ec
)

0 2000 4000 6000 8000 10000
-0.1

0

0.1

y 
E

rro
r (

km
/s

ec
)

0 2000 4000 6000 8000 10000
-0.1

0

0.1

Time(sec)

z 
E

rro
r (

km
/s

ec
)

 
Figure 7 State Estimation of S/A 
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Figure 8 State Estimation of S/B 
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Table 6  
THREE σ ESTIMATION ERROR AT FINAL TIME 

S/A Estimation Error S/B Estimation Error 
Ax 0.101 (km) Bx 0.0706 (km) 

Ay 0.122 (km) By 0.137 (km) 

Az 0.0484 (km) Bz 0.149 (km) 

Ax& 5106.16 −× (km/sec) Bx& 4101.47 −× (km/sec) 
Ay& 4101.80 −× (km/sec) By& 5104.50 −× (km/sec) 
Az& 4102.06 −× (km/sec) Bz& 4101.89 −× (km/sec) 

 
In order to confirm the filter convergence and the observability result, we 

performed a “Monte-Carlo” analysis by doing 1,000 iterations of the extended Kalman 
filter with independently sampled initial condition and measurement errors. This finite 
sample may be considered “small,” and while the Monte-Carlo statistics are not well 
converged, they should give some indication of the reasonableness of the covariance 
analysis and observability ranking.  In order to check the global estimation error and the 
steady state error, we computed two different covariance errors; one is the covariance 
error for all measurement time, and the other is the covariance error for only after the 
estimate of Kalman filter is stabilized (steady state error). After many trials of Kalman 
filtering, we found that the filter shows the steady state estimate error after the half 
period. We calculated the covariance error from Monte-Carlo simulation using the 
following equation 

( ) ( )[ ] ( ) ( )[ ]∑ ∑
= =









−−=

N

i

T
jji

m

j
jjiM tttt

mN
P

1 1

ˆˆ11 xxxx                               (21) 

where ( )jtx  is the true state value at time j, ( )ji tx̂  is the estimation state value for ith 
Kalman filter iteration at time j, m is the number of total measurements, 501, and N is 
the total iteration number, 1,000. We have found that the filter works well within 1% 
initial estimation error. Therefore, for each iteration, one random number with Gaussian 
normal distribution is generated from the random number generator, multiplied by 0.01 
in order to decrease the size, then each state variable is multiplied by the scaled random 
number, and the resultant values are used for the initial deviation from the true initial 
conditions. By using this process, we can almost ensure that the initial estimation error 
can arbitrarily be chosen and bounded within 1% error from the true initial values. 
Figures 9 and 10 show the trace of PM obtained for all times and the trace of PM for the 
steady state with respect to the iteration number N, respectively. The trace of PM 
converges after 200 iterations and stability up to 1,000 iterations after all. Tables 7 and 
8 show the mean covariance error for all times and the steady state covariance error 
from the Monte Carlo simulation. The steady state values of the trace PM are 
comparatively smaller than the all time trace of PM, since the trace represents the 
converged values for all state variables. Therefore if the estimation of the states for one 
iteration results in a little bit larger error, the large estimation error dominates 
considerably the accumulated trace of steady state PM obtained for several iterations. All 
we can conclude is that the qualitative trends of the observability analysis are “fairly 
consistent” with the small sample Monte-Carlo results. 
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Table 7  
MEAN COVARIANCE ERROR   

S/A Covariance Error S/B Covariance Error 
Ax 7.52 (km) Bx 8.54 (km) 

Ay 11.5 (km) By 11.8 (km) 

Az 7.59 (km) Bz 1.76 (km) 

Ax& 0.0107 (km/sec) Bx& 0.0111 (km/sec) 

Ay& 0.0103 (km/sec) By& 0.0143 (km/sec) 

Az& 0.0100 (km/sec) Bz& 3102.16 −× (km/sec) 
 

Table 8  
STEADY STATE COVARIANCE ERROR   

S/A Covariance Error S/B Covariance Error 
Ax 0.0913 (km) Bx 0.137 (km) 

Ay 0.343 (km) By 0.121 (km) 

Az 0.173 (km) Bz 0.331 (km) 

Ax& 4−×101.12 (km/sec) Bx& 4101.05 −× (km/sec) 
Ay& 4101.82 −× (km/sec) By& 4−×101.11 (km/sec) 
Az& 4102.15 −× (km/sec) Bz& 4101.72 −× (km/sec) 

 

0 200 400 600 800 1000
0

200

400

600

800

1000

Iteration Number N

Tr
ac

e 
 P

M

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Iteration Number N

Tr
ac

e 
 P

M
 o

f S
te

ad
y 

S
ta

te

 
Figure 9 Trace of PM                 Figure 10 Trace of PM for the Steady State  

 
CONCLUSION  

Autonomous spacecraft orbit navigation was considered for two spacecraft system 
using the relative LOS vector between two spacecrafts. Observability of the system was 
checked in the sense of numerical method. In the computational study, this system 
requires knowledge of attitude information of one of two spacecrafts. For the inertial 
measurement when the attitude information of S/A is available, the two spacecraft 
system can be observable without J2 perturbation as long as two orbits are not in the 
same orbiting plane i = 0 deg. Including J2 makes the system more observable and the 
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higher inclination configuration for both spacecraft is more observable than the lower 
inclination configuration. The system is weakly observable when two orbits are on the 
same plane and have the same eccentricity. Error covariance analysis based on an 
extended Kalman filter was considered and the estimation accuracy directly depends 
almost linearly on the accuracy of the relative LOS vector measurement. For the 
nominal two spacecraft system, the extended Kalman filter simulations were performed 
and the filter estimation was obtained with an accuracy of about 200 m for the position 
and about 0.2 m/sec for the velocity. This estimation results were confirmed by the 
Monte-Carlo simulation. The concept of two spacecraft orbit estimation can be 
extended to orbit estimation for formation flying spacecraft system, and the relative 
position estimation in the spacecraft body frame can be considered as further research. 
Throughout this research, the results clearly show that a fully autonomous on-board 
orbit navigation system is feasible by using an electro-optical means for measuring the 
relative LOS vector.   
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