
Numerical Analysis

Joseph Marziale December 14, 2023

Contents

1 August 29 to September 28 2
1.1 day01 . 2
1.2 day02 . 4
1.3 day03 . 7
1.4 day04 . 7
1.5 day05 . 8
1.6 day06 . 10

2 September 28 to November 7 11
2.1 day07 . 11
2.2 day08 . 11
2.3 day09 . 12
2.4 day11 . 13
2.5 day12 . 16
2.6 day13 . 16
2.7 day14 . 18
2.8 day15 . 19
2.9 day16 . 21

3 November 7 to December 14 24
3.1 day17 . 24
3.2 day18 . 24
3.3 day19 . 25
3.4 day21 . 26
3.5 day22 . 28
3.6 day23 . 29
3.7 day24 . 30
3.8 day25 . 30
3.9 day26 . 32
3.10 day27 . 32

1

1 August 29 to September 28

1.1 day01

Here we motivate numerical analysis in general. Equations such as 8x = e−x have no
closed form solution (try it!) despite a solution existing (x = 0.1117 . . .); therefore we
need a way to approximate it. To do this we find the root f = 0 of the function

f = 8x− e−x = 0↔ 8x = e−x. (1)

Newton’s method says:

• pick an initial point x0

• compute f(x0)

• draw a linearization of the function at that point towards the x axis (which requires
its slope, f ′(x0))

• define where the linearization touches the axis as x1

• repeat: find f(x1) . . .

This is represented by

xi+1 = xi −
f(xi)

f ′(xi)
. (2)

Our linearizations are guessing where the function actually touches the x axis, which is the
genuine root. Hopefully as we iterate we are getting closer and closer. Not true for many
situations though. Valid questions in such cases are, when is convergence guaranteed?
does the convergence yield a root? and, how fast is the convergence? and this is what
numerical analysis is all about.
Computers are very good at doing repetitive things, so we use computers to do these

iterations for us. Computers though possess finite precision of numbers. 64 sequential
binary bits (basic objects that can contain either a 0 or 1) represent a machine number;
therefore there can only be 264 possible numbers. Therefore there must exist a largest
machine number and a smallest one. What is the widest range of numbers we could
possibly want to use for engineering? Let’s say the range is ± Avogadro’s number (<
1024, > −1024). Now since we only have 264 numbers we must ask, how will they be
spaced? Naively we could say, uniformly. But this means that the spacing of the numbers
would be

1024 −−1024

264
= 108420.217249. (3)

Therefore a sequence of machine numbers in our machine might be 0, ≈ 108420,≈
216840,≈ 325260, . . . , meaning we wouldn’t even be able to represent 1, 2, 3, . . . ! So
uniform spacing is bad. A better way (and what the industry uses) is to represent the 64
bits as

±1.{m} × 2c−1023, (4)

where

2

• first 1 bit goes to the sign (0→ +, 1→ −)

• next 11 bits go to the exponent

(0 < c < 2047︸︷︷︸
211−1

)

=⇒ modified exponent: (−1023 < c− 1023︸ ︷︷ ︸
modified exp

< 1024).

• last 52 bits go to the mantissa (0 < m < 252 − 1)

This is a good relative spacing such that smaller numbers are closer together and larger
numbers are further apart.
An example of a number is 123.91. Divide this by 26 to get 1.93609375 (we modify the

exponent on 2 until we get some 1.[. . .]). Therefore 123.91 = 1 .93609375︸ ︷︷ ︸
m

×2

c−1023︷︸︸︷
6 .

• Number is positive → first bit is 0.

• c− 1023 = 6 =⇒ c = 1029↔ 10000000101︸ ︷︷ ︸
11 digits

.

• m = 0.93609375↔ 1110111110100011110101110000101000111101011100001010

Therefore total machine number is

0︸︷︷︸
sign

10000000101︸ ︷︷ ︸
c

1110111110100011110101110000101000111101011100001010︸ ︷︷ ︸
m

The hex conversion system is:

0000↔ 0,

0001↔ 1, . . . ,

1000↔ 8,

1001↔ 9,

1010↔ a,

1011↔ b,

1100↔ c,

1101↔ d,

1110↔ e,

1111↔ f.

So the above machine number is converted to

|0100|0000|0101|1110|1111|1010|0011|1101|0111|0000|1010|0011|1101|0111|0000|1010
↔ 405efa3d70a3d70a.

3

1.2 day02

In the earlier analysis we converted (A) a decimal (123.91) to (B) scientific notation
(1.93609375×26) to (C) iee754 binary (0100000001011110111110100011110101110000101000111101011100001010)
to (D) iee754 hex (405efa3d70a3d70a). But in (B) → (C) we implicitly converted
c = 1029,m = 0.93609375 to binary individually without showing how. Now we show
how for integers and fractions.
Given an integer such as c = 1029, divide by 2 and note the remainders:

1029÷ 2 = 514 R 1

514÷ 2 = 257 R 0

257÷ 2 = 128 R 1

128÷ 2 = 64 R 0

64÷ 2 = 32 R 0

32÷ 2 = 16 R 0

16÷ 2 = 8 R 0

8÷ 2 = 4 R 0

4÷ 2 = 2 R 0

2÷ 2 = 1 R 0

1÷ 2 = 0 R 1

0÷ 2 = 0 R 0

reading from the bottom up (omitting the trivial line 0÷ 2 = 0 R 0 which would repeat
infinitely), we get 10000000101.
Given a decimal such as 0.9 (follows same rules as m = 0.93609375 but easier to

demonstrate), we multiply the fractional part by 2 and note the integer part:

0.9× 2 = (1).8

0.8× 2 = (1).6 ←

0.6× 2 = (1).2

0.2× 2 = (0).4

0.4× 2 = (0).8

0.8× 2 = (1).6 ←repeats starting from previous arrow

4

reading from the top down we get 0.111001 = 0.1(11001)(11001)(11001)(11001)
Repeating decimals like this want to continue forever but the computer stops it at 52

digits which is the mantissa length. Machine epsilon ϵmach = 2−52 represents the relative
spacing between numbers (i.e. the absolute spacing between 1 and the next highest binary
number, 1. 00000 . . . 0001︸ ︷︷ ︸

52 bin digits

). If numbers are spaced as such, then the max relative error in

representing a real number by a machine number is

ϵmach

2
:= δ. (5)

Notice in all of this that there is no zero; the smallest positive number should be c =
0,m = .00000 → 1.00000 × 20−1023 = 2−1023. To solve this we just manually let c =
0,m = 0 imply ±0, not 2−1023. The effect of this is that it leaves a nonuniform spacing/
a hole at zero which can be remedied by denormalizing. For example consider a system
with 2 mantissa length and 2 exponent length with 2 bias: the numbers ≤ 1 before
denormalization are:

0|00|00 =((((((
1.00× 2−2 =let 0 (special rule)

0|00|01 = 1.25× 2−2 = 0.3125

0|00|10 = 1.50× 2−2 = 0.375

0|00|11 = 1.75× 2−2 = 0.4375

0|01|00 = 1.00× 2−1 = 0.5

0|01|01 = 1.25× 2−1 = 0.625

0|01|10 = 1.50× 2−1 = 0.75

0|01|11 = 1.75× 2−1 = 0.875

0|10|00 = 1.00× 20 = 1

Then to fix the hole at zero (0→0.3125) we do denormalization, which is just observing
the spacing at the second-smallest order O(2−1) (0.5 ≤ x ≤ 1) and applying it to the
smallest order O(2−2) (0 ≤ x ≤ 0.5):

00000 =((((((
1.00× 2−2 =let 0 (special rule)

00001 =((((((
1.25× 2−2 =let 0.125 (denorm.)

00010 =((((((
1.50× 2−2 =let 0.25 (denorm.)

00011 =((((((
1.75× 2−2 =let 0.375 (denorm.)

00100 = 1.00× 2−1 = 0.5

00101 = 1.25× 2−1 = 0.625

5

00110 = 1.50× 2−1 = 0.75

00111 = 1.75× 2−1 = 0.875

01000 = 1.00× 20 = 1.

Now the hole at zero is not so large (0→0.125).
Similarly to manually setting zero: the largest possible number should be c = 1111 . . . 11︸ ︷︷ ︸

bin

,m =

111111 . . . 111︸ ︷︷ ︸
bin

, but we say that all numbers with this c are just ±Inf . Given that, the

actual largest number possesses the bin exponent of c = 11111111110 corresponding to
O(22046−1023) = O(10307). It’s big enough so we don’t need the higher stuff anyway!
Remember, δ represents max relative round off error due to machine number approxi-

mation. That is ∣∣fl(x)− x

x

∣∣≤ δ =
ϵmach

2
(6)

where fl(x) represents the machine approx’ed x.
The consquences of this are relevant to all machine computations because even if (say)

X, Y are machine numbers, this certainly does not mean X + Y is a machine number,
and so this sum will be approximated and will possess max relative round off error of

∣∣X + Y −X + Y

X + Y

∣∣≤ δ, X + Y ̸= 0 (7)

where + indicates the machine sum and + indicates the analytical sum.
We’ve just supposed X, Y are machine numbers but suppose we have generic x, y ∈ R

and we’re trying to compute x×y. Then the several errors necessary to take into account
are:

approximating x;

approximating y;

approximating their product.

Relative error becomes∣∣∣∣x(1 + δ1)y(1 + δ2)(1 + δ3)− xy

xy

∣∣∣∣= . . . = 3δ (assuming δ1 ≈ δ2 ≈ δ3 ≈ δ) (8)

where x(1 + δ1) is the machine approx’ed x, y(1 + δ2) is the approx’ed y, and the whole
first term is the approx’ed xy.

6

1.3 day03

Suppose we have a six digit system such that

x = .50000230→ fl(x) = .500002

y = .50000110→ fl(y) = .500001

=⇒
∣∣fl(x) - fl(y)− (x− y)

x− y

∣∣= ∣∣ .00001− .0000012

.0000012

∣∣≈ 17%. (9)

This is unacceptably high error, so as a remedy for situations such as this we turn to
evaluating an approximation to the expression that is not subject to the catastrophic
round off error, i.e. we do a Taylor approx. Taylor’s theorem is

f(x) ≈ f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2!
+ f ′′′(x0)

(x− x0)
3

3!
+ . . .

+f (n)(x0)
(x− x0)

n

n!
+ f (n+1)(ξ)

(x− x0)
n+1

(n+ 1)!
,︸ ︷︷ ︸

R

(10)

where ξ ∈ [x0, x]. The last term is the truncation error R and the other terms comprise
the degree n Taylor polynomial approximation. It can essentially be shown that for
Taylor polys, the max round off error is the truncation error. For example the expression

(1− ep)c

is problematic for very small p, since the whole expression would be close to zero and
thus small changes in p lead to large changes in the round off error given a small number
of rounding digits. But we can approximate ep as

ep = 1 + p+
p2

2!
+

p3eξ

3!︸︷︷︸
R

(11)

and for small p we actually get decreasing R/less error. Therefore for small p we prefer
the Taylor approx but for large p we prefer the closed form ep.

1.4 day04

Various root finders (Newton, bisection, secant, etc.) trade off robustnness and speed.
The most robust method is bisection:

Suppose f ∈ C[a, b]

f(a)f(b) < 0 s.t. one of f(a), f(b) positive, the other negative, s.t. there is a root
z in the interval by IVT

Check sign of f(c), c = (a+ b)/2 and replace either a or b by c accordingly

7

• Repeat until desired precision reached

Then the kth calculation of c, i.e. ck is the kth approximation to the root z. This is
because the size of the interval across iterations is

|ak − bk| =
1

2k
|a0 − b0| (12)

and with ck being in the middle of ak, bk, and with z also being somewhere in the interval,

=⇒ |ck − z| ≤ 1

2
|ak − bk| =

1

2k+1
|a0 − b0| (13)

i.e. the max error is half the length of the kth interval.

If z is the root of f(x) = g(x)− x such that f(z) = 0 = g(z)− z, then we can stagger
iteration of g(z) and z to our advantage in what is called fixed point root finding. This
is best shown through example. If f(x) = 2 cosx− 3x then

Root will be f(z) = 0 = 2 cos z − 3z =⇒ z =
2

3
cos z︸ ︷︷ ︸
g(z)

Do the iteration g(zk) = zk+1 until desired convergence:

say z0 = 0 =⇒ g(z0) =
2
3
cos 0 = z1

z1 =
2
3

=⇒ g(z1) =
2
3
cos 2

3
= z2

etc.

You can draw g on the xkxk+1 plane (analogous to the xy plane) and draw the iterative
process like this:

pick x0, start at (x0, 0)

draw vert. line to g to find g(x0) = x1

now you know x1 so start at (x1, 0)

draw vert. line to g to find g(x1) = x2

now you know x2, . . . , etc.

1.5 day05

If xk+1 = g(xk) converges to z such that g(z) = z → f = g(z)− z = 0, then the order of
the convergence is q if

|xk+1 − z|︸ ︷︷ ︸
ek+1

≤ c |xk − z|︸ ︷︷ ︸
ek

,q q = 1⇔ c < 1 (14)

8

That is if ek+1 (the interval/error between the k + 1th guess and z) is the square root of
ek (” ” kth guess and z) then q = 2 and the sequence is second order convergent.
Note, q is the first positive integer for which g(q)(z) ̸= 0 or if q = 1 then |g′(z)| < 1.

Some examples:

• g(x) = 1
5
x2 + 6

5

g(z) = z → z = 1
5
z2 + 6

5
→ z = 2

g′(x) = 2
5
x→ g′(z) = 4

5
̸= 0

=⇒ q = 1

• g(x) = x
2
+ 2

x

g(z) = z → z = z
2
+ 2

z
→ z = 2

g′(x) = 1
2
− 2x−2 → g′(z) = 1

2
− 1

2
= 0

g′′(x) = 4x−3 → g′′(z) = 1
2
̸= 0

=⇒ q = 2

Quadratic convergence doubles number of correct decimal digits Nk per iteration k, while
linear convergence increases Nk by a potentially small constant − log c:

• Definition: Nk := − log |ek| →︸︷︷︸
for example

ek = .01 =⇒ Nk = −(−2) = 2 correct digits in kth guess

• Linear:

|ek+1| < c|ek| =⇒︸ ︷︷ ︸
take −log

− log |ek+1| ≥ − log |ek| − log c =⇒ Nk+1 ≥ Nk − log c

• Quadratic:

|ek+1 < c|ek|2 =⇒︸ ︷︷ ︸
take −log

− log |ek+1| ≥ −2 log |ek|− log c =⇒ Nk+1 ≥ 2Nk− log c

Cubic convergence would triple the number of correct digits, etc.
Newton’s method artifically enforces nonlinear convergence by engineering a zero first

derivative of g:

g(xk) := xk+1 = xk −
f(xk)

f ′(xk)
(15)

At z, f(z) = 0 by def. of the root; substitute this in after computing g′ eval’ed at z:

g′(z) = 1− f ′(z)f ′(z)− f(z)f ′′(z)

f ′2(z)
=���1− 1 + �

��*
0

f(z)f ′′(z)

f ′2(z)
=⇒ g′(z) = 0 unless f ′(z) = 0.

(16)

The function g satisfies a Lipschitz condition in the region G if ∃ L ≥ 0 such that

|g(x)− g(y)|
|xk − yk|

≤ L ∀x, y ∈ G. (17)

9

L is the slope of g on the interval [y, x] (rise/run). If L > 1 (slope of g ∈ G ≤ 1∀y, x)
then g is said to be a contraction on G.
If g is a contraction on G, then ∃z ∈ G s.t. z = g(z) and the sequence xk+1 = g(x)

converges to z with error estimates

|xk − z| ≤ Lk

1− L
|x1 − x0|,

|xk − z| ≤ L

1− L
|xk − xk−1| (contraction mapping theorem/CMT).

If we pick an interval I = [z− ϵ, z+ ϵ] and if we know g′(z) < 1 then I is a small interval
about z and g ∈ I satisfies CMT as it is a contraction.

1.6 day06

Newton requires the derivative f ′, but if for some reason f ′ is difficult to obtain, then we
can use the secant method:

xk+1 = xk −
f(xk)(

f(xk−1)−f(xk)

xk−1−xk

) := xk −
f(xk)

secant slope
(18)

=⇒ xk+1 = xk −
f(xk)(xk−1 − xk)

f(xk−1)− f(xk)
. (19)

Say we have initial guesses x0, x1. Newton’s method says to use f ′(x1) to get x2. Instead,
the secant method says to take the slope of the line that goes through x0, x1 as an
approximation of the derivative at x1. It converges superlinearly: q = γ = 1+

√
5

2
.

Superlinearly converging sequences {xk} → z remove almost all error on each iteration:

|ek+1| = c|ek|p, p > 1 =⇒︸ ︷︷ ︸
divide by ek

|ek+1|
|ek|

= c|ek|q, q > 0 (20)

RHS → 0 due to convergence and RHS = LHS, so LHS → 0, meaning |ek| ≫ |ek+1|,
i.e. most of the error goes away with further iteration. Therefore |xk+1 − xk| ≈ |ek|. i.e.
the amount of error solved for in the k + 1th step is almost the entire amount of error
that existed to begin with. Thus iterate until

|xk+1 − xk| ≤ tolerance. (21)

10

2 September 28 to November 7

2.1 day07

Gaussian elimination and back substitution (GE, BS)
x1 + 2x2 + x3 = 3

2x1 + 3x2 − x3 = −6
3x1 − 2x2 − 4x3 = −2

→

1 2 1
2 3 −1
3 −2 −4


x1

x2

x3

 =


3
−6
−2

 (22)

Augment 1 2 1 3
2 3 −1 −6
3 −2 −4 −2

 (23)

Transform system into upper triangular using the operations

• swap two rows

• multiply row by nonzero scalar

• subtract a multiple of a row from another

then do back substitution to solve for x3, x2, then x1. Cost of GE/BS is O(n3) for n× n
system matrix: three nested loops: (1) outer loop for each operation, (2) middle loop for
each row, (3) inner loop for each column/element in that row.

2.2 day08

Matrix vector mult is 2n2 ops: n mults and n additions, n times.
Errors in linear solve

• avoidable: swap rows such that diagonal element of the row being worked on is the
largest in its column (GEPP)

• unavoidable: floating point arithmetic rounds off decimals in near-whole numbers
(3− 7ϵ→ 3) but not in very small numbers (ϵ→ ϵ) leading to large error[

ϵ 1 3
1 1 7

]
→

[
ϵ 1 3

1− ϵ/ϵ = 0 1− 1/ϵ 7− 3/ϵ

]
︸ ︷︷ ︸

R2←R2−R1/ϵ

→
[
ϵ 1 3
0 1− ϵ 3− 7ϵ

]
︸ ︷︷ ︸

R2←−R2ϵ

(24)

exact: x2 = (3−7ϵ)/(1−ϵ) =⇒ x1 = [3−(3−7ϵ)/(1−ϵ)]/ϵ = −4/(ϵ−1) ≈ 4 (25)

fp: ≈
[
ϵ 1 3
0 1 3

]
→ x2 = 3 =⇒ x1 = (3− 3)/ϵ = 0 (26)

11

2.3 day09

GEPP prevents inoperable rows (ones for which the diagonal element is zero) from at-
tempting to propagate multiples of itself down the matrix (it cannot bring other terms
to zero, for it is a zero). At stage k, swap row k with row l such that |alk| = maxj |ajk|.
When rescaling rows so that they are of the same order of magnitude, do so by powers

of 2 so that only the exponent is changing and not the mantissa.
Vector norm

||x||p = (
∑
i

|xi|p)1/p (27)

Matrix inf norm i.e. max row sum

||A||∞ = max
i

∑
j

|aij| (28)

Matrix 1 norm i.e. max col sum

||A||∞ = max
j

∑
i

|aij| (29)

You can use whatever norm is convenient to you based on the application, since they
are all equivalent in Rn,Cn.
If small changes in A, b cause large changes in x then the Ax = b is called ill-conditioned.

(A+ δA)(x+ δx) = b+ δb (30)

If
||δA||||A−1|| < 1 (δA not too large) (31)

Then
||δx||
||x||

≤ κ(A)

1− ||δA||||A−1||
(
||δb||
||b||

+
||δA||
||A||

) (32)

in which the condition number of A is

κ(A) = ||A||||A−1|| (33)

and a large κ(A) implies an ill conditioned system matrix.
each column of A−1 = X = [X1 X2 . . . Xn] requires the solution to a linear system

AX1 = I1 =


1
0
...
0

 , AX2 = I2 =


0
1
...
0

 , AXn = In =


0
0
...
1

 (34)

since this is expensive you can estimate κ(A) without forming A−1.
Wikkinson round off error in GE

|xgepp − x

|x|
≤ 4n2κ(A)ρϵmach (35)

12

in which growth factor
ρ = max

k,i,j
|a(k)ij |/max

i,j
|aij| ≤ 2n−1 (36)

is the max element across all stages of the matrix during GEPP, relative to the max
element in the initial stage.
Hilbert matrix is very ill conditioned

Hij = 1/(i+ j − 1)↔


1 1/2 . . . 1/n
1/2 1/4 . . . 1/(n+ 1)
...

1/n 1/(n+ 1) . . . 1/(2n− 1)

 (37)

GE as LU decomposition

Ax = b→ LUx = b→

{
Lc = b O(n2)

Ux = c O(n2)
(38)

Total work is O(n3).
Get U out of A through GE; each step of GE represented as a matrix transformation

M6M5 . . .M2M1A = U (39)

M1,M2,M3,M4,M5,M6 =


1
−m1 1

1
1

 ,


1

1
−m2 1

1

 ,


1

1
1

−m3 1

 ,

(40)
1

1
−m4 1

1

 ,


1

1
1

−m5 1

 ,


1

1
1
−m6 1

 (41)

then do
A = LU = L(M6M5 . . .M2M1A)→ L = M−1

1 M−2
2 . . .M−1

5 M−1
6 (42)

where the inverse matrices represent the inverse set of operations done on A to get U .
I.e.

M4 =


1

1
−m4 1

1

→M−1
4 =


1

1
m4 1

1

 (43)

2.4 day11

Overdetermined linear systems Am×nxn×1 = bm×1, m ≫ n (many more rows than
columns) typically have no true solution. Normal equations: we minimize residual

rm×1 = Ax− b =set 0 (44)

13

0 = AT
n×mrm×1 = AT (Ax− b)→ ATAx = AT b (45)

ATA is ill conditioned → unstable.
QR (orthogonal; upper/right triangular) factorization: factorize A as

Am×n = Qm×m

[
Rn×n
0m−n×n

]
m×n

(46)

Useful because orthogonal Q preserves 2-norm:

||Qy||2 =
√

Qy ·Qy =
√
yTQTQy =

√
yTy = y · y = ||y||2 (47)

Residual

0 =set ||r||22 = ||Ax− b||22 = ||QT (Ax− b)||22 = ||QT (Q

[
R
0

]
x− b)||22 (48)

= ||QTQ

[
R
0

]
x−QT b||22 = ||

[
R
0

]
x−QT b||22 (49)

= ||
[
Rx
0

]
−

[
c
d

]
||22 = ||Rx− c||22 +���*don’t care

||d||22 (50)

=⇒ 0 =set Rx− c→ Rx = c (51)

in which c is the vector containing the first n components of QT b.
Get R0 out of A; each step represented as an orthogonal matrix transformation

Hn . . . H2H1A =

[
R
0

]
(52)

Then do

A = Q

[
R
0

]
= Q(Hn . . . H2H1A)→ Q = HT

1 H
T
2 . . . HT

n (53)

we have n steps because the first n columns of A are manipulated to obtain Rn×n:

[
A
]
m×n −→

H1



r11 a12 a13 . . .
0 a22 a23 . . .
0 a32 a33 . . .
...
0︸︷︷︸

col1

an2 an3 . . .

 −→
H2



r11 r12 a13 . . .
0 r22 a23 . . .
0 0 a33 . . .
...

...
0 0︸︷︷︸

col2

an3 . . .

 −→
...−→Hn

[
R
0

]

(54)
Find Hi:

• build His using projections of the form

P = vvT/vTv. (55)

given u⃗, v⃗, projection Pu⃗ = projv⃗u⃗ is the shadow of u⃗ on v⃗.

14

• let the column we are manipulating be z. We want

Hz = w (56)

in which w = {w1, 0, 0, . . . , 0}T .

• H is 2-norm preserving → ±||z||2 = w1. So we know what we want w1 ↔ w to be.

• Let v := w − z. Then the triangle vwz is isosceles (||w||2 = ||z||). Then the
projection/shadow of z on v is one half of v. Therefore v represents the process of
H taking us from z to (z − Pz − Pz) = w

=⇒ w = (I − 2P)z (57)

H = I − 2P = I − 2(vvT/vTv), v = w − z (58)

To prove H is orthogonal

HTH = (I − 2P)T (I − 2P) = I − 2P − 2P T + P TP (59)

P symmetric: P T = (vvT/vTv)T = vT
T
vT/vTv = P . Thus

HTH = I − 4P + 4P 2 (60)

= δij − 4vivj/vkvk + 4vi ��vlvl vj/vkvk ���vrvr = δij = HTH → HT = H−1. (61)

That takes care of H1 to handle the first column. For column 2,

H2 =


1 0 0 . . . 0
0

0 Ĥ2
...
0

 (62)

in which Ĥ2 is computed in the same manner as H1, except applied to the submatrix of
A without first row and column.

H3 =


1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... Ĥ3

0 0

 (63)

etc. This is called Householder factorization.

15

2.5 day12

QR useful for overdetermined systems because we minimize Rx = c, where c is the first
n components of QT b. An example of an overdetermined system is the linear-ish data set
(ti, yi) s.t. yi ≈ x1ti + x2, i = 1, . . .m

=⇒


t1 1
t2 1
...

...
tm 1


{
x1

x2

}
=


y1
y2
...
ym

 (64)

with this we can factor A as QR and solve

R

{
x1

x2

}
=

first 2 elements of QTy

 . (65)

Quadratic-ish data set (ti, yi) s.t. yi ≈ x1t
2
i + x2ti + x3

=⇒


t21 t1 1
t22 t2 1
...

...
...

t2m tm 1



x1

x2

x3

 =


y1
y2
...
ym

 (66)

do the same thing.
Polynomial approximation
Weierstrass proof: Bernstein polynomials {bm(h, x)}m=0,1,2,...,∞ in which

bm(h, x) =
m∑
k=0

h

(
k

m

)(
m

k

)
xk(1− x)m−k (67)

necessarily converge to analytical polynomial function such that bm(h, x) →m=∞ h(x).
They prove that any function can be approximated, but they are impractical/expensive.
We turn to other methods...

2.6 day13

Alternatives to Bernstein polynomials

• Taylor polynomials (f ∈ Cn+1[a, b], x0 ∈ [a, b], ξ ∈ [x0, x])

pn =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k (68)

has error

Rn(x) =
f (k+1)(ξ)

(k + 1)!
(x− x0)

k+1 (69)

16

• Degree n interpolants.

In general, the function p(x) interpolates (xj, yj = f(xj)) if p(xj) = yj∀j.
Lagrange basis

lk(x) =
n∏

j=0,j ̸=k

x− xj

xk − xj

(70)

Properties

• lk is of degree n.

• lk(xj) = δkj

Then the Lagrange polynomial

p(x) =
n∑

k=0

yklk(x) (71)

interpolates the data: p(xj) = 0 + 0 + . . .+ 0 + yj + 0 + . . .+ 0.
In general a polynomial interpolant takes the form

p(x) =
n∑

k=0

ckbk(x) (72)

in which bk(x) are the basis functions and ck are the coefficients.
Lagrange basis: pros:

• coefficients require no computation:ck = yk

cons:

• inefficient to evaluate

• need to recompute from scratch if new node is added

Monomial basis:
bk(x) = xk → {bk} = {1, x, x2, . . . , xn} (73)

interpolation requires p(xj) =
∑n

k=0 bk(xj)ck = yj
b0(x0) b1(x0) . . . bn(x0)
b0(x1) b1(x1) . . . bn(x1)

...
b0(xn) b1(xn) . . . bn(xn)



c0
c1
...
yn

 =


y0
y1
...
yn

 (74)


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...
1 xn x2

n . . . xn
n



c0
c1
...
yn

 =


y0
y1
...
yn

↔ Ac = y (75)

pros:

17

• basis is simple

cons:

• ill conditioned A→ large κ(A)

• lots of computation towards ck

Newton basis
ϕ0(x) = 1 (76)

ϕ1(x) = (x− x0)ϕ0(x) (77)

ϕ2(x) = (x− x1)ϕ1(x) (78)

ϕn(x) = (x− xn−1)ϕn−1(x) (79)

pros:

• adding a new data point does not lead to recomputing existing basis

• tabular scheme of getting cks available

2.7 day14

Newton basis cont.

p(xj) =
n∑

k=0

ckϕk(xj) = yj (80)


1 ����x0 − x0 �����

(x0 − x0)(xn − x1) . . .
1 x1 − x0 (x1 − x0)�����

(x1 − x1) . . .
1 x2 − x0 (x2 − x0)(x2 − x1) . . .
...
1 xn − x0 (xn − x0)(xn − x1) . . .

 (81)

upper right triangle is zeros → lower triangular Newton basis.
If {yi} is all we are given then technically we are doing a perfect job in that p(xj) = yj∀j.

But if {yj} are actually {f(xj)} for some function f then the question arises, how well
are we doing between the nodes? I.e., find the magnitude of

||p− f ||∞ = max
x∈[a,b

|p(x)− f(x)| (82)

Taylor polynomial: error bound is

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1 (83)

Polynomial interpolant: error bound is

error(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) . . . (x− xn) (84)

18

Without knowing our f , all we can control to minimize error is our choice of xi. We want
to minimize

W (x) = (x− x0)(x− x1) . . . (x− xn) =
n∏

i=0

(x− xi) (85)

The optimal choice is the Chebeshev nodes

xi = cos(
2i+ 1

n+ 1

π

2
), i = 0, 1, . . . , n. (86)

More nodes does not always lead to a better interpolant. 2 uniformly spaced points
are better than 3 for the Runge function

r(x) =
1

1 + 25x2
. (87)

But,

• Uniform nodes: ||p− r||∞ →∞ as n→∞ (bad)

• Chebyshev nodes: ||p− r||∞ → 0 as n→∞ (good)

2.8 day15

Piecewise polynomial interpolation
Linear piecewise interpolant: subinterval between points (xi, yi), (xi+1, yi+1)

li(x) = yi +
x− xi

xi+1 − xi

(yi+1 − yi) (88)

We can construct a piecewise basis

ϕ(x) =
∑

ciϕi(x) (89)

where c are the coefficients and ϕi are ”hat functions” that go to 1 at yi and go to zero
at yj ̸=i.
Error of PW interpolant if yi = f(xi):

• f ∈ C2[a, b]→ ||ϕ− f ||∞ ≤ h2||f ′′||∞/8

• f ∈ C1[a, b]→ ||ϕ− f ||∞ ≤ h||f ′||∞/2

in which h = maxi |xi+1 − xi| is the largest node spacing.
Piecewise cubic functions/cubic splines
Subintervals are cubic functions

ϕi(x) = ai + bix+ cix
2 + dix

3 (90)

Motivation for cubic splines: elastic beam satisfies y(4)(x) = w(x) = load force. No load
=⇒ y(4) = 0→ y is cubic. With a point load, y(3) will jump at each of the points where
load is applied; y(2), y(1) are always continuous.
This motivates seeking a ϕ ∈ C2[a, b] that is cubic on each subinterval.
Degrees of freedom vs. constraints: suppose we have n + 1 nodes 0, . . . , n, thus n

subintervals 0, . . . , n− 1

19

• dofs: 4 coefficients at each subinterval = 4n dofs.

• constraints: 4(n− 2)

– ϕi(xi) = yi, i = 0, . . . , n− 1

– ϕi(xi+1) = yi+1, i = 0, . . . , n− 1

– ϕ′(xi+1) = ϕi+1(xi+1), i = 0, . . . , n− 2

– ϕ′′(xi+1) = ϕi+1(xi+1), i = 0, . . . , n− 2

We must choose 2 more constraints

• Natural BCs: ϕ′′(x0) = 0, ϕ′′(xn) = 0

• Clamped BCs: specify y′ at the ends

Linear system



1 . . . x0 . . . x2
0 . . . x3

0 . . .
1 . . . x1 . . . x2

1 . . . x3
1 . . .

1 . . . x2 . . . x2
2 . . . x3

2 . . .
...
1 . . . x1 . . . x2

1 . . . x3
1 . . .

1 . . . x2 . . . x2
2 . . . x3

2 . . .
1 . . . x3 . . . x2

3 . . . x3
3 . . .

...
0 0 . . . 1 −1 . . . 2x1 −2x1 . . . 3x2

1,−3x2
1

...
0 0 . . . 0 0 . . . 2 −2 . . . 6x1,−6x1
...

extra





a0
a1
a2
...

an−1
b0
b1
b2
...

bn−1
c0
c1
c2
...

cn−1
d0
d1
d2
...

dn−1



=



y0
y1
y2
...

yn−1
y1
y2
y3
...
yn
0
0
0
...
0
0
0
0
...
0


(91)

• First n columns of y : ϕi(xi) = yi, i = 0, . . . , n− 1

ai + bixi + cix
2
i + dix

3
i = yi (92)

• Second n columns of y : ϕi(xi+1) = yi+1, i+ 1 = 1, . . . , n

ai + bixi+1 + cix
2
i+1 + dix

3
i+1 = yi+1 (93)

20

• Next/third n− 1 columns of y : ϕ′i(xi+1)− ϕ′i+1(xi+1) = 0, i = 0, . . . , n− 2

bi − bi+1 + 2cixi+1 − 2ci+1xi+1 + 3dix
2
i+1 − 3di+1x

2
i+1 = 0 (94)

• Next/fourth n− 1 columns of y : ϕ′′i (xi+1)− ϕ′′i+1(xi+1) = 0, i = 0, . . . , n− 2

2ci − 2ci+1 + 6dixi+1 − 6di+1xi+1 = 0 (95)

• Final two columns: extra BCs

– natural

2c0 + 6d0x0 = 0 (96)

2cn + 6dnxn = 0 (97)

– clamped
b0 + 2c0x0 + 3d0x

2
0 = C1 (98)

bn + 2cnxn + 3dnx
2
n = C2 (99)

Bezier/PW cubic parametric curves

B(t) =

[
x(t)
y(t)

]
=

{
a+ bt+ ct2 + dt3

e+ ft+ gt2 + ht3

}
, t ∈ [0, 1] (100)

B(t) = s3P0 + 3s2P1 + 3st2P2 + t3P4, (101)

s = 1− t (102)

B(0) = P0, B(1) = P3, P ′(0) = 3(P1 − P0), P ′(1) = 3(P3 − P2) (103)

Pi are points (xi, yi). Start point is P0, end point is P3, and P1, P2 help determine slope.
These help represent arbitrary curves in a plane instead of just graphs of functions.

2.9 day16

Let
ωj(x) = eijx = (eix)j, i =

√
−1, j = −k, . . . , 0, . . . , k. (104)

Let
W2k = {ω−k, . . . , ω0, . . . , ωk} (105)

Any ωj is orthogonal to all of W2k in that∫ 2π

0

ωj(x)ωl(x)dx := (ωj, ωl) = 2πδjl, δjl = Kronecker delta, c = a+bi =⇒ c̄ = a−bi.

(106)
All of ωj ∈ W2k are contained in V = C[0, 2π], V being the set of all continuous functions
on the interval 0, 2π.

21

Say we have f ∈ V we want to approximate with

gk(x) =
k∑
−k

αjωj(x) ∈ W2k. (107)

If we were to do so perfectly (such that gk = f), then

(f, ωl) = (gk, ωl)

= (
k∑
−k

αjωj, ωl) = αl(ωl, ωl)︸ ︷︷ ︸
only the lth term doesn′t vanish

= 2παl

=⇒ αl =
1

2π
(f, ωl) :=

1

2π

∫ 2π

0

f(x)eilxdx, l = −k, . . . , 0, . . . , k.

This is how to calculate αl for each ωl ∈ W2k; in summary

f(x) ≈ gk(x) =
k∑

j=−k

αje
ijx, αj =

1

2π

∫ 2π

0

f(x)eijxdx (108)

Separate j = 0→ ei0x term and make the summation more efficient

f(x) ≈ gk(x) = α0 +
k∑

j=1

(αje
ijx + α−je

−ijx) (109)

Recall eijx = cos jx+ i sin jx, and that i sin(−jx) = −i sin jx. Substituting

f(x) ≈ gk(x) = α0 +
k∑

j=1

[
αj(cos jx+ i sin jx) + α−j(cos jx− i sin jx)

]

= α0 +
k∑

j=1

[
(αj + α−j)︸ ︷︷ ︸

aj

cos jx+ i(αj − α−j)︸ ︷︷ ︸
bj

sin jx
]

=⇒ f(x) ≈ gk(x) = α0 +
k∑

j=1

[aj cos jx+ bj sin jx] , (110)

aj = αj + α−j, bj = αj − α−j, αk =

∫ 2π

0

f(x)eikxdx ,


eipx = cos px+ i sin px

e−ipx = cos px− i sin px

cos(−px) = cos px

i sin(−px) = −i sin px.
(111)

How does accuracy improve as k →∞? If f is PW continuous on [0, 2π], and

f (p)(0) = f (p)(2π), p = 0, 1, . . . , n− 1 (112)

22

then
||f − gk||∞ = O(1/kn−1). (113)

The above is for continuous f , but suppose we have discrete data xk = 2π k
n
, k =

0, 1, . . . , n− 1, and yk. Then p interpolates the data if

p(x) =
n−1∑
j=0

cje
ijx, cj =

1

n

n−1∑
k=0

ykω
jk, ω = e−i2π/n, {xq, yq}q=0,...,n−1 ,

{
ω = 1

ω

(114)
Then (index notation)

cj = Wjkyk, Wjk =
1

n
ωjk

⇔



c0
c1
c2
...

cn−1


=

1

n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

1 ωn−1 ω(n−1)2

 (115)

Wjk known as discrete Fourier transform/DFTmatrix, having the propertyWjqW
∗←conj transpose

qk =
nδjk.

23

3 November 7 to December 14

3.1 day17

Note, different sources use different W :

• Fack =
1
n
W → F−1ack = W

• Fu = 1√
n
W → F−1u = 1√

n
W → FuF

∗
u = I

• Fnumpy = W → F−1numpy =
1
n
W .

Given discrete xk, yk, k = 0, 1, . . . , n−1, the highest frequency oscillation supportable by
the grid is one in which the nodes represent successive peaks/troughs, called the Nyquist
frequency, which has wave number κ = n

2
since n/2 waves fit in [x0, xn] (try it on say

n = 8). And as it turns out our trig interpolations on the same grid will look similarly
to the Nyquist freq, i.e. it will oscillate up and down, which makes no sense. . . .

3.2 day18

For large number of discrete data n = 162, 000 (say), DFT matrix multiplication cj =
(Fn)jkyk not feasible, but we can use the more feasible FFT:

• Recalling (Fn)jk = ωjk, the shorthand for the exponents of the elements is

F8 =



0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 8 10 12 14
0 3 6 9 12 15 18 21
0 4 8 12 16 20 24 28
0 5 10 15 20 25 30 35
0 6 12 18 24 30 36 42
0 7 14 21 28 35 42 49


(116)

• Divide odd index columns by k = 1 column (subtracting exponents)

0 0 0 0 0 0 0 0
0 0 2 2 4 4 6 6
0 0 4 4 8 8 12 12
0 0 6 6 12 12 18 18
0 0 8 8 16 16 24 24
0 0 10 10 20 20 30 30
0 0 12 12 24 24 36 36
0 0 14 24 28 28 42 42


(117)

24

• Mod by 8, not changing the values since ω8 = 1

0 0 0 0 0 0 0 0
0 0 2 2 4 4 6 6
0 0 4 4 0 0 4 4
0 0 6 6 4 4 2 2
0 0 0 0 0 0 0 0
0 0 2 2 4 4 6 6
0 0 4 4 0 0 4 4
0 0 6 6 4 4 2 2


(118)

Now upper half of even columns = upper half of odd columns = lower half of even columns
= lower half of odd columns =

0 0 0 0
0 2 4 6
0 4 0 4
0 6 4 2

 ∼ F4 =


0 0 0 0
0 1 2 3
0 0 4 6
0 3 6 9

 (119)

We conclude

F8y =

F4yeven: 0,2,4,6 +


ω0

ω1

ω2

ω3


compensating for subtraction of first col

F4yodd: 1,3,5,7

F4yeven +


ω4

ω5

ω6

ω7

F4yodd

(120)

where the line is not meant to indicate a fraction but a separation of submatrices. Then
we can apply the same technique to F4 in terms of F2, and so on until in terms of F1 = [1].
Operation cost of FFT is almost linear with n, much better than O(n2) of DFT.

3.3 day19

Ways to approximate derivatives

• Symbolically:

pros: exact, and pretty close in floating point arithmetic

cons: very inefficient

• Finite differences:

– pros: very general, don’t need a formula

– truncation error, round off error

25

Finite differences are derived from the Taylor approx of f(x0) about h. Forward finite
difference:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′(ξ) =⇒ f ′(x0) =

f(x0 + h)− f(x0)

h
+O(h). (121)

With small h we get round off error, but with large h we get Taylor truncation error, so
there is a limited region with small error.
Central finite difference:{
f(x+ h) = f(x) + hf ′(x) + h2

2
f ′′(x) +O(h3)

f(x− h) = f(x)− hf ′(x) + h2

2
f ′′(x)−O(h3)

=⇒ f(x+ h)− f(x− h)

2h
+O(h3) = f ′(x).

(122)
Automatic differentiation does not possess truncation or roundoff error. AD:

Say we have 2 functions f, g and h = fg and we want h′(a), a being a number.

Define two objects < f(a), f ′(a) >,< g(a), g′(a) >⇐⇒< fval, fder >,< gval, gder >

Then < hval, hder >=< fval, fder > × < gval, gder >=< fvalgval, fvalgder + gvalfder >.

Other arithmetic operations

• Addition/subtraction: < fv, fd > ± < gv, gd >=< fv ± gv, fd ± gd >

• Multiplication: < fv, fd > × < gv, gd >=< fvgv, fvgd + gvfd >

• Division:
< fv, fd >

< gv, gd >
=<

fv
gv
,
gvfd − fvgd

g2v
>

• Trig: sin(< fv, fd >) =< sin fv, fd cos fv > (similar for other trig)

3.4 day21

Forward mode AD on x2

x+7
at x = 3:

Create object < xv, xd >=< 3, 1 >

Do:

x2 =< xv, xd > × < xv, xd >

x+ 7 =< xv, xd > + < 7, 0 >

< first, result > / < second, result >.

We can extend this algebra of course to higher order derivatives. Or we can do multiple
variables:

< f,∇f >< g,∇g >=< fg, f∇g + g∇f > .

Reverse mode AD (used in machine learning) on x2

x+7
at x = 3:

26

• Create variable x 3/ , weight 7/

• Copy image twice for x2 and create web of forward operations:

x 3/
↘+

−→=


x 3/

x 3/
−→× x2 9/ −→÷ x2

x+ 7
0.9/

7/ −→+ x+ 7 10/ ↗÷

• Let the result (x2

x+7
) be y

• First backpropagation

Let (x2

x+7
) = xk = xi/xj = 0.9

Let (x2) = xi = 9, let (x+ 7) = xj = 10

Fill in:
∂y

∂xk

= 1

Fill in:
∂y

∂xi

=
∂y

∂xk

∂(xi/xj)

∂xi

=
1

xj

=
1

10

Fill in:
∂y

∂xj

=
∂y

∂xk

∂(xi/xj)

∂xj

= −xi

x2
j

= − 9

100

x 3/
↘+

−→=


x 3/

x 3/
−→× x2 9/ 0.1 −→÷ x2

x+ 7
0.9/ 1

7/ −→+ x+ 7 10/ -0.09 ↗÷

• Second (upper) backpropagation:

– Let (x2) = xk = xixj = 9

– Let (x) = xi = 3, let (x) = xj = 3

27

– Fill in:

∂y

∂xi

=
�
�
��7
0.1

∂y

∂xk

∂xixj

∂xi

= 0.1(3) = 0.3 same forxj

x 3/
↘+

−→=


x 3/ 0.3

x 3/ 0.3

−→× x2 9/ 0.1 −→÷ x2

x+ 7
0.9/ 1

7/ −→+ x+ 7 10/ -0.09 ↗÷

• Third (lower) backpropagation):

– Let (x+ 7) = xk = xi + xj = 10

– Let (x) = xi = 3, Let (7) = xj = 7

– Fill in:

∂y

∂xj

=
�
�
��7
−0.09

∂y

∂xk

∂(xi + xj)

∂xj

= −0.09(1) = −0.09 (123)

• Final backpropagation: add objects connecting to original variable 0.3+0.3−0.09 =
0.51 and this is (x2

x+7
)|x=3.

x 3/ 0.51

↘+

−→=


x 3/ 0.3

x 3/ 0.3

−→× x2 9/ 0.1 −→÷ x2

x+ 7
0.9/ 1

7/ -0.09 −→+ x+ 7 10/ -0.09 ↗÷

3.5 day22

We have some integral
∫ b

a
f = Q(f) that we want to approximate with a function q(yj) =

Q(f), where yj = f(xj), xj being distinct points in [a, b]. Obviously if we knew the
antiderivative F to f such that F ′ = f , then we could do

Q(f) =

∫ b

a

f = F (b)− F (a) = q(yj),

28

but the antiderivative is often not available.
We let our approximation be of the form

q(yj) =
m∑
j=0

wjyj = (b− a)
∑
j=1m

αj︸︷︷︸
factored out b−a

yj, yj = f(xj) (124)

We enforce (by definition) f = 1→ Q(1) =
∫ b

a
1 = (b− a). If m = 3 (say), then

q(y) = (b− a)(α0 + α1 + α2 + α3) =
need b− a =⇒

∑
j

αm
j=0 = 1. (125)

We can enforce that polynomials of degree m2m−1 in hw? must be exact. So if m = 4 we
can say that

∫ b

a
f(x)dx = w0f(x0) + w1f(x1) + w2f(x2) + w3f(x3) + w4f(x4) should be

exact for f = 1, x, x2, x3, giving us the system of equations of size 2m− 1

∫ b

a
1dx = w0 + w1 + w2 + w3 + w4∫ b

a
xdx = w0x0 + w1x1 + w2x2 + w3x3 + w4x4∫ b

a
x2dx = w0x

2
0 + w1x

2
1 + w2x

2
2 + w3x

2
3 + w4x

2
4∫ b

a
x3dx = w0x

3
0 + w1x

3
1 + w2x

3
2 + w3x

3
3 + w4x

3
4

...

(126)

To solve for the unknown weights wj and nodes xj. Note, symmetry determines that
w2 = 0, w1 = w3, w0 = w4 decreasing the total unknowns/number of needed equations.
The above we can call Formulation 1. Formulation 2, below, is using Lagrange

polynomials to approximate the function:

Q(f) =
m∑
j=0

f(xj)

∫ b

a

lj(x)dx︸ ︷︷ ︸
wj

, (127)

where lj(x) is the jth lagrange polynomial with respect to individual node xj. Recall,

lj(x) =
n∏

q=0,q ̸=j

x− xq

xj − xq

. (128)

The choice of x0 = a, xm = b is called the Newton-Cotes rule of degree m.

3.6 day23

The nodes xi are also the roots of the nth Legendre polynomial. Legendre polynomials
p0, p1, . . . , pn, i.e. the polynomials that help obtain the quadrature rule of degree n, can

29

be written as

pn(x) =
1

2nn!

dn

dxn
(x2+1)n p0,...,4(x) =



1

x
1
2
(3x2 − 1)

1
2
(5x3 − 3x)

1
8
(35x4 − 30x2 + 3)

...

, roots =



0

±1/
√
3

0,±
√

3/5

±
√

3/7∓ 2
√
6/5/7

0,±
√
5∓ 2

√
10/7/3

...

(129)

3.7 day24

Solving systems of nonlinear equations

F (x) =


f1(x)
f2(x)
...

fn(x)

 =︸︷︷︸
choose



x1

x2
...
xn


such that


0
0
...
0

 . (130)

For example let’s say we want the solution to the circle v2+u2 = 1 and the cubic function
v = u3. To do this we will find the roots of the system

F (x) =

{
f(u, v)
g(u, v)

}
=

{
u3 − v

u2 + v2 − 1

}
=︸︷︷︸

choose u,v such that

{
0
}

(131)

In 1d/newton the core idea is to linearize F at xk and use the root of the linearization

as xk+1 (xk+1 = xk − f(xk)
f ′(xk)

). If the step length is s, then the analog to the linearization
in multiple dimensions is

F (x) + F ′(x)s =set 0 (132)

=⇒ F ′(x(k))︸ ︷︷ ︸
A

s(k) = −F (x(k)) =⇒ s(k) = −A−1F (x(k)) x(k+1) = x(k) + s(k), (133)

where the Jacobian is

F ′(x) = A = fi,j =
∂fi
∂xj

(134)

3.8 day25

F is convex on convex region D if ∀x, y ∈ D,

(1− λ)F (x) + λF (y) ≥ F [(1− λ)x+ λy], (135)

30

and the region D is convex if ∀x, y ∈ D,

(1− λ)x+ λy ∈ D, λ ∈ [0, 1], (136)

i.e. you can draw a straight line between any two points in the region and the entire line
also fits in the region. Convexity required for global Newton convergence, but the overall
theorem requiring it is very restrictive.
Newton converges ”typically” given a good starting guess and does so quadratically

(fast). But not global, i.e. not any x(0) can be used. This is because if (say) there are
two roots you will converge to only one.
To summarize, the Newton method in multi-D is

x(k+1) = x(k) + s(k), F ′(x(k))s(k) = −F (x(k)) . (137)

That is, do:

Start with x(0)

Compute F (x(0)), A(x(0)) ←go here

Solve s(0) = −A−1(x(0))F (x(0))

Solve x(1) = x(0) + s(0) ←repeat with x1

Compute F (x(1)), A(x(1)), etc.

Quasi Newton methods addresses the fact that calculating F ′ = A at each iterative step
is inefficient by supposing approximations for it. Do:

Start with x(0)

Compute F (x(0)), A(x(0)), let B(x(0)) = A(x(0))

Solve s(0) = −A−1(x(0))F (x(0))

Solve x(1) = x(0) + s(0)

Compute F (x(1))

Solve ∆(0) = F (x(1))− F (x(0))

BROYDEN UPDATE: B(1) = B(0) + ∆(0)−B(0)s(0)

s(0)T s(0)
s(0)T

Solve s(1) = −B−1(x(1)))F (x(1)) ←go here

Solve x(2) = x(1) + s(1)

Compute F (x(2))

Solve ∆(1) = F (x(2))− F (x(1))

BROYDEN UPDATE: B(2) = B(1) + ∆(1)−B(1)s(1)

s(1)T s(1)
s(1)T ←repeat with x2 etc.

and with this you only have to do one genuine Jacobian calculation, A(x(0)).

31

3.9 day26

We might want to find a local minimum/minimizer of f in an interval. This is done in a
way reminiscent of bisection, where we had a bracket [a, b] of a root and the idea was to
shrink the bracket repeatedly until tolerance.
For minimization we can do something similar. Let’s define ”unimodal” by saying f

is unimodal on [a, b] if ∃c ∈ (a, b) such that f is strictly decreasing on [a, c] and strictly
increasing on [c, b]. Then c is the unique minimizer of f on [a, b].
Let’s define a ”vee” as a triple (p, q, r) such that f(p) > f(q) < f(r). Then we are

guaranteed that c ∈ (p, r). Similarly to bisection, we want to now shrink the vee. We
pick a new point s ∈ (p, r), find f(s) and update the vee accordingly. (If by accident
f(s) = f(q) then pick a new s).
If h is the distance between s and q relative to p and q (or r and q depending on the

interval s is in), then h = .618 = −1+
√
5

2
guarantees a specific reduction rate of the vee.

Note, for quadratic minima/minimizers corresponding to quadratics, the vee near c
hardly changes at all as x changes, meaning such a strong convergence tolerance as 10−15

is unrealistic; something like 10−8 is way more common even though it is huge compared
to ϵmach.

3.10 day27

Minimization of multivariable f(x1, x2, . . .) extends from the scalar case discussed previ-
ously. In scalar case we look for f ′ = 0, and in multi-D case we are looking for ∇f = 0.
Letting g = ∇f ,

xk+1 = xk −
g(xk)

g′(xk)
(138)

n-D:
x(k+1) = x(k) − g′(x(k))−1g(x(k)) (139)

where

g(x) =


f,1(x)
f,2(x)

...
f,n(x)

 (140)

and the Hessian matrix

g′(x) =


f,11(x) f,12(x) f,13(x) . . . f,1n(x)
f,21(x) f,22(x) f,23(x) . . . f,2n(x)

...
f,n1(x) f,n2(x) f,n3(x) . . . f,nn(x)

 (141)

Gradient descent:
at x(k), the direction in which f decreases the fastest is −∇f(x(k)). Note, ∇f is

orthogonal/perp to level curves/contours of f . Therefore, we can define the interval as
the line spanned by −∇f(xk), find the minimum on that line, and do the same thing for

32

−∇f(xk+1), etc. A crude way to ”constantly” follow the local negative gradient is to use
the iteration

x(k+1) = x(k) − h∇f(x(k)), h small. (142)

Conjugate gradient descent is best shown through example. Let

f(x) = 2 + 4x+ 7y + 5x2 + 13y2 + 6xy (143)

=⇒ f(x) = 2−
{
−4 −7

}{x
y

}
+
{
x y

} [
5 3
3 13

]{
x
y

}
(144)

=⇒ f(x) = c− bTx+ xTAx. (145)

Do:

• Residual r0 = b− Ax0

• p0 = r0

• k = 0

• Repeat:

Rayleigh αk =
rTk rk
pTk Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

if rk+1 sufficiently small then exit loop

βk =
rTk+1rk+1

rTk rk

pk+1 = rk+1 + βkpk

k = k + 1

• Return xk+1 as result

33

	August 29 to September 28
	day01
	day02
	day03
	day04
	day05
	day06

	September 28 to November 7
	day07
	day08
	day09
	day11
	day12
	day13
	day14
	day15
	day16

	November 7 to December 14
	day17
	day18
	day19
	day21
	day22
	day23
	day24
	day25
	day26
	day27

