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1 Chl Mathematical preliminaries

1.1 Vectors

Vector
X = T1€1 + T2€2 + T3e3. (1)

Basis vectors are unit vectors so that
le1] = |es] = |es| = 1. (2)

The basis vectors are mutually perpendicular so that

81'62261'83262'8320. (3)
In general
€; - € = 0y (4)
where Kronecker delta
L, 1=y,
bij = o (5)
0, ©#7.

Therefore by definition these three vectors form an orthonormal basis.
We can rewrite x as
X = T;€; (6)

where summation convention acts like

5. — 011 + 022, 2D,
" 011 + 092 + 033, 3D.

(7)

The Kronecker delta is the index notation form of identity matrix I and so ¢;; = trI which
is defined as the sum of the diagonal entries.
The basis vectors form a right handed orthogonal triad and so

€] X ey =e3, €y Xez=e], €3 X e =€ (8)
but
€] X ez = —ey, €3 X ey = —€e;, €y Xe = —e3. (9)
Generalizing in index notation,
€; X €; = €;k€g (10)
where
1, ke 1—-2—3—
ek =14 —1, ijk3—-2—-1— (11)
0, 17k <> incohesive loop.
For example
€123 = €231 = €312 = 1, (12)



€321 = €913 = €132 = —1,
611226233:...:0.

If there are two vectors
a = a;€;, b = biei,

then their dot product is
a-b=ae; bje; = abje; - e; = a;bjd;; = a;b;0;; = a;b; = a1by + azbs + asbs.
The difference between two vectors
c=a-—b
has a magnitude which can be solved for using
(a —bcosh)? + (bsinf)? = ¢ = a® — 2abcos O + b* cos® § + b? sin? § = ¢

<~ a’+b®> — 2abcosh =

where 6 is the angle that separates a and b. The length or magnitude of any a is

a=lal =+va-a= /aqa =/da?+ad}+ a.

Substituting into Eq. [1§]
a: + a3+ a; + b + b5+ b3 — 2abcos = ¢ + 3 + 3

<= al+a;+a3+ b+ b5+ b3 — 2abcost = (a1 — by)* + (ag — by)* + (a3 — b3)?

<= a+a5+ai+bi+bs+b3—2abcos O = al—2a,b+bi+a5—2asby+b3+a;—2azbs+b;

<= —2abcos = —2a,b; — 2a2by — 2a3b3
<= abcost = a1by + asbs + azbs < a - b.

Therefore, dot product
a-b=uabcosb.

Cross product
axb=ae xbje; =abje; x e; = abje;jrex.

Expanding,

axb= 111€1 +a 112€2 + a 113€3
+a 1€ T a 122€2 + a1ba€123€3
+a,bserzie; + ajbserzaes + aibserszes

+ashresti€) + agbresins + asbienzes
+asha€s51€] + agbaessns + ashoesszes

(13)
(14)

(15)



+agbsersie; +m+gm (32)

+ngf€311/e1+ asbi€zia€s +ng’f€313/e3 (33)
+asbaeszier + ashoeszs€; + ashoeszzes (34)
+asbsessie; + asbsessaes + asbsesszes (35)

€1 €y €3
= € (a2b3 — agbg) + ez(agbl — (llbg) + 63<O,1b2 - a2b1> & det ay asg asj . (36)
by by b3
It is also provable that
a x b = absinfn < |a||b|sinfe, (37)

where e, points in the direction normal to the plane formed by a and b and can be
identified using the right hand rule. Volume of three new vectors a, b, ¢

a-(bxc)=(a)-(|bl|c|sinbe,) = |a||b||c|sin b cos (38)

where 6 is the angle between b and ¢ and « is the angle between a and vector b x c¢. In
index notation

a- (b X C) =a- (bicjeijkek) = Qm®em - bicjeijkek = ambicjeijkem c € (39)

= ambicjeijkdmk = amémkbicjeijk = akbicjeijk. (40)

Note indices are arbitrary in that

arbicjeijr < aibjcr, €jri = aibjcy €y, =a- (b x c). (41)
~ ~—~
I I

Because of the arbitrariness of the indices it can be shown that
a-(bxc)=b-(cxa)=c-(axDb) (42)

so long as the permutation between a,b,c remains intact so that ¢ does not change sign
(as evidenced by a x b = —b x a). Note that a vector is direction times magnitude. So, a
vector divided by its magnitude is just its direction (a/|a|). With that said the definition
of the projection p of b onto a is

a
p= |b|COSQH (43)

where 6 is the angle between a and b. In other words this is the horizontal component
of b in the direction of a. Note
a _|a|]lbjcosf a a-ba

|b|cos— = = —
al lal  fal  a] [a]

(44)

because of the definition of dot product.



1.2 Change of basis

A set of basis vectors is an arbitrary way to judge the location of a point. Sometimes
it might be mathematically more simple to change the set of basis vectors as we desire,
which because of its arbitrariness we are totally allowed to do. Consider vector

V = V1€1 + Us€esy + vUze3 = v;€; (45)

where v; are the components of v and e; are the basis vectors. Let us define a new

orthonormal basis 5 5
VvV = Z v;€; = Z 0;€; (46)

IIL.
o o — _ ,I/H\ B
Vi€ = V;€; <= 1;€; - €; = V;€; - €; <= 1; 5'L’j = V; Rij — U = UiRij- (47)
~—— —— ~— ~—~
L I L I
where R;; = €; - e; is the dot product between the old and new coordinate systems.

Note that this will not necessarily be identity I because it is not necessarily true that
e -e; = cos0 =1, etc. Further,

v = T)zRZ] = Rﬁ@z V= RTV. (48)

Instead of how we started with Eq. which was to multiply both sides by e;, we could
have also multiplied by e;. What follows is

III. 111

— =
V;€; = U;€; <= v;€; - éj =7; € - éj = V; Rji =; 5ij e Rjﬂ)l' = ﬁj' (49)

S—~— SN~ ~~~ ~~~
I II. I II
—v=Rve=v=R"V (50)
Combining Eq. 8 and Eq. [50]

R'=R" & RR"=RR ' =1+ Ry R = J; (51)

where the indexing R;; R, defies the conventional rule of matrix multiplication that the
dummy index k neighbors itself (as in R;;Ry;) because of the transpose operation on RT.

A matrix R that satisfies R” = R™! is said to be orthogonal. Rotation matrices are
always orthogonal. Consider

cosf sinf 0O
R = |—sinf cosf 0f. (52)
0 0 1

This rotation matrix, when applied to a vector such that

U1 cosf sinf O U1
Ug p = |—sinf cosf Of vy p, (53)
Usg 0 0 1 V3



is describing the component by component transformation
U1 = v1 080 + vasinf), Uy = —wysinf + vycosf, U3 = vs (54)

where 0 is the angle of rotation. This particular transformation is describing a 6 degrees
counterclockwise rotation between orthonormal bases in the dimensions e; and e,.
The rules of determinants for matrices are

det ST =detS, detST =detSdetT, detS™* = (detS)™". (55)
Accepting this,
1 =detI =det RR” = det Rdet R” = det Rdet R = (det R)?. (56)

Therefore,
detR = +1 (57)

if R is orthogonal. The signage determines the functionality of R. Particularly

4

0 -1 0
1,  rotation, e.g. [1 0 0] (90 degree clockwise rotation in zy)
0 0 1
detR = (58)
1 0 0
—1, rotation and reflection, e.g. |0 1 0 | (reflection in z).
00 —1

\

Note that under an orthogonal coordinate transformation the magnitude of the vector
v — v does not change. Its square length

V;0; = RijUjRik'Uk = 5ijjUk = V;V;. (59)

A vector undergoing a transformation by R is considered a tensor with rank 1. A tensor
of rank 0 is a scalar, and a tensor of rank 2 is an m X n matrix.
If the relationships

~~
v=Rv—=R'v=v, i=Ru—Ra=u, v=Mu<=v= M a (60)

hold, then

(v) = M(u) — (R'v) = M(R"a) — RR'v = RMR't — v=RMR"u (61)

implies B B
RMR' = M <= Ry My R; = M;;. (62)
S—_——
I



In general this is how to transform a second order tensor. In general for a tensor of any
rank,

Aljk - Ripqu"'RkT‘qu...T' (63)
The trace of a matrix
tI'M < M” = R”M]lek = RUle’ Mjk: = 5jk: Mjk = Mkk < trM. (64)
I I

So the trace of a matrix under orthogonal transformation is invariant.
An isotropic tensor is one that does not change because of a coordinate transformation.
For example the Kronecker delta is isotropic in that

Sij - Rikle(Skl - Rilel - 51] (65)
In matrix notation this is more obvious as

I=RIR" =RR" =1 (66)

1.3 Symmetry and skew symmetry

A matrix S is symmetric if

S11 Sz Sis
S = ST — Sij = Sji — [S] = [S12 Sz Sa| . (67)
Sz Saz Sss
A matrix A is skew symmetric if
0 Ay Agg
A= —AT — Aij = _Aji — [A] = —A12 0 A23 . (68)
—Aj3 —As 0

Any matrix M has symmetric and skewsymmetric components

M + M" M - M"
M=S+A where S:+T:ST, A= AT (69
For example
3 5 7 3 38 0o 2 -1
M=1|1238|=|327/+|-2 0 1]|=S+A. (70)
9 6 4 8 7 4 1 -1 0
Note that for skew symmetric A,
x-Ax =xTAx = x"ATxT" = x"ATx = —xTAx (71)
which implies
x'Ax = —xT Ax — x - Ax = OVx. (72)



Consider then a matrix M subjected to the matrix product
x-Mx=x-(S+A)x=x-Sx+x-Ax =x-Sx. (73)
This is called the quadratic form of M. Expanded, the quadratic form is
x'Mx <= x - Mx <= z;M;;7; (74)
= o1 (M1 + Mygwo + Misxs) 4+ 22 ( Moy 1 + Moswo + Mosxs) 4+ x3( Mszy w1 + Msoxo + Magxs)

= QS%MH +$§M22 +$§M33 + 2129 (Mg + Moy ) +x123( Mz + Msy) +xox5(Mag+ Mss). (75)

M is positive definite if its quadratic form x - Mx > 0Vx and positive semidefinite if
x - Mx > 0Vx.

1.4 Derivatives and divergence

Consider the scalar function ¢(z;). The chain rule states

0o ¢ Oz
If Xy = Rkjlf'k, then
ox; 0 i 0Ty,
Substituting this into Eq. [76]
09 _ RH% (78)
8@ Y 8xj'
The result of this is a tensor of rank 1. The del or nabla operator
0 0 0 0
V = (S5} a.l’l + €9 8]}2 + 9381‘3 = eza_:L’Z (79)
Gradient 96 96 96 96
VQZS = 81’1 e + 81‘2 ey + 81‘3 €3 = 8—%61' = gb,iei. (80)

This turns the scalar ¢ into a vector. Gradient increases rank.
A directional derivative is the amount that a function’s gradient aligns with direction
e,. It is a scalar. It is
¢
9s & Vo < |es||V|cosd = |[Vo|cosb (81)
s
where 6 is the angle between vector e, and vector V.
Now consider vector function f(x;) = f;e;. Divergence of f

o of; of;  0f;
V- f= (eia—xi)‘<fj€j): (ei : ej)a_fi = 6zja_£ = ai = f“ (82)



This operation turns f from a vector into a scalar. Divergence decreases rank.
The Laplacian maintains rank. The Laplacian is the divergence of the gradient. Scalar
¢ has Laplacian

96 9 96

2 — . — (f—e ) = (—e:) - (—e.) = .. J P —
V=V -Vp=V (5’%82) <(9J:j €;) (a%el) (e; el)@xjaxl (83)
0? 0? 0? 0? 0?
L A A O e (34
x;0x;  O0%x; Ox] Ozx; Oxj
1.5 Divergence theorem
Consider a fluid with density p = p(z,y, z) and velocity
V = U€; + vyey + V., (85)

where v, = v,(z,y,2), v, = v,(z,y,2), v, = v.(x,y,2). The meaning of this is that
v; and p can change in magnitude based on the specific point (z,vy, z), but this has no
bearing towards the directionality of the components of the velocity vector (o)e; which
always point in the x; direction.

Imagine this fluid is flowing through a small cube.

On the left side, the fluid enters at a rate

mass z-dist mass

te in = 2 ) (dydz) = = ) 86
rate in = (p)(vz)(dydz) Lyzvol timeW time (86)
On the right side, the fluid exits at a rate
Opuy
rate out = (pv, + apv dx)dydz (87)
x
9] v,
pudydz + —'vadxdydz + pida:dydz (88)
ox ox
mass mass x dist mass x dist mass
= + zyz vol + zyz vol = (89)

~ time  zyz vol x z dist time xyz vol time x z dist time

Then the total gain of mass per time is

35;193 dxdydz = —%(pvw)da:dydz. (90)

rate in — rate out = pv,dydz — pv,dydz —

10



where the total loss is the negative of the total gain. Considering all directions, total loss
is

%(pvx)dxdydz + %(pvy)d:cdydz + %(pvz)dwdydz (91)
= aixi(pvi)dxdydz =V - (pv;)dzdydz. (92)

If bounded by volume V' then this becomes
total loss per time = /VV - (pv)dV. (93)

The divergence theorem is the relationship between the amount of fluid exiting with
respect to the volume of the body and the amount of fluid crossing the outer surface
across the perimeter. Physically they are the same thing. The relationship for this
problem is

/V V- (pv)dV = ji pv - 1dS. (94)

In general for a vector f, the divergence theorem

/ V- fdV = 7{ f-ndS < / fiadV = 7{ finads. (95)
\% S \%4 S

Similar rules are the gradient theorem for scalar f

/V VfdV = fg fnds (96)
f

and the curl theorem for vector

/fodV:%nxde. (97)
v s

The divergence theorem can be approximated about a point P as

1
(V-f)pNA—V Sf-ndS (98)
where AV is a small volume element surrounding point P. This means that the divergence
of f can be thought of as the outward flow of f normal to the surface per unit volume.
It can be said about the divergence theorem that the sum of the sources and sinks (V)
is equal to the net flow in and out of the surface (.59).

The utility of the integral theorems can also be demonstrated by considering the applied
pressure p(x,y,z) on a body. Pressure is force/area, so force is pressure X area or
(pressure/dist) x volume, and this force will act normal to the surface of the body. Then
the gradient theorem dictates

F = —?{anS = —/ VpdV. (99)
s v

If pressure is constant then force is zero because a uniform pressure load across the entire
body will result in no net force in any particular direction.

11



1.6 Eigenvalue problems

If for square matrix A there is some pair x, A such that
Ax = \x (100)
then x, \ are an eigenvector and eigenvalue pair of system matrix A. Consider
Ax = AMx=Ax — (A - A)x = 0. (101)
For nontrivial x # 0, it must be that (A — AI) is singular, meaning that by definition
det(A — M) = 0. (102)

This is called the characteristic equation or characteristic polynomial for the eigenvalue
problem. If A = n x n then the polynomial will be of degree n, will have n roots, and
thus will have n eigenvalues. For example suppose

[A] = {_21 _11} —>det A= XNI=2-XN)(1—-X)—(=1)(-1)=1-3X+ A2 =0. (103)
Then
A= 3 j:2\/5 = {0.382, 2.618} (104)

(M
B 0] PN B 3 S e I w _ J0.618
— 0 = {O} = (A /\X> = |: 1 0618:| {l’gl)} — XV = 1 ) (105)
0= {0 4 a o [0018 v | e _ [-1618 (106)
U A S S I AP e I T

1.7 Even and odd functions

A function f is even if f(—z) = f(x), meaning the y values on the left are the same as
the y values on the right. It is odd if f(—x) = —f(x), meaning the y values on the left
are the opposite of the y values on the right. The following properties hold.

e f is even and smooth — f/(0) = 0.
e fisodd — f(0)=0.

e f g are even — fg is even.

e f gareodd — fg is even.

e fiseven, gisodd — fg is odd.

e fiseven — f’is odd.

e fisodd — f’is even.

12



o fiseven — [* f(x)dx =2 [; f(x)dz.
e fisodd — [ f(z)dz =0.

Any f can be broken into even and odd parts f., f, so that

F() = §ole) + folr) = 51 @) + (=) + 51 (@) (=) (107)
e e VN -— R, ~— _

13



2 Strain

2.1 Admissible deformation

Consider an object undergoing deformation so that (x1, za, x3) — (&1, &2, &3) is the trans-
formation between the coordinates of a point P in its original state to the coordinates
of the same point in a deformed state. We can express the deformed coordinates as a
function of each of the original coordinates, so that & = &;(z;). Inversely, we can say
x; = x;(&;). The derivative operators are related by

0 0 0& 0 05 0 08

= > R 2 1
6x1 851 all’l (952 8x1 853 89&1 ’ ( 08)
0 _00a, 00, 0 0% (109)
a[L’Q N 651 01‘2 852 81‘2 853 82727
O 004 00 0 &
(9173 N 851 8x3 + (952 8x3 + 853 8303' <110)
As a system of equations,
8/81’1 851/81’1 (952/8951 853/8.7}1 8/851 8/6’51
8/81‘3 \ 851/81’3 852/81‘3 063/8$3 J 8/853 8/853
)

Jacobian matrix J is the 3 x 3 transformation tensor. A physically real transformation
requires detJ > 0. For the inverse Jacobian J™' to exist, detJ # 0. If the body is not
deformed at all then detJ = 1. This is the case where there is no distinction between x
and & and so J becomes I.

Displacement vector

Uy §1— 1
(75) = 52 — T (112)
u3 §3 — 13
implies
51 T+ uq 1 +8u1/8x1 6’uz/8x1 8u3/8x1
52 = To + Ug — [J] = 8u1/8x2 1+ 8u2/8x2 8u3/3x2 . (113)
53 T3 + Us 0U1/8£L'3 8u2/(9x3 1+ 3u3/0x3
For example if
Ui 1 — 21‘2
Uy p = £ 31 + 229 (114)
us 51’3
then
&1 2x1 — 29 2 30
&3 63 0 0 6

14



and det J = 2(18) + —3(—12) = 72 > 0, making it admissible.
J can be thought of as the ratio between the volume of the deformed configuration and
the undeformed configuration (new/old). Vectors

861/8ZE1 (951/81‘2 8&1/81’3
dx; = 06 /0y p dry, dxg =< 0&/0xy p dry, dxz = { 0&/0xs p dxs (116)
853/8%1 853/8:152 3§3/6x3

are tangent to the coordinate curves of xy, x9, and x3 respectively, where for example
the x1 coordinate curve is obtained by fixing x5, x3 and changing x;. In the Cartesian
coordinate system the coordinate curves are just the axes. For example consider Fig. [I}
Going from (xy, 29, x3) — (1 + Az, 29, x3) causes a change in both &, & so that

A
Azycost = A& — 20 cos 9, (117)
A&
A
Azisind = A&y — —L — ging. (118)
A&
X, i
%737_ Dy, osh _ A3,
1 / @ X Jw é' = [)"
/ / T T2
s
\’_ ———— X, DYy s £
\\\ = A =08
S j
\& Ay, .
‘ - 4 , g .
‘2/ ‘w‘/}%) 7P (A %2 A - = v €
£ A 7 2

52' »73\ . //4}2
% g

Figure 1: 2D coordinate transformation

Because of the triple scalar product identity

a1 a2 as
a-b xc=det b1 b2 b3 s (119)
Ci Cy C3

we find

651/8I1 8&/8m1 853/8901
dx; -dxy x dxz = det |0 /0xy 0&/0xs 0&3/0xo | dridrsdrs = det Jdridxedrs = dV.
851/8x3 a52/8563 853/61:3
(120)
This justifies the claim that det J must be positive because it leads to a volume element
that is positive and one cannot have negative volume.

15



Since the determinant is a norm or magnitude of the matrix, det J can be thought of as
a ratio between new and old volume, in the sense that it is the magnitude of the change
in new coordinates with respect to the old coordinates. Therefore,
V+—AV =14+ M’ (121)
V V
where the change in volume with respect to the original volume AV/V is called the
volumetric strain. Recalling the representation of J that is Eq. [I13]

detJ =

1 + 8U1/6$1 8u2/6x1 8’&3/81’1 1 + ul,l U271 U371

detJ =det | Ouy/0xs 1+ Jus/0xs  Ous/Oxs &det | uio 1+uzs  uso
8u1 /8.1'3 8u2/8:c3 1+ 8u3/3x3 U1,3 U233 1+ Us,3

= (1 +ur)[(1 + uz2)(1 4+ us3) — uzzusy] (122)

—uUgq[ur2(1 + uss) — uisussl + us(ur 2uss — g 3(1 + uzs)) (123)

=1+ Uy,1 + U292 + us,3 + (124)

combinations of product terms
If the displacement is small then the product terms are negligible because small times
small is extremely small. So in this case we can simplify to say

AV

of course meaning

A—VV = Uy, (126)

2.2 Affine transformations

Let z; be the original coordinates and z}(x;) be the new coordinates. Here we are only
concerned with the deformation behavior itself and not how it happens (temperature,
force, etc.). A special type of deformation is an affine transformation, which is when the

function describing the relationship between the deformed coordinates and the original
coordinates is linear. That is,

/
Ty =T + 10 + 0155

/ /
T, = Z; + (6711) —+ Q5T 5 = Ty = Tg + Qo + Q25T
~ ~ S~~~ /o
original coordinate vector  translation vector  rotation and stretch Ty = T3 + a0 + Q3,25
(127)
which implies
I I
XT; = 5ijxj + (7)) + Oél'jIj — Z; = QG + (5Zj + ozij)xj (128)
or
X' =ap+ I+ a)x. (129)
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So the term a would have to be 0, not I if it was assumed that there was no rotation
and no stretch. As another example the matrix

C

I+a= {0

ﬂ —va=(c— 1) (130)

represents uniform stretch by the factor ¢, NOT by the factor ¢ — 1. The matrix

0 —1 -1 -1
I+a+I:L 0}—)04:{1 _1] (131)

represents a 90 degree CCW rotation in that
0 —1| [z x!
¢ - a2
) —T
= 133
IR 2

which can be thought of visually, turning the axes x1, x5 90 degrees counterclockwise.
Like earlier, note that this does NOT imply the transformation ax = x’ but rather
(a4 I)x = x'. In the same way we can solve for x’ in terms of x using Eq. [128] we also
can solve for x in terms of x’. So there must exist some By, 3 such that

implies

xi = PBio + (05 + Bij) @}, (134)

and this is also an affine/linear coordinate transformation.
Affine transformations have two interesting properties. First it transforms planes into
other planes. The general equation for a plane is

Az +By+Cz=D

and if we plug in the affine transformations into this equation then we receive another
linear equation for a plane. The second interesting property of affine transformations is
that straight lines transform into other straight lines. This is a consequence of (1) since
lines are just intersections of planes. If planes turn into planes, then the straight lines on
that plane turn into other straight lines.

As a consequence of (2), a vector

A = Aje; =" Alel = A’ (135)

turns into another vector under an affine transformation. Let A be a vector within a
body that goes from one point x;y to another point x;. Note this is NOT the displacement
vector that maps the undeformed coordinates to the deformed coordinates. This is simply
a vector that travels across the body in its undeformed state from one point to another
point. So
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Then suppose the body undergoes an affine transformation. Then

Al = a; — mhy = (T3 + 00 + i) — (Tio + a5 + Qo) (137)
= (l’z — ZEZ‘()) + Q&Z‘j(ZL‘j — l’jg) = Az —+ aijAj' (138)
Let

where §A; = {d A1, Ay, § A3} are the components of the change between the vector before
and after deformation. It is also defined as the components of the rotation/stretch vector.
Both of these definitions follow from reading Eq. 139 Also, the length of A is

VA A =VA2cos0 =A== A>= A A = AA, (140)
and the length of §A; is

§A = \/SADA,. (141)

Then

2A0A = 23/ Aj AN A A; = 20/ A A/ AibA; = 2A:0A; => ASA = AidA;.  (142)
Substituting in Eq. [139)

I
. L

If there is rotation but no stretch, then the change in the length of vector A does not
change. Therefore A = 0 and

a;jA A =0 VA, (144)
Expanding,
(145)
(146)
(147)
=0 = apA+anAs+asz A3+ A Ag(arptam )+ A1 As(aiz+as))+ A Az(ags+asy). (148)
If this is true for any A;, Ay, A3 = A;, then

0=ap A1 A1 + a1pA1 Ay + i34, A3
+agi As Ay 4 ageAg Ay + a3 Az As
+ag1 AsAy + g Az Ag + a3 A3 As

a;; = 0, Q5 = — Q. (149)

This means «;; is skew symmetric. Please note that this is in the specific case where
there is rotation but no stretch. This is not to say that a;; in general is skew. Speaking
more generally, the tensor ac like any tensor can be broken up into symmetric and skew
parts
1 1

aij = glay +agi) + 5y — agi) = € + wyy (150)
where € is solely dedicated to deformation and w is solely dedicated to rotation. € < ¢;;
is called the strain tensor.
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2.3 Geometrical interpretations of strain components
Recalling Eq. [143]
AVA = aj AiA; = (€ + wij) AiA; = €A A + wij AA; (151)
Consider the last term, recalling that w;; is skew. This means
wijAiA; = —w;iAA; & —wi;AjA = 2w AA =0 = w;;A;A; = 0. (152)

Therefore,

0A . €iinAj
A AT
This represents the amount that the vector A has changed divided by its length. It is
rating of relative length change. For example suppose A only had a component in the
direction x7. This means the length A = A; and

0A 611A% 0A
A—l = A% —_— 7 = €11.

(154)

So, the physical interpretation of the diagonal strain components ¢; is that they are a
measure of the change in length per unit length in the direction z;. As for off diagonal
components, consider two vectors that exist in the body

A= A2€27 B= Bge3. (155)

Here A only has a component in the direction x5 and likewise B in x3. Because of Eq.

(0A; = ai;4;),
6143 = 0432142, (SBQ = &2333. (156)

The correct interpretation of this equation set is this. Initially By is zero but a deformation
in the body changes B from zero to something that is not zero by the amount 6 By. This
amount is equal to the initial component Bj transformed under the tensor as3. The same
is true of A. Both B and A change orientation, and this means they have a change in
angle in relationship to one another, and the quantity of this change is

1
Qg3 + Qigp = 2 % 5(0423 + a32) = 2693 = change in angle between A and B. (157)

Note that 2e53 = 93, where =y is the engineering strain tensor. So to recap, the diagonal
strain components represent the change in length of a vector in a body with respect to
its original length, and off-diagonal components represent the shear-induced change in
angle between two vectors pointing in the two directions that correspond to the particular
component of interest.
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2.4 Strain as a tensor
Let us prove that strain € is a tensor. Recall Eq. [I53] which is

——

some vector v;

The change in length A times the length A is invariant under the transformation of
coordinates. Therefore

ASA = ASA < ATeA = ATEA. (159)
Let us define A as the transformation of A due to R. Then A = RA = A = RTA and
ATéA = ATeA = (RTA)Te(RTA) = A"ReR”A. (160)

Therefore
€ = ReR" = &, = RiyeriRj = R Rjien (161)

which satisfies the definition of a transformed second order tensor.

2.5 General infinitesimal deformation

A major consequence of the affine transformation is Eq. [139], which is

Here A; is a vector within some body and «;; is a tensor that represents the rotation
and deformation of that body. The result is the vector § A; which represents the change
between the original vector A and the new vector A..

Similarly to the concept of A, which is a vector in the undeformed body, let us con-
sider two points in the undeformed configuration x;o and z;. After deformation, the
corresponding displacements are

I
//—/H ,
Uip = Tho — Tig,  U; = Ty — T . (163)

——
I

If vector A represents the distance between x; and x;9, so that

A; =z — T, (164)
—I
—

11
Now we will represent displacement as a Taylor series. In general for some function f,

) (5
f) = 3 T (166)

n
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Neglecting higher order terms,
f(@) = fzo) + f'(wo)(z — o) + ... . (167)
(SRR —

For two variables,

8f(:v0, yo) O f (o, yo)

f(@,y) = f(xo,90) + Oz (z — o) + oy (Y —yo)+... (168)
For many variables
of (x;
£l = fa) + 2 0 ) i (169
8@
Substituting in displacement,
8ui
j
Recalling the assumption Eq. (A; = x; — zq0),
or
U; — U0 = Uz”jAj. (172)
Because of Eq. (0A; = u; — uy),
Substituting in Eq. (0A4; = a;;A)),
Q5 = Uj 5. (174)
The decomposition of ;; in Eq. [I50] implies
1 1
Ui 5 = E(Ui’j + Uj,i) + §(Ui,j — u]',i) = € + Wij, (175)

and the relationship between strain and displacement ((u;; + w;;)/2 = €;;) is called the
strain/displacement equation.
For clarification purposes we now write u, v, w in place of u,, u,, u,. Then for instance

ou 1/0v Ow 1
€xp — — €yz = 5 (& + 8_y)_ §’sz, etc. (176)

The diagonal components are called the normal strains and the off diagonal components
are called the shear strains.
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2.6 Compatibility equations
Given displacement field u, strain components
1
Eij = §(ui,j + Uj’,‘). (177)

However it is not necessarily true that given a number of strain components we can
calculate displacement. To answer this let us make the modification

2erip€ij = Erip(Uij + i) (178)
where e here is the Levi Civita symbol. Differentiating with respect to z,,
2erip€ijp = Criplijp + Eripliip- (179)

The last term vanishes because

Eripljip = —Erpilljip <  —Cripljpi = —€ripljip = 2eriplyip = 0 = eripljp = 0.
——— ———
arbitrary indices arbitrary derivative order
(180)
Therefore
2€rip€ijp = Eripli,jp (181)

which implies
2€ripesj€ijp = CripCsjqli,jp = 2€rip€sjqijpg = CripCsjqli,jpg- (182)

However this RHS term also vanishes for the same reason as Eq. [I80] which is that
an arbitrary switch of indices changes the sign of the Levi Civita constant but not the
derivative terms, meaning the whole term must be equal to be its own negative, meaning
the term must be zero. Therefore

Eripsjq€ijpg = 0 (183)

is a true set of equations called the compatibility equations. If you are given a number
of strain components you must be able to solve for this set of equations. Otherwise it is
impossible to infer a displacement solution from what strains you are given.

Indices 7, s occur once, and so these are free indices. Each equation is unique to one
free index, meaning one r and one s. The other indices 4, j, p, ¢ occur multiple times and
so are dummy indices. Fach equation has every version of the dummy index among 1,2,3.

Because of the many combinations of e,;,, €5, that are null, and also because of the
symmetry properties of €, there are nine total equations based on different r, s but only
six of them are unique. The set of index pairs r, s that correspond to each unique equation
isr=s=1,r=1s=2r=1,s=3, r=2s=2,r=2s5=3, r=3,5s=3. The set
of equations that correspond to this set is

263203 = €22.33 + €332 (184)
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185
186

2€21,12 = €11,22 + €221

2€31,13 = €11,33 + €33,11

188
189

(185)

(186)

€11,23 = —€2311 T €13,12 + €12,13 (187)
€22.13 = —€13,22 + €2321 + €2193 (188)
(189)

€33,12 = —€12,33 T €3231 1 €31,32

or in general
€ijkl = —€kiij T €jlik T €ikjl = €kl T €kl — €Lk — €ikgl = 0. (190)

Eq. is another way to write the set of compatibility equations. It is necessary and
sufficient for all of these to be true in order for there to exist a displacement solution
given the strains.

What follow from the sufficiency of the compatibility equations are two things. First,
zero strains imply no deformation, and this is called rigid body motion, meaning there is
only translation and rotation. Second, a set of strains together with a particular set of
translation and rotation parameters yields a unique displacement solution.

2.7 Integrating the strain displacement equations

We have proven that if a set of given strains satisfies the compatibility equations, then
from that set we can infer a displacement solution. For example consider the 2D case

ou v 1 (8u 81})

vy oy’ Cay 2 6y+8x

v : 191
€ e (191)

Then taking antiderivatives of the diagonals leads to

u(@) = Az + f(y), vy) = g(@). (192)
Substituting into the off diagonal,

O:%(au 31}) 1(8(Ax—|—f(y))+8(g(x))

8_y+(9_x dy ox

2

): f)+g@),  (193)

meaning

f'y) =—g'(z). (194)
If a function of y is a function of xVz,y then the function cannot depend on either x or
Y, meaning it is a constant. So

f'ly)=—4¢(x)=B (195)

which implies
fly)=By+C, g(x)=—-Bx+D, (196)

which implies
uw(x) =Ax+By+C, v(y)=DBzx+D. (197)
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As a system of equations,

= of G 1oy o8

Separating the stretch component associated with €,,, which is A, away from rigid body
components B, C, D,

B R R R R

deformation rotation (skew) translation

2.8 Principal axes of strain

Given strain tensor
€11 €12 €13
[6] = | €21 €29 €93] , (200)
€31 €32 €33
we wish to know if there exists some coordinate rotation R such that the strain tensor is
diagonalized, i.e.

€, 0 0
€< 10 ¢, 0|=ReR" = R'¢ =RR’eR” = €R". (201)
0 0 ¢
Suppose
vi
R=<vls <R ={vi vy v3}, (202)
vi
3
where v; are the i columns of R”. Then because of Eq. (eR" = R"¥),
e, 0 0
e{vi vo v} ={vi vy v3} |0 ¢y 0| ={cvi epvo eigvs}. (203)
0 0 ¢
Therefore
EV, = €,,V; <> €V = €'V. (204)

This is called an eigenproblem, where € are the eigenvalues and v are the eigenvectors.
The goal in solving Eq. is to find nonzero v which, when transformed by € (i.e. ev),
produce vectors parallel to v that are scaled by magnitude €' (i.e. €'v). Eq. implies

(e —€T)v=0. (205)

The solution to this is either the trivial solution v = 0, which is uninteresting, or non-
trivial solutions where € — €'I is singular, meaning

/
€11 — € €12 €13
0 = det €21 €99 — 6’ €93 (206)
/
€31 €32 €33 — €
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= (611 - 6/)[(622 - 6,)(633 - 6,) - 632623]

—€12 [621(633 - 6/) - 631623] + 613[621632 - 631(622 - 6/)] (207)
=€ +01€” — 0y +05=0 (208)
where
0, tre
92 = (62‘2‘6]']‘ - Eijeji)/Q . (209)
05 det €

The roots € = {€];, €5, €53} to Eq. are the principal eigenstrains, and the resulting
strain tensor is

e, 0 0
€=10 €, 0], (210)
0 0 e

and the corresponding v are the principal coordinates.

The principal strains €' are coordinate independent. Therefore so must be the coeffi-
cients 0 of the characteristic equation of the eigenproblem Eq. which are called the
principal invariants. If € are known, they can be solved as

/ / /
o o o o
Oz p = { €ho€s3 + €11€35 + €19€99 ¢ . (211)
! ! !
03 €11€29€33

This process is true of all second order tensors such as €.

2.9 Properties of the real symmetric eigenvalue problem

Note that in the eigenproblem Eq. (ev = €'v), strain € is symmetric because it is
strain, defined as the symmetric part of the displacement gradient. Suppose the compo-
nents of system matrix M in

Mx = A\x (212)

are real and symmetric. Here A are the eigenvalues and x are the eigenvectors. Real
symmetric eigenproblems have two properties of interest. The first property is that it
must yield real eigenvalues. To prove this recall the general definition of a complex
conjugate

z=a+bi= 2"=a—bi. (213)

Taking the complex conjugate of the eigenproblem as a whole,
Mx* = \*x". (214)

Note that M is real, so M = M™ necessarily. Respectively from Eq. and Eq. we
can deduce
xTMx = xTAx, x'Mx* =x" \'x*. (215)

The two Eqgs. [215] are actually equal because

(x*"Mx)" = x"Mx*. (216)
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These equations are producing scalars, and all scalars are equal to their own transpose.
Therefore

I
xTAx & {z] a5 a3} AS 22 p = Aaqa} + Avowy + Azl
Z3
]
= )\*xlx’{ + /\*ZE'Q(L’; + /\*Z'gl’; = {1'1 ) [Bg} A" .T; = XT)\*X*. (217)
3
Rearranged,
(A = X)) (z12] + 2225 + x323) = 0. (218)
If this is true of all z;, x}, then
A=A, (219)

meaning there is no complex part to the eigenvalues and so they are real.

That was the first property of interest of a real symmetric eigenproblem. The second
property is that if the eigenvalues are distinct, then the eigenvectors are orthogonal.
Consider two of the possible three eigenvalue/eigenvector pairs that serve as solutions to
the same system matrix M in

MX1 = >\1X1, MXQ = )\2X2. (220)
These imply
xaMx; = x2 MiXy,  X:MXy = X1 \gXo, (221)
or
XgMXl = )\QXQ * X1, XF{MXQ = )\2X1 + Xo. (222)
Subtracting,
()\1 — )\2)(X1 . X2) = XgMXl - X{MXQ (223)

= xs Mx; — (x5 Mx;)T =0

where we know the whole expression is zero because the transpose of a scalar is itself.
Therefore
()\1 — )\2)(X1 . XQ) = 0, (224)

and if it is assumed that the eigenvalues are distinct so that A; # Ao, then it must be
that x; - xo = 0, which is the definition of the two eigenvectors being orthogonal to one
another.

2.10 Geometrical interpretation of the first invariant
Recall the principal invariants Eq. 209 The first of them is

01 = tre & €11 + €99 + €33 = €;;. (225)
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Remember that a diagonal strain component indicates the stretch in the direction of the
coordinate the component represents. Note also that shear components do not induce
volume change. So if the original volume of a cube is

V =l (226)
where [ are the side lengths, then the volume change is
AV = l1€e11la€9913€33, (227)
and the new volume is
V 4+ AV = 11(1 + €11)la(1 + €92)l5(1 + €33)

= lilol3(1 + €11)(1 + €22)(1 + €33)
= Lilal3(1 + €92 + €11 + €11€22) (1 + €33)
= lilal3(1 + €33 + €p + €ane33 + €11 + €11€33 + €116 + €11€20€33)
~ Dlols(1 + €11 + €22 + €33)

where such an approximation is made because products of small strain components are
very small and so are considered negligible. Then

AV =V + AV =V = Lll3(1 + €11 + €22 + €33) — lilal3

= lll213(€11 + €29 + 633) = VGM' = AV. (228)

Therefore AV
i=—=20 229
€ v 1 ( )

which is the first invariant. So the first invariant can be interpreted as the volumetric
strain, or the change in volume with respect to the original volume.

2.11 Finite deformation

In the past we have neglected products of strain components because of the assumption
that they were so small that they could be considered negligible. Now though we wish
to consider a more general derivation for larger deformations. Displacement

If dl is a small distance between x; and a neighboring point, then

di* = dvdz;,  dI”* = dxida]. (231)
From Eq. [230]
’ aul ’
dr; = dx; + du; = dv; + ——dx; = dx; + u, jdr; = dx;. (232)
N 8acj R’ o
—
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Substituting this into Eq. [231]
dl/2 = (dl‘Z + ui,jdxj)(dxi + ul,kdxk)
= dlﬁldl’l + dﬁﬂtu&lﬁk + dxiui7jdxj + u@juﬁkdxjdxk (233)

2
=dl + uinZL’id[Ej + Uz7kd1,’zd1}k + ui7jui7kdxjdxk

= dI* + u; jdv;dz; + ujidede; + ug jug dad; .
\k—>2ri—>jl \i—>k, k::j7 j—n‘/
Therefore
di” — dI* = w, jdrdz; + wjdeidr; + uggug jdagde;
= (uij + uj; + ugup ;) drde;. (234)
Think of the physical meaning of LHS. It is measuring the squared difference in length
between two neighboring points before and after a deformation. This is a rating of the

deformation itself. It is measuring to what extent points in the body are separating or
stretching. Units wise,

dl’* — dI* ~ meters®, € ~ dimensionless, (235)
so we multiply strain by a representative small box of area. Particularly
dli” — dI* = 2¢;;dx;dx; ~ meters®. (236)

Strain in this case is
_ldl? —dP?
= 2 dxldxj
which is one half the squared change in distance between two points with respect to the
area of a square with sides defined by a small unit distance dxr. Conceptually it is a
rating of the extent that points on a body have separated after a deformation process
with respect to the original configuration. Substituting Eq. into Eq. 234]
€ij = %(um +uj; + ukﬂ-uk’j) (238)

where 7, 7 are free and k is dummy. Remember, dummy means you sum over all indices.
Free is independent. So for example

(237)

1
6ij|i:x,j:m = €gx = § Uz, + Uy o + (ux,xux,z + Uy Uy, x + uz,x“z,z)

TV
Ui, j Ui Uk,iUk,j

ou 1 ou\ 2 v\’ ow\”
_du  1((0u v ow 2
wea(Gn) (5 +(5)) )
1
€zy = 5| Uzyy T Uyz T Up 2Ugy + Uy 2Uyy + Uz Uz y

and

2
10w n ov N ou Ju N ov Ov N ow Ow
2\ 0y 0z 0z0y 020y 0z Oy
Recall that for the small strain assumption the product terms can be neglected.

>— €y, (symmetric). (240)
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3 Stress

In terms of force, a body can be acted upon by
e body forces, which act at every point on the body, such as gravity, and

e surface forces, which act only on surface points, such as traction or hydrostatic
pressure.

If a body’s density is p and its volume is V', then its mass is pV or

m = / pdV. (241)
v
Therefore gravitational force
F,=mg= / pgdV. (242)
1%
In general the net body force is f is
/ ptdV (243)
v
and torque/moment is
rXF:/rxpde:||r||||pf||sin9f1 (244)
1%

if r = z;e; is the position of a point on the body with respect to the origin and € is the
angle between r and F (really f).

Stress is force per area. If a stress vector is t and the area of a surface is .S, then surface
force is tS or

f tds. (245)
S

Summing the surface forces with the body forces, the net force is

/V pfdV + ]g tdsS (246)

and the net torque/moment is

/ r x pfdV + j{ r x tdS. (247)
1% S

Surface force t = t(x,n) depends on the location of a point on the surface x and on the
vector which is normal to the surface n. Let o;; (NO SUM, not a tensor), be the jth
component of t if the surface was normal to e; (NO SUM). That is

o;j = e;-t(x,€;) (nosum). (248)
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For example

BEEY b1,y
019 =— €9+ tgy(l) = {0 1 0} t27(1) = t27(1) (249)
ts,(1) ts,(1)

where in this example, the result t5 ;) denotes the 2nd component of the stress vector
acting on a surface which is normal to e;. In three dimensions

011 012 013 ti,) l2,1) t3,1)
021 O22 023 = tl,(2) t2,(2) t3,(2) where ¢ ~ tcomponent of ¢, (direction of vector normal to surface)-
031 032 033 t1,3) 12,3 13,3

(250)
A visualization of the stress components in 2D is Fig. [2| For example consider the right
face. The direction of the vector normal to this surface is e; or x — ¢ (;). Then
Ozz = t1,(1) is the 1st or z— component of t for that surface — ¢, (). On the other hand
the stress component o,, = t5 (1) is the 2nd or y— component of t for the face whose
normal points in the direction e; or x. For normal components the stress vector always

o

LY vy

y-chbrmjponent of t for surface
Wwhose normal is x

Tyy

Figure 2: Stress components in 2D and their associated signs (+/-)

points away from the applied surface. Whether or not a shear component is positive is
directly related to whether or not the vector normal to the surface is positive. So, the
bottom face will have a negative shear component because the face’s normal vector points
in the direction —y. However the right face will have a positive shear component because
the face’s normal vector points in the direction +x.

Thus far we have only considered n = {e;, es, e3}, but we wish to establish a general re-
lationship between t(x,n) and o;; (no sum) for any n. Consider Fig. |3| a four faced pyra-
mid shape (which is called a tetrahedron) with vertices {O, (21,0, 0), (0, z2,0), (0,0, z3)}.
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/. A0
// 039 I Point on bottom face
" Y033

Figure 3: Stresses on trirectangular (three right triangle) tetrahedron

Let the height h (# x3) be the shortest distance between origin O and the closest point
on the ”inclined” surface, which is the triangle formed by (x1,0,0), (0, x2,0), (0,0, z3). If
AS is the area of this triangle and AS; is the area of each of the three right triangles
with unit normal e;, then

area of triangle with unit normal x ASy nAS
AS; = n;AS & < area of triangle with unit normal y » = ¢ ASy » = < nAS 3,
area of triangle with unit normal z AS3 nsAS

where n is the vector normal to the inclined surface AS, and the components of n are
called the direction cosines.

Suppose h is small. In this case the volume is small. We assume density is constant.
Therefore mass is also small. Therefore net force is also small. If we assume there is no
net force, then using Eq. [246| (net force = fv pfdV + §S tdS = body + surfaces),

——

ith component of t for surface whose normal is e;

For all tetrahedra, V' = hAS/3. Making this substitution as well as Eq. (AS; =
n;AS),

We have supposed h is small, so h — 0. Because of this,

AS(tl — O'ji’I'Lj) =0—1t — 05in; = 0

t 011M1 + 021N + 03113
—t; = 04N <= to p = < 019N + O99Ng + T30M3 . (254)
t3 013N1 + T23Ng + 033N3

The way to interpret Eq. is this. On an arbitrary surface, the components of the
stress vector for that surface is determined by the set of the individual stress components
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on that surface and the direction in which the vector normal to the surface points. This
relationship is important because even though it is easy to infer o;; based on t(x,e;), we
are not usually given t. Instead we are usually given [0;;] < o and from that are needing
to figure out t(x,n).

3.1 Momentum equation

The net force on the body is the product of the body’s mass and acceleration, according
to Newton. Getting the net force from Eq. [246]

/ pfdV + 7{ tdS = ma = / updV. (255)
v S v

In index notation,

pf,-dV%—]{ t; dS = / t;pdV. (256)
/V s~ 1%
Substituting in Eq. [254]

1% SN~~~ 1%

Because of the divergence theorem Eq. 95| (§g[0];n;dS = [,[0];,;dV),

\% 1% \%

Rearranged,
1% v v
implies
/(sz‘,j +pfi = pi;) =0 (260)
v
implies
Ojij + pfi — pis = 0 — 0y + pfi = pi. (261)

This is called the momentum equation because it arises from the balance of net force,
which is related to linear momentum.

3.2 Angular momentum

The angular analog to force is torque, and the angular analog to linear momentum is
angular momentum. So the sum of the torques implies a balance of angular momentum.
Getting the net torque from Eq. [247]

/rxpde—l—frxtdS:rxma:rxmi(v):rxmi(ﬁ):i/rxpﬁdv (262)
v 5 dt d dt Jy
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where u is displacement and r = x;e;. In index notation,

/rprdV—i-]{rXtdS:i/rXpildV
v s dt Jv

<:>/pxzfjez]de+j{xz(tj)ewkds:/pxlu]ezjde (263)

14 14
<:>/pxifjeijde—l—j{xi(aljnl)eijde:/p:ciiijel-jkdv (264)

14 14
<:>/pxifjeijde—i—/(mialjeijk),ldv—/pxiijjeijkdv (265)

|4 14 14
<:>/pxifjeijkdv+/(xi,laljeijk—i—xiaweijk)dv:/pa:iujeijde (266)

\% \% |4

(z)/pxifjeijde—i-/((Silaljeijk—i—xialj,leijk)dv:/pxiiljeijkdv (267)
\%4 \%4 \%4

<:>/p$ifj6ijkdv+/(0ij€ijk—|—£Bi0ljjl6ijk)dvz/p$ﬂl;j€ijkdv (268)
|4 \%4 \%

< / [Pfifjeijk + 0;i€i5k + Ti015,1€i5k — p:pzujemk]d\/ =0 (269)
v
— / [wi€iji(pfj + o150 — pilj) + oij€iz]dV = 0. (270)
v
Then because of Eq. (015, + pfj = pii;), the parenthetical term cancels, leaving
= / aijeijde =0— 0;5€ijk = 0. (271)
v
Switching indices,
04i€jik = 0. (272)
By definition,
€jik — —€ijk- (273)
Therefore
0ji€jik = —0ji€ijk = Oij€ijk — Oij = Oji- (274)

This means stress o is symmetric. Reconsidering then Eqgs. and [254]

Orx,x + pf:p + Ozyy + Ogrz,2 /)U
Oiji +pfi=pis & § Open +pfy +0yyy + 0y p =4 pU p, ti=oyn;st=on.
Oza,x + sz + O02y,y + 0222 Pw

(275)
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3.3 Stress as a tensor

Here is proof that o is a rank two tensor. If traction t = on in the original coordinate
system x;, then in another coordinate system z;,

t = on. (276)
For rank one tensors,
t=Rt, n=Rn-— Rt=t, R'a=n. (277)
Substituting back into Eq. (t = on),
Rt = oR'h — RR't =t = ReR"n. (278)
Substituting this result into Eq. [276]

& = RoR” (279)

\.=>

which establishes o as a rank two/second order tensor. o is symmetric and real. As
as shown in Sec. , the two properties that follow from this are (1) the characteristic
eigenproblem must yield real eigenvalues and (2) if the eigenvalues are distinct then
the eigenvectors are mutually orthogonal. The characteristic eigenproblem to determine

principal stresses/eigenvalues ¢ is
oX = 0X. (280)

The stress vector t = on is a vector normal to the surface n which is transformed by
tensor o. Therefore this vector t will not necessarily point in the direction of n. To find
out what component of t points in n, normal stress

0,=mn-t=n-on=n’on (281)
011 O12 013 ni 011N + O12N2 + 01313
= {nl no n3} O21 O22 023| { N2 p = {m no n3} 02111 + 022N + O23N3
031 032 033 ng 031M1 + O32N2 + 033N3

(282)

= n1(011n1 +019N9 + 0'1371,3) +TLQ(0'21711 + 092N +023n3) +n3(031n1 + 032N +O'33713) (283)
& NioiN; = Oy (284)

is the normal component of stress on that surface. This calculation of o is permissible
for all second order tensors, so normal strain

€n = N€ETN ;. (285)
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3.4 Mean stress in a deformed body

If for a body subject to Eq. 275 (0y;; + pfi = pii;) there are no body forces and if the
body is static, then @ = 0 and f; = 0, meaning

0ij; = 0. (286)
This implies
0= / oy jrrdV :/[(Uijxk),j — 0y ;)dV (287)
v v
Z/[(Uz‘jfﬂklj — 03j0;]dV (288)
v

:/(aijxk) AV — /O'deV—O—)/ 0ijTk) AV = /aide (289)
1% v

— = / 0ijTk), dV——/azde (290)

We define mean stress over volume as

Gip = %/Vaikd‘/. (291)
Substituting,
_ 1 1 1
Oik = % /V(Uij-fck),jdv = V}iaijxknjdé’ =7 j{gtixkds. (292)
Changing indices,
7= ?i ti;dS. (293)

Note that the product ¢;z; <+ t ® x produces a second order tensor. Also, we understand
that [0;;] is symmetric. Therefore the symmetric component of this tensor is the only
component, and that is

5i; = sym(ay;) = %(% 7{5 ((ti;) + (tixj)T]dS> 21/ ]{ (bi; + ty2)dS = 75, (294)

The utility of this is that you can solve for the mean value of the stress tensor using only
surface tractions.

3.5 Fluid structure interface condition

The stress normal to an elastic structure in contact with an inviscid fluid is just the
inward pressure. That is,
On = —p. (295)
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4 Equations of elasticity

4.1 Hooke’s law

It is necessary to relate the forces at hand, or stress, to the resulting kinematics, or strain.
Some materials obey Hooke’s Law, which is

o = Fk, (296)

where FE is called Young’s modulus. In general in three dimensions, there are nine stress/s-
train components. The generalized Hooke’s Law is then

044 + Oz‘jkl@cl (297)

where the elastic constants are contained in C'. If 7, j are fixed, then there are nine terms.
To prove Cjjy is a fourth order tensor, let

& =RoR" — o0 =R’6R (298)
— 045 = R0 Rij = Cijri Rk Rni€mn = Cijri€ri (299)
—— ~~
— RoiRpj RriorRij = RoiRpj Ryt Rt Cijri€mn - (300)
S—— N ~~ d

Note that indices switch with the transpose operator. Therefore if I were to multiply RR
the result is R;; R, but if I multiply RR” =Tit is R;;Ry; = ;. Applying this idea to
Eq. [300]

5ok5pl<_7kl = RoiRijmkRnlCijklEmn- (301)

— Gop = CopmnEmn- (302)

Because Copmn = RoiRpj Rk 21 Cijrr, it is a fourth order tensor. There are four indices
where each can be one of three numbers. Therefore it possesses 3* = 81 constants.
However, note that since stress and strain are symmetric,

0ij = 0ji — Cijrers = Ciimers — Cijii = Cli, (303)

Cijricr = Cijikeie = Cijiker — Cijii = Cijik.- (304)

The strain and stress tensors possess six unique constants, where the lower left triangle of
entries 091, 031, 032 are nonunique with respect to the upper right triangle oys, 013, 023. C
is then tasked with relating six unique stress constants with six unique strain constants.
Because stress and strain must be symmetric, that is the most uniqueness possible, and
so there is no possible further variation than that. Therefore C' cannot contain more than
62 = 36 unique constants.

Consider the impracticality of writing down a fourth order tensor. But because of the
generalized Hooke’s Law (0;; = Cjjpe <= {6 constants} = {36}{6} — {6 x 1} =
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{6 x 6}{6 x 1}), we can rearrange the unique constants like

( ) r 7 ) 4 3
011 Ciir Chize 01133 Cii12 01123 C'1113 €11 €11
022 Co11 Cazoo 02233 Ca912 02223 02213 €22 €22
033 \ _ Csz11 Cszaa Chzzz Czziz Csses Cssis €33 o €33
= = [C] . (305)
012 Cio11 Cia2oa Chags Ciora Cioag Chogs 2€12 Y12
023 Cosi1 Cazaa Caszs Cagia Caszes Casis 2623 V23
013 ) _01311 Cizze Clszs Ciziz Clisas C'1313_ \2613 ) V13 )

Note the duplication on off diagonal terms. This is because Cjjx = Cijix, € = €, so for
some unique ij, ¢/C terms will accumulate. For example

012 = Ciani€11+Ch212€12 + Craiz€is + Clrozi €21 +Ch222€20+Clazzeas + Clazi€esr + Clasa€esa +Chassess
—_—— Y= Y= —_—— Y= Y~
I 11 I 111 11 111
= Cionr€11 + 2C1212€12 + 2C 913613 + Choo€an + 2C 1223623 + Classess
= Cho11€11 + Clane€an + Clagsess + Cra12(2€19) + Claos(2€23) + Ciarz(2€13). (306)

The same can be shown for any 1, .
Because Eq. takes the shape of some a; = M;;b;, it is not unreasonable to rename
the components as

’01\ _011 Cip Ci3 Cuy Cis 016- (61\
02 Cor Oy Oy Oy Cas O €2
o3\ _ Cs1 Csp Oz O3y O35 Csg ) €3 (307)
04 Cn Cp Ci3 Cu Cis Cue €4
05 Cs1 Cso Css3 Csy Css Csg €5
L 06 ) _061 Cs2 Cez Cos Cos 066_ L €6 )

where 2612 = €4, NOT 2612 = 264.

4.2 Strain energy

Hooke’s law essentially says that in a spring (elastomer), the relationship between stress/-
force and strain/displacement is linear. A rod in uniaxial tension has elastic behavior
and so acts like a spring. Another way to write Hooke’s law is

F = ku, (308)

where [ is force, u is displacement, and k is a spring constant. As the displacement u
increases, so does [, with a slope of k. This is visualized in Fig. M. As is shown in the

figure, let us define F'(u) = F' = ku. Now the work done in moving from u =0 to u = @
is

@ @ 1 1 1
W = FAu = / F(u)du = / kudu = Shk’| = Sk = S(ku)u = SFu. (309)
0 0

0
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Figure 4: Force displacement curve for rod in uniaxial tension

Recall that stress is force per area ¢ = F'/A and strain is change in length over original
length € = u/L. So, ' '
where V' = AL in that the rod volume is its cross sectional area times its length.

Work is defined as the energy transferred to an object by applying a force across a
displacement. So it is also a measure of internal energy, which we call strain energy.

Then strain energy density

(cA)(el) = %crd/, (310)

1

w=W/V = 50¢€ (311)
is work /strain energy per unit volume. In just 1D,
ow a0 (1 0 [1

= 5O0xxCzr | — -F 2 =FK zx — Ozxz- 312

e, e, (20 € ) e ( 5 GM) € o ( )

This means the derivative of strain energy with respect to the strain is the stress. In
other words, the way in which the density of energy changes in the rod based on changes
in its shape is a rating of how much stress is being applied. A greater magnitude of stress
will cause the energy density to change more rapidly as the shape deforms. Now in 2- or
3D,

1 1
w = iaijeij =4 50’ 1€, (313)
or
1 1 1 1
w = écijlelej < w = icijeiej = 561‘01‘]'6]‘ = 56 - Ce. (314)
—_— —_—
Eq. Eq.

Because of Eq. (x - Mx = x - sym[M]x), C;; must be symmetrical in Eq. [314 This

means

Cij = Cji <= Cijig = Chij - (315)
Eq. 307 Eq. [305]
Differentiating Eq. with respect to some strain component,
ow 1 ale 1 661' i 1 1
e = §Cijkl?€ij + §Cijk:l€k:la€—j - §Cijk:l5km5ln€ij + §Cijkzeklc5,~m5jn
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1 1 1 1
= §Cijmn€ij + iomnklekl = §Cmmj€ij + écmnijeij = Crnij€ij = Omn.- (316)
——
Differentiating again,
0w 0 0¢€;;
D Oeny = Dem [Cmnijﬁiﬂ = Cmnijgkjl = Cmnij5ik5jl = Cronki- (317)
Differentiating in the opposite order,
0w
W = Cklmn — Cankl = CYklmn- (318)
To summarize, if there exists a w that obeys
ow
— = 0y, (319)
8%- J

then Eq. [318]is true. So the existence of strain energy implies the symmetry of C'. So since
strain energy exists, then C;; is symmetric and so there are at most 6+5+44-34+2+1=21
unique upper triangular elastic constants in Eq. [307]

4.3 Material symmetry

The most anisotropic material possesses 21 elastic constants, but further symmetries
of some materials permit further reduction. For instance consider a material which is
symmetric in the xy plane. This means some coordinate transformations such as

T =1 10 O 1
.i'g = —X3 00 —1 —1

would not vary in the elastic constants of that material. For any C,

Cijkl = RiijanoRlpCmnop = ai(simaj(sjnak(skoal(slpomnop = aiajakalCijkl (NO SUM)

(321)

implies either
a;ajara; = 1 or Cijp = 0. (322)
Since a = {1 1 — 1}T, the only way where a product of any number of the internal

components is negative is if one is multiplying an odd number of the third component,
which is -1. So for example

a1a1a2a3:1*1*1*—1:—17é1 —>01123:0 (323)

while
asaiazaz =11 —1%x —1 =1 — Coi33 # 0. (324)
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This reduces the total number of elastic constants from 21 down to 13, in that

Cllll C(1122 C(1133 01112 01123 C’1113 C(1111 C(1122 01133 01112
02211 02222 02233 02212 02223 02213 C(2211 C(2222 02233 02212
03311 CY3322 CY3333 CY3312 CY3323 CY3313 C(3311 03322 C'3333 C'3312

o O O

€] = Cion Chaza Ciagzs Ciore Cisas Ciois| | Ciain Cizae Chazs Chroz 0
Cozir Cagzn Cozgz Chzia Cagaz Cozig 0 0 0 0 Coazas
|C1311 Cizaz Cizzz Ciziz Cizes Clzis) | 0 0 0 0 Cizs

[Ci111 Chizz Ciizs Chiiz 0 0 ] (C1y Cia Ci3 Ciy 0 0]
Co92 Cgazz Cogiz 0 0 Cy Cy Cy 0 0
_ C3333 Czziz 0 0 | _ Cs3 C34 0 0
Casas Caziz Css Cse
| sym Ci313] | Sym Cée

(325)
A material with orthotropic symmetry has three planes of symmetry xy, rz, yz, mean-
ing all of the following coordinate transformations

T =T T =T 1= —T1
To = T s 2 = —XT9 s Ty — T2 (326)
T3 = —x3 T3 = x3 T3 = X3

Do not affect the elastic constants of the material. These mean that an odd number of the
first, second, or third component of the a vectors will yield the product —1, meaining the
corresponding C' value must compensate by being itself zero. Therefore for orthotropic
materials,

Ciinn Cuze Cuss Ciiz Ciizs Cris [Ci111 Chizz Ciizs 0 0
Co11 Oz Cogzz Choia Caoaz Cogis Cooir Cazp Cogzz 0 0
] = Cssin Csszz Cssss Cssiz Cssas Cssiz| _ [ Cssin Clsszz Cszss 0 0
Ciair Chiaze Chazs Ciaiz Cizes Chians 0 0 0 Ciz 0
Cozi1 Chszn Coszs Cozia Cazaz Casis 0 0 0 0 Coass
|C1311 Cizaz Cizzz Ciziz Cizes Clzis) | 0 0 0 0 0
[Cii Cip Ci3 0 0 0]
Cy Oy 0 0 0
Cs3 O 0 0
= Cu 0 0 (327)
C55 0
| Sy 066_

This leaves a total of just nine elastic constants.

4.4 lIsotropic materials

There does not exist an isotropic tensor off odd rank. As for rank 2, if a tensor is isotropic
then it must take the form cd;;. If it is rank 4, it must take the form ad; ;040004610 .
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Specifically for Cjj,
Cijki = A0ijOrs + p0irdj + 840,k

Since Cyjn = Clin,
A0i50%7 4 (0051 + B0idjn = Adjiom + pdjrdi + B0j10ik

= (1= B)(6iwdji) + (B — ) (6adjx) = 0.
For this to be true of all 4, j, k, [, 8 = u. Therefore,

Cijkl = )\(Sij6kl —+ /i((szk(sjl + 67,l6jk)
Here A\ and p are called the Lamé constants of elasticity. With Hooke’s law,
0ij = Cijri€rr = N0ijOri€rt + 11031051681 + 107101 €R1

= >\€kk5ij —+ ,UGZ‘J' -+ /LEJ'Z' = >\€kk5ij —+ 2/L€2'j = 0yj-
Expanding this,

(011 [2u+XA A A0 0 0] (en)
092 A 2/11 + A A 0 0 O €99
033\ _ A A 2,LL +X 0 0 O €33
012 o 0 0 0 1% 0 0 2612
093 0 0 0 0 1% 0 2623

Y 0 0 0 0 u| |26

This structure emerges from Eq. [333] because for a diagonal component, e.g.
011 = A€11 + €22 + €33)011 + 2p€11 = (2 + A€y + Aeaa + Aess,
and for an off diagonal component, e.g.

o923 = A€ €33)023 + 2pt€a3 = 2f1€23 = [1(2€23).

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)

(336)

Eq. is a way to get stress from the strains. We wish also to have a way to find strains

based on the stress. Using contraction on Eq. (015 = Negrli; + 2pe;5),

Okl — )\ekkékk + 2M€kk = 3)\€kk + 2[1f€kk = (3)\ + 2,u>6kk — €k = 3)\0-_'lik2ﬂ
Substituting this back into Eq. [333]
Okk 1 Okk
7ii = AgN gy 00 T AN T G = g % T AT O
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5 Simplest problems of elastostatics

Eqgs. are the momentum and stress equations. They are
0ij + pfi = pii, ;= oyn;. (339)

If the body is not moving, there is no acceleration. Therefore, the momentum equation
reduces to

0ijj = —pli- (340)
If there are no body forces, such as gravity, then
Oij,5 = 0. (341)

5.1 Simple shear

Consider the deformation map
Uy = kxg = xotané
uy =0 (342)
Uz = 0.

The corresponding displacement gradient and strain tensor (where the latter is the

[p?

bon & = 4 x,

-

Figure 5: Simple shear: tanf = opposite/adjacent = o/a = Axi/xys — Axy = uy =
Totan b

symmetric part of the displacement gradient) is

0k 0 0 k/2 0
ml=10 0 0|, lg=]|k2 0 o0f. (343)
000 0 0 0

If the material is isotropic then we use m (Aekkdij +2pe;; = 045) to calculate the stresses.
Here €, = 0, so
012 = )\ekk512 + 2#612 = Q,M(k‘/Q) = [L/-C = 091.- (344)
Otherwise, 0;; = 0. This is to say that there are only two nonzero components of stress.
Recall that 7;; = 2¢;; is the engineering shear strain. Therefore, v15 = 2¢15 = 2(k/2) =
k, meaning oo = uk = py2. Here p is the shear modulus and also a Lamé constant.
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5.2 Simple tension

o= F/A ] = o=F/a
- - Ar:
Figure 6: Simple tension
The stress tensor corresponding to simple tension is
o 00
[e]=10 0 0}, (345)
0 00
meaning oy, = 011 + 092 + 033 = 0 and, from Eq. [33§
1 Okk 1 Ao o [3N+F2u+A| o Apu
€11 =— 011 — A oi|=—|0— = |~ %Sy &5 | — .
24 3N+ 2 244 3N+2u| 2u| 3N+2u w3+ 2p0
(346)
Young’s modulus
A 3N+2
Eza/e:cr/[z i }:u i ay (347)
3N+ 20 A
Also from Eq. we can derive the other on-diagonal strains. They are
—\o 1 -2 1
2= u{3A+2pj 2 At (348)

Now, we let Poisson’s ratio be the negative of the ratio between transverse strain to axial
strain, or

A
Vv = —622/611 = 2( (349)

At p)

Poisson’s ratio is a measure of how things shrink in the perpendicular direction with
respect to how things stretch in the axial direction. For example if you stretch out a
piece of gum it will also become thinner. The extent to which the gum slice becomes
thinner (shrinkage in the transverse direction) as the slices stretches (stretch in the loading
direction) is v.

Now notice that E can be written as

A+23+20 A

E = 1 9) = (20 +2) = 2u(1 . 350
L M(A+M+) (2 +2) = 2u(1 +v) (350)
Therefore
N e BN W (351)
P=o0r) — =1y
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where GG is how shear modulus p is represented sometimes in engineering applications.
To solve for the other Lame constant A in terms of E and v, we isolate A in Eq. [349] as

in
v FE v

1—-2v 1+vl-20
With knowledge of the Lame constants p, A in terms of the engineering constants F, v,
we can represent the generalized Hooke’s law (how to find stress and strain) in terms of
the elastic constants instead of the Lame constants. Solving for stress using Eq. [333]

A=2 \v+2ur - A1 —2v)=2ur - A=p

(352)

E E E
Uz’j = >\€kk6ij + 2/~L€ij = l Lekkéij] + |: :| |: v €kk5ij -+ Ez’j:| .

1+vl-2v 1+ " Trv|i-2
(353)
Solving for strain using Eq.
1 Okk 1+v FE v Okk
Eij = — Uij — )\—52] = — Uz’j — 6@']‘
2#[ 3A+2p } E [ I+vi=2v|, p , B
St w2
14+v v
T B Oij — H—Vo'kk(sij
1
= E O'ij(l + I/) — z/akkéij = Eij.
Expanding the subscript k,
1
€ij = E |:O‘ij(1 + V) — V(O’ll + 099 + 033)5ij:| . (354)
Solving for diagonal strain components,
1
€11 = E[UH — VOgy — VO33] = % - %V - %Va (355)
€22 = —%y + % . %1/, (356)
__ou, on . on
€33 — EV El/+ E (357)

Because of the definitions of ¥ and F this is not at all unexpected. Remember, elastic
modulus is stress over strain, and Poisson’s ratio is the negative transverse strain relative
to axial strain.

5.3 Uniform compression

The displacement gradient associated with uniform compression is

[u] < u;; =

[en BN aniNe
o N O

0
0 =cl=e (358)
€
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This means there is an application of uniform stress in xz,yy,andzz with the same
magnitude, leading to the same magnitude of strain on all sides. The volumetric strain,
which in this case is called dilatation, is
AV
v

From Hooke’s law Eq. (04 = Newrdij + 2pe;;),

A = u;; = tre = 3e. (359)

If —p is the average normal stress, then

1

Then
—pP = 011 = 092 = 033 = A()\+2/L/3) (362)
Then we define the bulk modulus, also called the modulus of compression, as
—p 2 E v 2 B
K = — —_— p— p—
AT T T T T34
_ 3Ev+ E(1—-2v) E(v+1) E

3(L+)(1—20) 3(1+v)(1—20) 3(1—20) (363)

Note that v > 1/2 implies K < 0. It is not possible for the volume to increase. Therefore

V<= (364)

N | —

The special case v = 1/2 implies an infinite bulk modulus which means that the ma-
terial is incompressible, or does not increase or decrease in volume. Rubber is nearly
incompressible.

Substituting K = A 4+ 2u/3 into Eq. [360)]

045 = K(SZ]A = KEkkcsij' (365)

5.4 Stress and strrain deviators

Recall the considerations of this chapter. Simple shear is a change in shape without a
change in volume. Uniform compression is a volume change without a shape change. In
simple shear, the stress field is

Tij = 2[i€ij,

and for uniform compression it is
O'ij = Kekkéij.

Uniform compression is also called hydrostatic or isotropic compression.
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Any deformation is a combination of pure shape change (simple shear) and pure volume
change (uniform compression). Let express the strain tensor as
1 1 1
€ij = €ij — =€rk0ij + €kklij = €ij + = €xili, (366)
3 3 3
where e;; is the simple shear component, since the sum of the diagonals is zero, as
evidenced by

1 1 1 1 1
€11 = €11 — S€11 — €22 — €33 +_€kk5ij = —Ekk5ij (Ekk = 3€, €11 = €29 = €33 = 6)7

3 3 3 3 3

-~

N

e”

and the last term is a hydrostatic compression component. The first term and the second
term are respectively called the deviatoric and isotropic terms. Similarly for stress,

1
0ij = Sij T gakk%’ = Sij — Poij, (367)
where mean normal stress —p = oy/3 and
1

Sij = Uij — gakkéij' (368)

Substituting Eqs. into Eq. (04 = Nexrdij + 2p€;;),

1

Sij — p5¢j = /\Ekkéij + Q[L (eij + gekkélj) (369)

Using contraction such that j = ¢, s;; =0, e; = 0 by definition and ) _, §;; = 3. Therefore

Therefore,
—p = KEkk, (371)
which we already knew. Substituting this back into Eq. [369]
2 1
Sij + ()\ + §,LL> ekkéij = Aszk(sij + 2,u (61‘3' + gekkéij) (372)

which implies very simply
Sij = 2ueij. (373)

Therefore Hooke’s law can be written simply as

{Su’ = 2pueij, iF]

374

These are not conditional statements as though they are not both true always. It is just
that if ¢ # j, the second equation will be zero on both sides and so not relevant. If i = j,
then both sides of the first equation will be zero and likewise irrelevant.

46



5.5 Stable reference states
Strain energy density is Eq. [313] which is
1 1

w = §Cijkl5kl€ij = §0ij€z'j-
Substituting in

1 1 1
w = 5 Sij + gakk% €i; + 56115@'

1 1 1
= —( ij€ij + 5611«5‘@‘3'5@' + ggkk:@ijfsij + §Ukk€zz5ij5z‘j>

DO | —

! + ! + ! + L
= — | S;i€;; —€11Sii —OLLCii —OLLE
9 7 Cig 3 1 3 kk 3 kk€ll

! et Sowen + o - (375)
- 2 Si5€ij Bekksu 30kkezz 30—k’k€ll =w.

If the material is isotropic, this means Hooke’s law Eq. applies. This means

w = ,ueijeij + §K€ii€ll

1
HE;;€45 + iKGiieii = w. (376)
We define a stable reference state as
W = Cijkl€kI€ij > 0. (377)

For this to be true, c¢;;;; must be positive definite such that the expression is positive for
all e. If the material is isotropic such that the strain energy density is given by Eq. |376]
then

1
W = [€;i;€;; + §K€ii€ii > 0. (378)

If the deformation is pure volume change with no shape change, then deviatoric strain
ei; = 0, meaning K > 0 <+ w > 0. If the deformation is pure shear with no volume
change, then isotropic strain €¢;; = 0 meaning p > 0 <> w > 0. Together,

K>0, pu>0 (379)
which imply for isotropic mateirals that
E >0, -l<v<1/2 (380)

because of the definitions for bulk and shear modulus Egs. [363] and 351}
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6 Boundary value problems in elastostatics

The basic equations of elastostatics are

oy +pfi =0, (381)
Oij = Cijki€ki, (382)
1
Eij = §(ui’j + Ujﬂ;), (383)
ti = 04n;. (384)
Substituting Eq. into Eq.
1 1 1
Oij = §Cijk:l(uk,l +ug) = o Cight Uk + o Cigki Uik (385)
= §Cijkluk,l + écijlkul,k (386)
1 1 .
= Ecijkluw + icl'jklUkJ (dummy index) (387)
= CijklUk, = O4j5. (388)
Substituting this into Eq. [381],
(Cijruny) g+ pfi = 0. (389)

This system of three PDEs is the Navier equations of elasticity. The unknowns here
are the three Cartesian displacement components. These equations apply to anisotropic
materials. For isotropic materials,

Jij = )\Ekkéij —I— 2M€ij = )\uka(;ij —I— ,u(ui,j —|— Ujﬂ‘). (390)
Differentiating with respect to x;,
Tijj = Mg kjOij + (Wi gj + Wjig) = Mg gi + gy + ujig) = (A + p)uggi + pug j;. (391)

We have assumed that A\, u ~ E, v are constants and not dependent on position. In doing
so we assume that the material is homogeneous. A nonhomogeneous material has position
dependent properties. So for an isotropic homogeneous material the Navier equations are

(A4 w)ujji + pagj; + pfi = 0. (392)

A boundary value problem or BVP is dedicated to finding the stress/displacement distri-
butions in the interior of an elastic body in equilibrium with specified boundary conditions
and boundary tractions. A purely displacement problem has a unique existing solution
and is therefore said to be well-posed. However a boundary traction problem is not well
posed because its displacement solution is not unique. However the stress solution is
unique because stress is derivative of displacement gradients’.
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6.1 Uniqueness

In a displacement BVP the goal is to find u such that
(cijury) j + pfi =0 — (cyrur) ; = —pfi, 'V, (393)
u; = Uj S,

where S is the surface and V' is the volume. U; is the set of prescribed displacement
boundary conditions on S. The two equations must hold at all points in V' and S.

If the BVP is homogeneous, then every term of the PDE and boundary condition is
proportional to u. Otherwise, the BVP is nonhomogeneous. Eq. is nonhomogeneous
because not every term in the PDE is proportional to u.

Let us try to prove that Eq. has a unique solution. To do so let us assume it does
not have a unique solution. Suppose there is a second solution v; such that

(Cijtives) j = —pfis V, (394)
v; = U S.
Subtracting Eq. from Eq. so that w; = u; — v,
ij = 07 V)
(Cijmwn),; (305)
w; = 0, S.

This is now a homogeneous problem because pf; and U; were nonhomogeneous terms
(as in, they were not proportional to u), but they were removed through subtraction.
Proving that w; = u; — v; = 0 is the only solution to the system Eq. is the same
as proving that u; := v; and therefore the original system Eq. [393|is the same as Eq.
and therefore there is only one solution and so the solution is unique. So to prove
the uniqueness of Eq. all we need to do is show that Eq. is true, which can be
renamed as

(C jkluk,l>,g (396)
U; = 0, S
This implies that
/(cijkluk,l),jdv =0 (397)
v
— / Wi (Cijrtg,) j;dV =0 (398)
\%
— 0= / [(uicl-jkluk,llj — ui7jcijkluk,l]dV (399)
\%
= / (uicijklukl)ﬂ-dv — / Ui7jC7;jkluk7ldV (400)
\% \%
:j{uicijklumnde— / ui,jcijklumdv (401)
S \%
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:]{uicijklekmde—/ Ei,jcijklekldv (402)
S 1%

S 1%
- M - / 2wdV (404)
S 1%

:—/deV:OHw:O. (405)
v

The traction term cancels out because u; = 0 on the surface S. Note that w = ¢;ju€ijep =
0. Therefore, € = 0 at all points in the volume. Zero strain implies no deformation, only
rotation and translation. Therefore, u; = 0 for all V. Indeed this is what we were trying
to prove. Therefore the Eq. is true and therefore we have established uniqueness for
the displacement solution that is Eq.

6.2 Uniqueness for thr traction problem
In a traction BVP the goal is to find u such that Eq. and Eq. are true, meaning

{(Cijkluk,l>,j =—pfi, V, (406)

015 :ti, S.

In the same way as in the previous section, to prove uniqueness of Eq. we can
alternatively prove uniqueness of

i i = 07 V7
(C gkluk,l>,j (407)
0N = O, S.
We arrive at
w=0—€e=0—-u=0€V, (408)

but recall that there is no such requirement on S. Therefore the displacements are not
unique. However it is true that the strains are unique in the volume, as shown. Therefore,
so are the stresses.

6.3 Uniqueness for the mixed problem

Uniqueness follows immediately from Eq. because if u; or t; are zero at every point
then the whole term vanishes.
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7 Torsion

7.1 Circular shaft

Consider a circular shaft with length L fixed at one end such that z = 0 and subjected to
shear forces/torques at z = L. Instead of specifying tractions at z = L we will instead find
the displacement field and see if all required equations are satisfied and if the resulting
surface tractions/body forces are reasonable.

Let a be an angle of twist per unit length. That is, a = 6/z. So 0 is the twist angle
and z is the length of the shaft. Note that

0=z (409)
because of our definition of «.
' Y 0

6

Figure 7: Torsional rotation of cross section of circular shaft in xy plane

Assume that the angle of twist per unit length a is small. Therefore, 6 is small.
Therefore, it can be assumed that sin § ~ 6. Therefore, the segment r sin 6 ~ rf. Consider
also that this segment rf runs (almost) perpendicularly to r. This means that when
B = 0, r is completely aligned with the z axis, meaning 76 is aligned with the y<«
xo axis. Conversely if § = 90, r is competely aligned with the y axis and so 70 is
ANTIPARALLEL with the z > x; axis (runs parallel, but the two ends of r6 go from
right to left, whereas the = axis goes from left to right). These statements mean that
displacement u is completely vertical when § = 0 — cos§ = 1, so that u = uy. On the
other hand, © = ul when § = 90 — sin 8 = 1. Therefore,

{ul = —rfsinf

Uy = 16 cos 3.

(410)

Let the x component of » be x and the y component of » be y. Then, rcos 8 = x and
rsin 8 =y. (r* = 2% + y*.) This means that

cosfB=ux/r, sinf=y/r. (411)

Substituting this in,
u = —rd(y/r) = -0y = —azy,
ug =rf(x/r) = 0xr = azzx, (412)

U3:O.
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The corresponding deformation gradient is

Ui Uiy U3 0 —az —ay
[w; ;] = |u21 uge uss| = [az 0 ax | . (413)
Uzl U2 U33 0 0 0

The symmetric part of this is

1 1 0 0 —ay o 0 0 —y
e=-(u+u’)==-| 0 0 azx|==|0 0 z]. (414)
2 2 2
—ay axr 0 -y x 0

Assuming an isotropic material so that o;; = Agz0i; + 2165,

0 0 —y
[oijl=au| 0 0 =z |. (415)
—y x 0

Note that the trace of the strain tensor €, indicates no volume change.

Recall Fig. [2| which says that a stress component o,,, is the n-component of traction
t for the surface whose normal is x,,. Therefore, the n-components of t for the surface
whose normal is z = x5 are

O3, = 03; = ap{—y = 0}. (third row). (416)
Note that this vector is orthogonal to the vector {z y 0} because
ap{—y = 0} - {z y 0} = —auyzr + aury = 0. (417)

The vector {x,y,0} represents a radial vector outward from the center of a cross section
from z = 0 to 2 = r (because z* + y? = r%.) This means that the vector {o3;}, which
indicates the tractions on the top face, will always be orthogonal /perpendicular to the
radial vector. In other words, for every radial vector, there is a perpendicular traction
components vector. This means that in the same way the radial vectors are symmetrical,
the tractions on the top face also have rotational symmetry, as in Fig. This is called
a shear stress vector since the diagonal stress component o33 = 0.

03i

Jany
A/

03i

Figure 8: Rotational symmetry of shear stress (031, 032) on the top face

If the rod has physical radius R, then the unit normal along the radius of the shaft is

n={z/R y/R 0} = 2*/R*+4y*/R? = R?/R* = 1. (418)
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Then, the traction vector is

o -yl (= o 0z 4+ 0y — Oy 0
t:an:% 0 0 z|<y :E"‘ 0z + 0y +0z $ =40, (419)
—y x 0 0 —yxr +xy +0 0

As for the traction components on the surface — that is, where » = R — they vanish. This
is a requirement for the torsional problem because there is an absence of surface forces
assumed. It is also assumed that there is an absence of body forces, meaning for the
equilibrium equation Eq. to be satisfied, then

O0ij,5 +}0ﬁ: Oi55 = 0. (420)

Here, 01 = 0111 + 0122 + 0133 =0+ 0 — d%y = 0. Likewise, 09;,; = 03;; = 0. Therefore
the equilibrium equation is satisfied in the absence of body forces, which is a proper
assumption. Als, the compatibility equations need not be validated because we were
given displacement to start with and not strain.

Finally, note that the magnitude of this shear stress is proportional to r. That is, at
r = 0 (the center) the stres is zero and at r = R the stress is maximized. Therefore the
stress written in polar coordinates is some

T.0 = QUT. (421)

The relationship between torque/moment M and twist angle « is

M=rxF=rcA= //radA = //TO'ZQT’deQ (422)

where dA = rdrdf and the cross product vanishes because the angle between the radius
and the stress, as shown in the figure earlier, is always 90 degrees. Then

2 R
M = / / rdapdrdd = pa(2m)R*/4 = prR*a/2 = pal = Gal = GIO/L,  (423)
o Jo

where moment of inertia for a circle”” I = 7R*/2 and L = z is the outer circle. Then

ML

= _——
IG

(424)

solves for the twist angle. Uniqueness implies that the solution derived is unique and
correct.

7.2 Noncircular shaft

Above was a circular torsion case. But suppose the cross section of the body is not
circular. This leads to the same derivation as the previous section until Eq. {18 where
the normal vector n was always assumed to be {z/R,y/R,0}, which points from the
center of the circle to a point outside of the circle (z,y) and has length 1. Instead the
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normal cannot always assume to point radially outward in this way. Instead we remove
this assumption and let the normal vector be some general

n = {ny,ne,0}. (425)
Then from Eq. we get
0 —y ni 0
t:an:a—; 0 0 =z ng p = 0 . (426)
—y x 0 0 —yny + TNg

Because of our lack of knowledge of the traction vector in z we thus have to remove the
assumption that plane sections remain in the plane. Therefore we have to assume there
could be some z-component of displacement, and this can be represented as

U = —azy
Uy = Q2T (427)
Ug = Oé¢($, y)v

where ¢(x,y) is the warping function. Exactly to what magnitude the shape is warped
could be unique to each point in the plane which is why the function depends on plane
dimensions z,y. Then the displacement gradient is

0 —az —ay
wjl=1az 0 oz |. (428)
AP, g, 0
The strain matrix is the symmetric part of the displacement gradient (u)i,j = u;;)’/2
or
1 0 0 alp —y)
leis] = 5 0 0 a(by+x)| . (429)
a(pa—y) aldy+ ) 0
If the material is isotropic then
0 0 (02— y)
O35 = 2#6@‘ -+ 51]%>\ — [Uij] = ux 0 0 <¢,y + ZL‘) . (430)

Then traction

0 0 (¢,x - y) n1 0
t=on=pu«a 0 0 (py+x)| S ngp = 0
(¢,x - y) (gb,y + $> 0 0 (¢,x - y)”l + (¢,y + x)”?

(431)
if the normal is n = {ny,ns,0}. This applies to some point on the side of the shaft where
n goes from the center to x,y. Now the top face of the shaft is perpendicular to this (as
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a cylinder’s top face is perpendicular to its side). Normal is always of length 1 and so
the normal vector going from the center to the top face is n = {0, 0, 1}, meaning

O 0 (¢,z - y) 0 gb,:c ')
t =on = pa 0 0 (py+x)[ 0 =K ,+x 7. (432)
(0x—y) (¢y+2z) O 1 0

As enforced in the circular problem by Eq. 419 traction must be zero on the sides
because the absence of surface forces is assumed. Therefore, the last component of the
side traction

(bp—y)n1+ (dy + 2)ng =0 = ¢ ony + G yng = N1y — nax. (433)

The left hand side is the same as

ny 8¢

o+ dyna ={¢, ¢, 0}{nyp=Ve-n= P (434)
0 n
Therefore, substituting this in,
0
a—z = N1y — Na. (435)
Recall that the equilibrium equation
Oij5 — 0 (436)

must be satisfied, as the absence of body forces is also assumed. Taking stress components

from Eq. [430]

o1 = (¢ —Y),- =0, (437)
0255 = (¢y + ). =0, (438)
0355 = (P —Y)o + (P + )y = Guz+ Py =0 = V2. (439)

Therefore the warping function must satisfy the 2D Laplace equation. Solutions of these
will be harmonic functions. Therefore the solution to the noncircular shaft reduces to
solving the equations

240
Ve =0 (440)
¢,xn1 + ¢,yn2 = a¢/an =Ny — Nax.

PDEs whose boundary conditions specify the value of the unknown function are Dirichlet
problems. However, PDEs whose BCs are given by gradients of functions are called
Neumann problems. This is a Neumann problem.

The resulting moment on top and sides of the shaft is ultimately desired. To do this
first of all we calculate force in x, which is

F,=t,A= /,ua(¢,x —y)dA. (441)
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Notice that

0
oY =02 =Y+ (GaetDyy) = ba— Y+ 2(Dax + Dyy) (442)
0 0
= (Y + 200+ 00) + (10) = 5oy 260) + 5 (0% +ag,)  (443)
0 0
=5,y +00)) + 8—y(:v(x +dy)). (444)
Therefore 5 5
P~ [ na{ Sty 6.0)+ otala +0) b (445)
With the divergence theorem,
F, = pa ?{S{nl(m(—y + ¢.)) + no(z(x + gb,y))}dS (446)
= ,uozj( x{nl(—y + @) + no(z + gby)}dS =F, =0, (447)
S

because 2d area is to 1d curve as 3d volume is to 2d surface area. The quantity is zero
because again the force is related to the traction and the traction components must be
zero. This result is similar to that of F}, = 0.

Moment on the top face is

M= ryxF,+ryxF, =ryxF,—r,xF, = /(xt2—yt1)dA (448)
perpendicul;rrcomponents F;;O A
= pa / (¢ +2)x — (0 — y)y|dA = pa / (P2 — Yoo + 2% + y*)dA. (449)
A A

Recall from the previous section that moment of inertia is

I =7R'/2 = /0 - /0 ’ r3drdf = /0 " /O R(r2)rdrd9 = / / (z° + y*)dA. (450)

Therefore,
M = pa (I + /(%w - yczﬁ,x)dA) = pav, (451)
A
where
It [ o= you)id =1 (452)
A
is called the torsional constant. Note that if ¢ = 0 then J = I. From Eq. [451]
9, d
—J = — A= — - — A 4
T=1= [ @y =vo.)aa= [ (560 = S-nd (15
= }((@:ng — ¢yny)dS = ]{(xng — yny)@dS. (454)
c c
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Sustituting in Eq. 435 (% = N1y — Nax),

_ __J9 e
J—1= ]fc (pzng — pyni)dS = ﬁ 5,005 = 7{} (021 + G yn2)pdS (455)

. ;{J (Vé-)pdS & — ]i (66, )midS = — /A (66,) A (456)

. / (636s + bb5)dA > — / (Vo Vot oV dA=J 1.  (457)
A A

Because of Eq. 440k,

J—I:—/(V¢-V¢)dA—>J:I—/(VQS-VQS)CZA. (458)
A A

7.3 Uniqueness of warrping function in torsion problem
To solve the noncircular shaft problem we have to solve for the warping function ¢ such
that
V3¢ =0,
¢ (459)
0¢/0n = n1y — nax,

as stated in Eq. Now consider the logic used to prove uniqueness in Sec [6.1] It
states that if uniqueness of the solution was NOT true then there would be some other
warping function v such that 01 /0n = nyy —nox. Then the difference of these two would
be the system V?\ =0, d\/On = 0. This can be renamed as

V2¢ =0
{a¢/an —0. (460)

So the uniqueness of this problem is the same as the uniqueness of the earlier problem
because if this is true then it follows that OA/On = 0 = d¢/On — OY/On — Ip/On =
O /On — the solutions are the same and so there is only one solution. From the first
equation of the system,

0=V2p=¢; — 0= / b¢ idA = / () idA — / ¢i¢pidA (461)

- f(ﬁ(éb,mi)ds — /Av¢ -VodA = 7{¢st — /Aqu -VodA = 0. (462)

Therefore

/vqs VédA = / IV$|%dA = 0. (463)

This implies V¢ = 0 and so ¢ is a constant. This means that the difference between ¢
and 1 can be at most a constant.
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7.4 Existence of warping function in torsion problem

The solution to the problem of torsion a nonciruclar shaft is related to the solution of ¢

mn

20

Vie=0 (464)
09/0n = ¢ zny + ¢ yno = yny — xns.

Following the first equation,

0= /A V¢2dA = /A V- VodA = ]i Vo -ndS = 7{5 d¢/OndS. (465)

0 0
— — dsS = —xodA = —y — —axdA = 0. 466
]i (n1y — nax) /A Y1 —To /A 9! " 9," (466)

7.5 Some properties of harmonic functions

Functions that satisfy Laplace’s equation are called harmonic functions. Harmonic func-
tions

e (inside a circular domain) have a center value equal to the average of the surrounding
values, and

e achieve their maxima and minima on the boundary.

Physically the first statement is seen in a steady state heat conduction on a circular plate.
All boundary points have equal influence on the center point so the temperature at the
center is the average of the surroundings.

7.6 Stress function for torsion

Recall the stress tensor is

0 0 Qb,;r -y
lo] = pa 0 0 Gyt (467)

b=y ¢yt 0
For a certain ¢ (row) the stress components must obey the equilibrium equation
04 =0
if the absence of body forces is assumed. For row three,
0355 = P —Y) o+ 1Py +T) y = 1P ap+ b yy) = paVip =0 — V6 =0 (468)

must be true. But instead of the expansion carried out as such let us instead assume a
stress function ¢ so that

031 =Yy, O30 =—U,. (469)
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Then
0311 = ¢,yx, 0322 = —¢,zy- (470)

This leads to the automatic satisfaction of the equilibrium equation in that

031,1 + 032,2 = w,yz - w,xy =0 (471)

without any further assumption. Substituting in the appropriate values for ¢ in Eq. [469,

Yy =pa(ds —y), == pa(d, + ). (472)

Then
Vyy + Ve = V2 = pa(dpy — 1 — ¢y — 1) = —2pa = V. (473)
Recall that Laplacain is divergence of gradient and so maintains rank. Therefore the

curves ¢ (x,y) are constants, just as —2u« is a constant. So, their derivatives are zero.
Taking the derivative of 1(z,y) with respect specifically to z,

d oY OYoy
%2/1(%?/) =ao; 7 Ty o 0. (474)
Rearranged,
gy _ Op [oY
or  dx/) oy (475)
Substituting in Eq. [469]
Oy _ 0w _ 0y (476)

ax 031 Ozz

This is the change in y relative to the change in x of the curve . In other words it is its
slope. So the tangent vector is

Ouy€y + 02p€y = T. (477)
Recall also that the z <+ 3 component of the traction vector is
t3 = 031N1 + 030N = T-n=0. (478)

This is to say that the dot product of the slope of ¥ and the normal vector n is zero,
meaning the stress function is perpendicular to the boundary and so is constant at the
boundary. For convenience we let 1) = 0 because a constant shift in the stress function is
not meaningful since the derivatives of 1) are o, and this will be zero regardless of what
constant 1 is.

So the two conditions are

2 = =2 bod
\Y w po, oqay, <479)
v =0, boundary,
where
Yy =031, Yz =03. (480)
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Note that
Vi - T = 033031 — 031032 = 0, (481)

meaning the rate of change of v is perpendicular to the tangent vector. Therefore Vi)
happens most when it is perpendicular to ¢ (technically the line vector that is tangent
to ¢ at a certain point).

Torque/moment at the top face (n = {0,0,1}) is

M = /(mtg —yty) = /($023n3 — yoi3ng)dA = / 1039 — Yoz dA = / —x), — Yy, dA
A A A A
(482)

__ / / xg—jdxdy— / / yg—fdxdy (483)
= _/(/ x%dw)dy—/(/yg—z}dy)dx. (484)

Integration by parts is
/udv = uv — /vdu. (485)

Looking at the first term, if u = 2 — du = dz and dv = (0¢/0x)dx,— v = 1), then

M:—/(}%—/wdx>dy—/(yg—/z/zdy)dx (486)

—9 / / bdrdy = 2 / WA = M. (487)
A
If it is also true from Eq. that

M = apd, (488)

then 5
J=— [ YdA. (489)
M J A

7.7 Torsion of elliptical cylinder

The ellipse equation is

2?2 P 2?2
¥+ﬁ:1—>¥+b_2_120' (490)

Note a few things, that a = b = 1 leads to a circle equation with » = 1 and that an
increase in |a| leads to stretchiness in x while an increase in |b| leads to strethiness in y.
The boundary of a elliptical cylinder is clearly an ellipse. Also remmeber that the

stress function at the boundary is ¢ = 0. This is given by Eq. 479 Therefore,

2 2
0=¢=c<%+i—2—1). (491)

60



Here ¢ is a constant. Remember the other condition contained in Eq. [A79] which is that

V2 = —2ua. Therefore
2 2
—2pa = Vi = c( b2>

11
C= —u«x —2 b_2
Substituting this into Eq. [491],
2 P 1 1
o=l ) /(o)
ZEQ yQ b2 a2
:“a<l—§—b—2)/(w+w)
_ ) $2 yQ CL2b2
T e T ) \ere

jaa?? 2 P
“ere\lTaE T e)TY

Therefore,

From Eq. [489]
2
J=— [ ¢dA
M J A
_ 2% / LA A W
a2, a?> b
2a%b* 1 1 )
9 2b2 b
- 1 [ / / r3drdf — — r3drd9]
a®+b 0
2a2b? s s ma’b?
see end of chapter
= pt m |jTCLb — Zab — Zba] = m = J
Using Eq. [497],
paab? [ 2y Q;wza Y
O G ) w3
paat? [ 2x 2,u04b2:17
“Ve=om =l Te )T e e
At the boundary,
. 2pad®d [ 2paab
o y=b a? + b2 a? + b?
” _ 2uaba b
2 \a2+2)”
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7.8 Torsion of rectangular bars: warping function

The torsion problem can be solved in terms of either the warping function or the stress
function: ¢ or 1, just like the cylindrical bar. Here we start with ¢. Consider a rectangle
with side lengths 2a = L, and 2b = L,. The origin is the center so that the corners
are (a,—b), (a,b),(—a,b), (—a,—b), if starting from the bottom right and going counter-
clockwise. Then, also starting from the bottom right and going CCW, the corresponding
stress functions are

xr =a, 0¢p/0On = 0p/0x =y

y=>b, 0¢/0n=00/0y=—ux

r=—a, 0¢/On=0¢/0x=—y (507)
y=—b,  0¢p/On=0¢/0y=x

\V2¢ =0, body.

So the change in stress function is commensurate with the point on the boundary. That
is if the boundary point is on the right boundary then d¢/0n increases as you go ”up”
it, i.e. as y increases.

Notice that these are all odd functions of z and y. That is because they mirror each
other along y = =. That is, f(—z) = — f(x). Because of this the solution to this system
must be antisymmetric in y and x. This means that d¢/0n in between the two boundaries
must be exactly zero, from which it can be concluded that ¢ is a constant here, which
we set to zero. Then a reduced system is

(

r=a, 0¢p/On = 0p/0x =y

y=>b,  00/0n=0¢/0y=—x

z =0, ¢ =0, (508)
Y= 07 ¢ = 07

\Vng =0, body.

We then introduce the transformation function w = w(x,y) such that

oo ow oo G_w
o YT o 8y_m dy (510)
Then,
ow _8¢ ow % (511)

o VT o oy T oy

Then, the system becomes

r=a, Ow/0r=y—y=0,

y=>0, Ow/0y=2x—(—x)=2x,
r=0, w=0, (512)
y=0, w=0,

| body, V?w =0.
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Using separation of variables the solution to the function w(z,y) can be represented as
some

X(2)Y (y) = w(z,y). (513)
Then pe pY
Vi = o T Y = X"(2)Y (y) + X (2)Y (y)" =0, (514)
which implies o v
. (515)

where A is some so-called separation constant. The form of Eq. can be used to form
the two separate ODEs

X"=-X\X, Y"=)\¥. (516)

These have the solutions
X(z) = Asin \x + Bcos A\v <+ X = Ae™ + Be ™", (517)
Y (y) = C'sinh Ay + D cosh \y. (518)

Since the stress function is odd across the axes x,y, the established boundary conditions
were w(0,y) = w(z,0) = 0. Therefore,

X(0)Y(y) = X(2)Y(0) =0 — X(0) = Y(0) = 0 (519)
— X(0) = Asin A0+ Bcos A0 = B =0, (520)
Y(0) = C'sinh A0 + D cosh \0 = D = 0. (521)

Therefore the solutions reduce to
X(z) = Asin Az,  Y(y) = Csinh \y. (522)

The other boundary conditions are dw/0dy|,—, = 2z, Ow/0z|,—, = 0. Because of the
latter statement,

X'(a)Y(y) =0 — 0= X'(a) = AMAcos Az — A\, = (2n — 1)%. (523)

This is because cos90 = cos 180 = cos270 <« cos(m/2) = cos(37/2) = cos(bn/2) =
cos((2n — 1)7/2) = 0. Note that this implies the existence of a series of \’s with index n,
called \,. Therefore,

X(z) = Asin\,z,  Y(y) = Csinh Ay, (524)

and altogether,
w=XY = Z A, sin A, x sinh Ay, (525)
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where AC' has been combined (as constants are arbitrarily named) and indexed for each
An. This series satisfies V2w = 0, which was the original statement given by Eq. .
Using the final boundary condition y = b — w = 9¢/Jy = 2,

2¢ = XY' = Z An A, sin A,z cosh A\, b. (526)
Multiplying on both sides,
/ 2z sin \,,xdr = Z A, )\, cosh )\nb/ sin A\, sin A, zdz, (527)
0 - 0

where on the right side,

/ sin A,z sin \,xdx = {0’ n#m, (528)
0 a/2, n=m,
and on the left side,
“ 1
/0 rsin \pxdr = A—Z(—Um“. (529)

Since only n = m remains in the series, it no longer becomes an infinite series, and

320 o~ —1"*! 1
T = (2n — 1)% cosh Apb

o=y —w=1aY — sin A, x sinh \,,ym, (530)

and the torsional constant is estimated as

—I+/ /_a<x——ya )dxdy (531)

192a = tanh \,b
mb = (2n —1)°

1
—6a3b {1 —
3

}: ka’b = J, (532)
where £ depends on the b/a ratio. Particularly,

2.249, b/a = 1.0,
3.659, b/a=2.0

. , bla=20, (533)
4.661, b/a = 5.0,

5.333, b/a — .

Ignoring higher order terms of the series, another reasonable approximation for the tor-

sional constant is 6 19 ;
J~ §a3b(1 — —tanh 1). (534)

Some steps of this derivation are not shown (Li pp. 74-75).
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7.9 Torsion of rectangular bars: stress function

We now move to solving the torsion problem in terms of ).
The two conditions on the stress function are Eq. 479, which are

V) = —2ua, body,
v =0, boundary.

where
_¢,x = 032 = Ogy, w7y = 031 = Ozg-
One solution to the first equation is
Y = —pax® + C.
Then, V29 = 8% /02* = —2ua. Then, let
C = paa® + pow.

Substituting this in,
Y = pafa® — %) + paw.

The other boundary conditions are satisfied if
v =20, r==xa— =04 pow,

v=a?—a% y==xb— = pala®— 2% + uav,
Vv =0, body — V) = —2ua + paN2.

(535)

(536)

(537)

(538)

We observe that these boundary conditions are even along axes « and y because f(z) =

f(—=z) and likewise f(y) = f(—y). ... The eventual result is

Y = pala® — 2°) + pa Z A, cos Az cosh Ay,

n=1
16 4\ K tanh \,b
J="2a%—a'(2 JAmA AT
3¢ ¢ (71’) ;(Qn—1)5
Eq. is similar to Eq. 532
Note
Letting
R
y=0brsint, r=arcos +— — + e r2(sin? 0 + cos’0) =1 =1 <1 =1,
a

the conversion from the Cartesian space to the polar space is

/Qf(ﬂi,y)d/l://f(r,@)detJdrde.
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See jjmarzia-maeb29 pp. 17. The determinant of the Jacobian is

det J = det [c%/&r 8@//87} — det [ acos)  bsinf

_ 2 20
dxz/00 0Oy/00 —arsinf brcosé’} = abrcos” 0 + abrsin® 0 = abr.

(543)

2w 1 2 1
/ y?dA = / / (b?r? sin? §)abrdrdd = ab?’/ sin? Gd@/ ridr. (544)
A o Jo 0 0

The trig identity

Therefore

cos 20 = cos? ) — sin®§ = (1 — sin? @) — sin? @ = 1 — 2sin® 0 (545)
— sin? ) = 1 1cos 20 (546)
2 2 .
Substituting this in,
2m 1 1 1
/ y*dA = ab3/ (— — —Cos 29) d@/ ridr (547)
A o \2 2 0
1,11
= ab®(1 — 7 5in 202 )Z = Zﬂab3. (548)
Likewise,
1
/ w*dA = ~mah. (549)
A 4
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8 Plane deformation

8.1 Plane strain

A body is in plane strain if u; = uy(z,y), ug = us(z,y), ug = 0. This means that for each
xy plane with a fixed z, there is no z displacement. In other words, cross sections do not
overlap. For cylindrical bodies this is true if they either have infinite length or have finite
length with fixed ends. Under plane strain conditions,

€31 = €32 = €33 = 0« €35 = 0, (550)
because ]
€ij = §(Ui7j -+ Ujﬂ') (551)
1
— €31 = §(u173 + U371) =0+0= O, (552)

etc. Now, recall Eq. [357] which is strictly a way to compute diagonal strain elements of

isotropic materials. It is
011 022 033

w=-p' g’ g
This implies
0= —011V — 092V + 033 —>0'33:V(0'11+0'22). (553)
Using Eq. (0ij = dij€riA + 2p€;;), it is known that 0;; = 0yj(x, y) because this is true
of €;; = €;j(x,y), and this is the case because of the displacements. Therefore

(
011 = 011($1,$2)
099 = 022(551,902)

o33 = V(011 + 022)

(554)
012 = 012($1,$2)
0923 — 0
(013 = 0.

Recall the equilibrium equation Eq. [275, which comes from Eq. — Eq. It
assumes the absence of body acceleration. It is

0ij; +pfi = 0.
Using this,
0=o0111+ 0122 +0133+pfi =0(z,y) + f=0— fi = fi(z,y),

0=091,1+022+033+pfo=0(x,y)+ fo=0—= fo= falz,y), (555)
020'3j7j+f3:0—>f3:0.

So there is no z component of the body force, only x,y components. Of the compatibility
equations Eq. there is only one nontrivial iteration, and that is

2€2112 = €11,22 + €221

because it does not involve any 3—components.
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8.2 Plane stress

Recall that plane strain implies e€3; = 0.Very similarly, a body is in a state of plane stress
if
O'3j:0<—>0'3120'3220'33:0. (556)

Hooke’s law is Eq. (0ij = Nexkij + 2p€;;), and so

o31 = 0 =2uez; — €31 =0,
032 =0 = 2pezy — €33 =0, (557)
033 — 0= /\611 + )\622 + (/\ + 2#)633,

the last statement implying

=— : 558
€33 r 2pd(‘fll + €22) (558)
If Eq. is true (v = \/(2\ + 2p)), then
A —A/(2A +2p) (559)
A2 AN+ 2u/(2N+2u)
- v S (560)
“A+2X+2u/(2N+2p)  —v+1
Therefore,
v
€33 = —1 — I/(Ell —|— 622). (561)
Again because of Eq. [357] if the material is isotropic then
€33 — —E — %I/ —|—% 0'11 + 0'22) (562)
The static equilibrium equations Eq. 275} or
Oij.j + pfi =0 (563)

imply
0=on,1+ 0122+ 0133+ pfi,
0= 0911 + 0922 + 0233 + pfo, (564)
0=031,1 + 0322+ 0333+ pfs=pfs— f3=0.

Of the compatibility equations Eq. there is only one nontrivial iteration, and that is

2€2112 = €11,22 + €221

because it does not involve any 3—components.
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8.3 Formal equivalence between plane stress/plane strain
Restating the inverse Hooke’s law of Eq. [357]

1 v v
€xx = EUrm Eo-yy Eazza
v 1 v
€yy = _Eo-mx + Eo-yy Eazzv
v v 1
€22 = _Eo-zz - Eo-yy + Eo-zz
8.3.1 Plane stress
In plane stress conditions where o,, = 0,
1 v Oz = Fegy +v0y,
€xe = 50z — 70yy — E 1
E E Oyy = _jexx + ;O-CECE
E 1
¥ 1 Oz = —€yy T 04y
€yy = 5 O0zz + 50yy —
FE FE = Fe,, +vo
Oyy Yy T

Substituting the first branched equation into the fourth,

E
Oyy = Eeyy+v(Eey, +voy,) = Eeyy+VEEww+V20yy 7 Oyy = m(eyy""’/ﬁm)-
Substituting the second branch into the third,
E n 1( E n 1 ) E E n 1
Ogy = ——€ —\— €z —Ogz) = ——€yy — €z —50zx
v vt v v 2 V2

1 1 1
— Oug (; - 1) = E(;‘fyy + ﬁexx)

1 — 1?2 1 1
— am( 5 ): E(;eyy + ﬁem)

— Opy = m(yeyy + €2)-

Then substituting these results into Eq. [567]

v v F

= = (00 +0yy) = —Em(

€2z Z €yy T Veyy + Veyy + €4z)

14

- — CES T (v +1)(eyy + €22))
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(570)
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8.3.2 Plane strain

Also using Eq. but assuming instead plane strain conditions or €,, = 0,

v v 1
0= —EO'xm — any + EO'ZZ (575)
— 04y = V(Ops + Oyy) (576)
which implies, using Eqs. [565H5606],
1 v V2 1— 12 v+ 12
€rz = E(T:c:r: - any - E(Uxx + Jyy) = E Ogzx — B Oyy, (577)
1% 1 2 v+ 1?2 1—1?
Cyy = _Eam + any E (Oze + Uyy) E Ozx E Oyy- (578)
Let the constants
1 1-2 v v+ viv+1) E viv+1)
E- E ' E E Y E 12 xlvsy 00
8.3.3 Conversion
v _ FE
_ — F=—— 580
w1 0 -2 +1 (580)

This is the conversion between plane stress results and plane strain results. So if one
obtains results for plane stress they can substitute £, v with E, 7 and in doing so obtain
results for plane strain. This is because if this is substituted into Eqs. [577[578] then

1 _

€rx = Eazx - %Uyya (581)
v 1

€y = ~ g 0u + 0w (582)

and this in stead of F,v perfectly matches up with €,,,¢€,, in plane stress conditions,

represented by Egs.

8.4 Compatibility equation in terms of stress

Recall that for 2d plane stress/plane strain problems, the only nontrivial compatibility
equation which remains is
262112 = €11,22 + €22 11- (583)

If the material is isotropic then Eq. is used to obtain

1 v

€11 = Eall - 5022, (584)
v 1

€99 = _EJH + 5022, (585)
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1 14+v 5 21 +v
€ = —0 — g —> ZE =
12 21u 12 E 12 12

where the last equation is obtained from the conversion between p and E which is intro-
duced in Eq. Substituting these into Eq. [583]

12, (586)

5 1+v 1 v v . 1 (587)
o = —0 — —0 — —0 —0
p 01212 T o2 T H0nn T Houn T ponn
implies
2(1+v)o1212 = 011,220 — V02222 — V01111 + O22.11- (588)

At the same time, static equilibrum conditions with zero body force is assumed so that

o11,1 + 0122 =0, (589)
O91,1 + 0222 = 0,

meaning
O12,21 = —011,11, (590)
021,12 = —022,22. (591)

By the arbitrariness of the order in which partial derivatives are taken, and by virtue of
the stress tensor being symmetric,

012,21 = 021,12 (592)
Therefore,
012,12 = —011,11 = —022.22- (593)
Therefore,
012,12 + 012,12 = —011,11 — 02222 = 2012,12- (594)
Substituting this into Eq. [588],
—(14v)(01111 + 02222) = —v(011.11 + 022.22) + (011,22 + 022.11) (595)

— — (01111 + 022,22) —M: —V(011 32.02) + (011,22 + 02211). (596)

This leaves
O11,11 + 011,22 + 02211 + 02220 = 0, (597)
or
(011 + 022) 11 + (011 + 022) 22 = V(011 4 022) = 0. (598)

This is the stress compatibility equation which is valid both for isotropic, static materials
under no body forces and under plane stress and plane strain conditions (as there is no
dependence on material constants).
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8.5 Airy stress function

A so-called Airy stress function U automatically solves the static equilibrium equations
if it is defined as

011 = U,22, 029 = U,11, O12 = —U,12 = —U,21- (599)
This is because

=Usg9 —Us12=0
015 =0 = {011,1 + 0122 221 212 (600)

0211 + 0220 = U121 + U112 = 0.

That is because the partial derivative order is arbitrary. Substituting U into the stress
compatibility equation Eq. [598]

0=V*(Un =Ug) = Ui + Unizz + Usgonr + Upaz (601)
92 o2 92 o2 - \
—(82x+82y)(82x+82y>U—VVU—VU—O. (602)

This is called the biharmonic equation, which U satisfies in 2d. The Airy function is
useful if you

e Let U be different polynomials of various degrees to see what problem is solved

(Sec. [8.6)), or

e pose a problem of interest and attempt to solve it using the Airy function definition

(Sec. B.7).

In accordance with the above citations, the next sections are dedicated to applying these
methods.

8.6 Polynomial solutions of the biharmonic equation

If

U= ga;? ~bay + §y2 (603)

Then
Upe=0yy=0a, Uy =0,=c, —Ug =012=0. (604)

)

This means that all the stress components are constant. a,c are constant diagonal el-
ements, meaning they are uniform tension/compression parameters. Constant b is a
uniform shear parameter.

If
_ 1 3 1 2 1 2 1 3
U= 502 + 2b:c Y+ 5CTY + 6dy (605)

then
Upwe =0y =ax +by, Uyy =04 =+cx+dy, —Ugyy =0y, =—br—cy. (606)

) )
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Different problems emerge from how the constants are set.

For example if only d # 0 but a, b, ¢ = 0, then only the term o, = dy remains and it is a
case of uniform bending where, because of the linear form,y <0 — o0 <0,y >0 — o > 0.
So the body is bent where the top half is a tension while the bottom half is a compression.

If only b # 0 but a,c,d = 0, then only o,, = by, 0, = —bx remain. So the stress has
four different overall behaviors based on the quadrants (z,v), (—z,v), (z, —y), (—z, —y),
if the origin is the center.

Letting U be a fourth order polynomial or high does not necessarily satisfy the equation
VAU = 0. That is, constants remain. They are not all eliminated in the process of taking
derivatives. Therefore the coefficients can not be picked arbitrarily.

8.7 Bending of a narrow cantilever of rectangular cross section
under end load

Consider a beam fixed at = L and free at « = 0 (so that the free end is the origin) and
depth d. If the thickness of the beam in the z direction is A < d then we can assume
plane stress conditions because then the stress does not change virtually at all across
the depth. So, the beam can be treated in 2 dimensions as a plane. We are solving for
displacement due to the applied load P.

The stress in x will be proportional to  and y; particularly it will be higher as both x
and y increase. So the quantity

Ope = C12y = Uy, (607)
is chosen. Taking antiderivatives,
1
Uy = ey’ + fi(@), (608)
1
U= éclxyB’ +yfi(z) + fa(x). (609)

It is known that U satisfies the biharmonic equation and so

0=V = Usuez + 2U say + Uy = uf1" (2) + 3" (). (610)

n ua

The only way for this to be true of all y is the trivial solution, which is f{"”'(x), f5"(x) = 0.

That is because if f3” is some constant, then y can change and make the product yf}"”

change, but f}” cannot change. So both must go to zero so that a change in y does not

change the relationship. Therefore,

fi(@) = co2® + c32® + ey + o, (611)
fo(x) = ca® + cra® + ey + co. (612)
Substituting this in,
1
U= —c1oy® + y(cor® + c32® + cuz + ¢5) + (c2® + c72° + s + ). (613)

6
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Then the other stress components are automatically supported by the equilibrium equa-
tion and are

Oyy = U gp = 6c2yx + 2c3y + 6C6 + 207, (614)
Loy 2
Opy = —Uy = —5ay — 3cox” — 2037 — 4. (615)

There is an assumption of a lack of external stresses, meaning the boundary is traction
free, and this means that o,,(y = £d/2) = 0. Therefore,

0 = 3codx + c3d + 6xcg + 2¢7, 0= —3codx — c3d + 6xcg + 2c7. (616)

Setting these equal,

3codr + c3d + 6xcg + 27 = —3codr — c3d + 6xcg + 27 (617)
— 3codr + c3d = —3cydr — c3d — 2 = ¢c3 = 0. (618)
— 6xcg+2c7 =0 — ¢cg = c7 = 0. (619)

So all the coefficients ¢y, c3, g, c; = 0 and therefore the system becomes

Loy
Ops = 1Y, Oy =0, 04y = —5ay” (620)
The same assumption implies a lack of shear on the boundary, so that o,,(y = £d/2) = 0.

Therefore,

1 d?
0= _§CIZ — C4, (621)
meaning
1
cy = —gcldQ. (622)
Substituting this in,
I 5 1 5 1 2 2
Opp = C12Y, Oy =0, 04y = —5Cy + gcld = —gcl(4y —d°). (623)

Suppose we are analyzing the load/force of magnitude P, based on the stress experienced
by a cross section of thickness h << d and depth d. Then the force

d/2
—P = / gccyhdy7 (624)
—d)2

where the shear component is used because the load P in the diagram is applied in the
y direction on a surface whose normal is x. The sign of P is negative because of the sign
convention of shear stress.
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Note

(At z < 0, 0,y pointing down is positive. The axes usually goes from left to right with
the origin at the fixed end, meaning the bar normally goes from = = 0 (fixed) to x = L
(free). However in this example the axes go from right to left so that x = —L (free) and
x = 0 (fixed). ALSO, the origin is reset to the free end so that x = 0 (free and z = L
(fixed). So that is why P is negative despite the application of load being at x = 0 by
name. Conventionally it would be x = —L.)

Substituting in oy,

—P = / (—=c1y® + —c1d®)hdy = ——clh/ (4y* — d*)dy (625)
—dp 2 8 8 —dj2
1 4 3 g2 1 3 3 1 3
= ——c1h(=(d/2)° —d°(d/2)) = —=c1h(d’ /6 — 3d°/6) = —c1hd (626)
4 3 4 12
1
— P=——chd’ (627)
12
Rearranging,
12P 12
where moment of inertia
P (629)
12
Substuting this into the system,
P P
Oe = =Y Oy =0, Ouy= —8—1(4y2 —d?). (630)

Now that the stresses are computed, the strain/stress Inverse Hooke Law Eq. can be
summoned, and that is

1 v Pxy
€rx — Eam - 2 yy — _ﬁ7 (631)

v 1 vPI
Cyy = T pTan vy = Ty E (632)

o 1+v P (1+v)P
2y = —2L = —— 4y - &) )= (d® — 4y° 633
=" = (L) (g - @)= S ety o
Of course,
ou v 1/0u Ov

or = —, = —, €=—-|=—+—=—]. 634
‘ ox vy Jy Cay (83/ * 8:6) (634)

2
Then, the procedure of Li pg. 90-92 can be followed, which is analogous to that of Sec.
2.7 The eventual result is

P P P d?
=—— —(1 2)y° + —— | L* — (1 —
u SETY y+3E]( +v/2)y +2El[ ( +u)2]y, (635)
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vPxy* Pa®  PL’x PL’

V=981 TG6EI  2EI ' 3ED (636)
and pr2
u(Lyy) < u(0,y) & 5 = O(L%). (637)

It is important to note that this solution requires the assumption in elementary beam
theory that u(L,0) = v(L,0) = 22(L,0) = 0, remembering that = L is the fixed end.
So, it is assumed that the fixed end in the middle of the bar moves none whatsoever.
These boundary conditions can be applied after finding v and v in terms of unknown
constants, in order to solve for those constants.
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Page dedicated to working out the rest of the cantilever problem by hand.
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8.8 Bending of a beam by uniform load

Consider the uniformly loaded beam of length 2L and depth 2d. If ¢ is the force per
length then the total force is 2¢qL, and the reaction to this is shared by the two ends
each with magnitude ¢L. If thickness h < d then we can assume plane stress conditions
because it can be assumed that there is no change in stress across the beam, and so the
beam can be treated like a 2 dimensional plane.

Recall the sign conventions for shear components in Fig. 2 On the left side, positive
is down. On the right side, positive is up. Similarly, on the top side positive is to the
right and on the bottom side positive is to the left. So since the shear stress on both
sides is pointing down, the left side will be positive and the right side will be negative.
Particularly,

d
L
/ Oay (L, )y = T4, (638)
—d
With that in mind, the other nonzero boundary condition is
o, —d) = = (639)

It is negative because the bottom of the body is pushing back up, and up is negative on
the bottom side.

Finally other boundaries are set to zero. Those are stress on the top side, and shear
components on both the top and the bottom. So,

Oy(z, £d) =0, (640)
oyy(z,d) =0. (641)
Finally, there is no net moment at the left and right ends. This means
d
/ 0an(£L,y)dy = 0, (642)
—d
d
rx F=rxcAn~ / Yo (L, y)dy = 0. (643)
—d

A fifth order polynomial U with a total of 6+5+4+3=18 terms is utilized for the Airy
function. That is, 6 fifth-order terms x°t°, 2%y, ... 2%°, 5 fourth-order terms, etc. down
to second order terms. Linear terms and constants do not affect the stress field since the
second derivative of the Airy function is how the stress field is defined. Therefore, they
are set to zero.

To solve this problem, it is not much different than the method used in Sec. It is
known that Using

ViU =0, (644)

and also that
Ouz = Uyyy Oyy = Ups, Ony = —Uy. (645)
Then, the problem is simplified in the fact that because o_,, = —o0,,, it is an odd

function and so
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The moment of inertia of the cross sectional area in this example with respect to the
7 axis is

2
I= ghdf”, (646)
and the stress field is solved as
q ;9 2 ql 5 15
zr — T A7 L7 — T\5 —=d ) 4
o 57 L~ )y + 73y — 2 dy) (647)
q 5 qd*  qd®

= —— —y — — 648
Oyy 61—9 + 5] Y 37 (648)
Ony = —%@F — ). (649)
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Page dedicated to working out the rest of the cantilever problem by hand.
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9 General theorems of infinitesimal elastostatics

9.1 Work theorem
A stress field is statitically admissible if

{Uij,j +pfi =0,

Oing = T‘z

(650)

Here T; is the surface force/traction vector. Static admissibility requires smoothness of
the stress field.
A strain field is kinematically admissible if

u; = U,

where U; are the boundary displacements. Kinematic admissibility assumes smoothness
of the displacement fields.

Note that these stress and strain fields need not necessarily be related to the same
problem.

The work done by surface tractions is

%T;Ulds = % aijnjuidS = /(aijui),jdV = / 05,5 Uq + O'ijuideV (652)
S S Vv

_/ —pfiu; + oijei;dV = ]{Tiuids- (653)
|4 S
Rearranging,

s 1% 1%

The way to interpret Eq. is this. Work done by surface tractions and body forces
is equal to a strain energy computing the stress and strain of the two, not necessarily
identical problems. Eq. is called the work theorem.

The work theorem can be reverse engineered. That is, given o;, f;, and 7;, if the work
theorem is true for these then o;; is also statically admissible. Starting with the RHS of

Eq. [654)

/O'Z'j@jdv: / Jijui’jdV :/[(O'Z'jui)’j —O'Z'jd'ui]dv = j{aijumde—/ O'Z‘jd‘uid‘/.
14 14 14 S 14

(655)
Substituting this into the LHS,
S \%4 S \%
Rearranged,
%(Uijnj - Tz)uzds = / (sz + aij,j)uidV. (657)
S \%4
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If the work theorem holds for all displacements then this means it holds in particular if
the surface displacements are zero, meaning the surface term goes to zero and

0
/(/)fi + 0ijj)widV = %: 0, (658)
\% S

pfi+ 0, =0 (659)

always, in order for the LHS to hold for all volumetric body displacements w;. Then
releasing the earlier surface displacements assumption,

meaning

S

meaning

9.2 Betti's reciprocal theorem

Suppose we have knowledge of some o035, pf;, T, u;, €;; for one problem, and suppose we also
know some other set ;;, pf;, T;, U;, €; for a second elasticity problem with the same body.
(That is, a different displacement /strain/stress response that the same body exhibits in
response to two different conditions.) Betti’s theorem is that given these two sets, the
work done by the first system of forces acting through the displacements of the second
system is equal to the second system of forces acting through the displacements of the
first system. That is, F{1yu) = Foyua) = W. More specifically,

1% 5 1% s
To prove this we substitute in the work theorem Eq. in for the LHS to get
14 S 14
Substituting it in for the RHS,
/ pfiudV + 7{ Tu;dS = / gijeidV. (664)
14 S 14

These two sides become equal because

0ij€ij = Cijki€ki€ij = Chlij€ij€rl = Tij€ij- (665)
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9.3 Variational principles

If function
F(x)=x-Mx—2x-y, (666)

then the minimum of this function is located (not uniquely) by where F'(x) = §F(x) = 0,
or

0=6dx-Mx+x-Mix—2ix-y (667)
& 0x - Mx 4+ 0x - MTx — 20x - y (670)
= 6x - (Mx +M"x — 2y) (671)
1
= 20% - (5(M + MD)x —y)=0 (672)
1 1
—>§(M+MT)x—y:O—>y:§(M+MT)X (673)

for any 0x and therefore for any x. If M is symmetric, then
Mx =y. (674)

So the function y determines the minimization of F'.
Let us consider how this applies to strain energy

1 1
W(u) = 5/‘/Cijkl€kl€ijdv = 5/‘/Cijkluk,lui,jd‘/- (675)

Let @ <+ y be the minimizing displacement, and let a slightly different displacement field
be u(x) + en(x) such that

fle) =W(ua+en) > W(a) (676)
by virtue of @ being a minimum. Then

1

fle) = 5 /V Cijhi[Uij + €nij][ung + enga]dV (677)

1 1 1 1
= —/ CijhiWi Uk + —/ CijriWi, j€NK AV + —/ Cijk1 €N, Uk, AV + —/ Cijki€ N jMeadV
2 )y 2 )y 2 Jy 2 Jy
(678)
= W)+ 6(/ Cijk;lui,jnk,ldv) +e2W(n) = W(a) + eQ(i,n) + €W (n) = f(e). (679)
v

7€) = Q(u,m) + 26 (n). (630)
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Minimizing,

0= f'(0)=Q(a,n) = / CijkiU; jNkadV = / Chiij Ui jMadV = / Ok dV = / 0N ; AV
1% 1% 1%

1%
(681)
= / [(5-7jj77i),j — 5ij7j77,~]dV = ﬁaijmnjds — / a-ij,j’r]idV (682)
1% 1%
Because of the boundary conditions u; = U;, therefore 1; = 0 on the surface and so
s
Substituting this in,
1%

which, if this is to be true for all n, implies
6Z-j,j - 0 (685)

What this means is that the stress corresponding to the minimized displacements satisfies
the static equlibrium equation.

9.4 Theorem of minimum potential energy

In the previous section it was assumed that there are no body forces, and the displace-
ments are prescribed over the entire surface. A more general prescription is that the
surface has some amount of displacement boundary conditions and some amount of trac-
tion boundary conditions. Recall that an admissible displacement field is one which
satisfies the strain displacement relation €; = sym(w; ;), the boundary displacements
u; = U;, and that the displacement fields are smooth enough to yield strains. This set of
conditions assumes

® Cijkl = Cklij,

® Cijricrici; > 0,

e the region S, on which the set of surface displacements U; are imposed is not a line.
This is the theory of minimal potential energy, and it states that if u is admissible then
total work done

1

W(ua) = §/VCz‘jklui,kuk,ldV_/V,Ofiuidv—/s Tiu;dS (686)

implies
(Cijrury) j + pfi =0,
u; = U,
oijng = (cijuury) jn; = Ti,

W (@) < W(u).

(687)
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A way to state it is this. If a displacement field can satisfy the displacement boundary
conditions, potential energy W achieves its minimum for displacement fields that cor-
respond to a state of equilibrium. That is, the corresponding stresses obtained using
Hooke’s Law satisfy the equilibrium and traction boundary conditions. To prove this we
find the minimum of W, which is setting to zero the derivatiev

1

0= 5W(11) == 5 / [cijkléumum + Cijklui7j5uk’l]dv - / pfzéuZdV — / T;(SUZCZS (688)

\% |4 St
= / cijkléui,juk,ldv — / pfzéuldV —/ TléuldS (689)

\%4 \%4 St
= / [(Cijkléuiuw)d — 6Ui(Ci]’klu;€7[),j]dV — / pf,éuZdV —/ TzéuldS (690)
\% \%4 St
fcijkléuiukvmjds — / [5ui(cijkluk,l)7j — pfzéuz]dV —/ TzduzdS = 0 (691)
S 1% St
— f[cz’jkluk,lnj —T;]dS — / [(cijrrur,) j — pfildV = 0. (692)
S %4

This implies
Cijtgany — 1y = 0 — oyn; =15, (693)
(Cijlauny)j + pfi=0— 055+ pfi = 0,
which is already known, and so the first three statements Eq. of the MPE theorem
Eq. is proved. To prove the fourth, consider some displacement field slightly greater
than the equilibrium displacement field

u(x) + en(x) > u(x) (694)
where
n=0onS,. (695)
Then
1
fle) = W(a+ten) = 5/ ijkl[ui,j+677i,j][uk,l"'enk,l]dv_/ sz'[ui—ﬁm]d‘/—jl{ T;[u;—en;]dS
v v S,
1 (696)
=3 (/ Cijklui,jUk,l+Cijklui,j677k,l+Cijkl€77i,juk,l+€2Cijkl77i,j77k,l> —/ pfi [Ui—ﬂ%]d‘/—f{ T [u;—en;|dS
v v S,
(697)

1
= W(u) +€{Q(uﬂ7) - / pfmz'dV—%TimdS}ﬂng/ CijkiCijraMijMeadV.  (698)
1% S 1%

The minimum is where f'(0) = 0 and f”(0) > 0. That is

0= / cl-jkmi,juk,ldv — / pfzde — f TmldS +W, (699)
14 14 S 1%

~ [ oumaav [ ptmav — ¢ Tuas (700)
\%4 \%4 St
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:/[(Uz‘jm),j _Uij,jni]dv_/pfinidv_f Tin;dS

1% 174 St

:% Uz'jmnde—/ni(aij,j—f'sz‘)dV—]{ TindS
S, v S,

— 0= f (O'Z'jnj — E)ds — / (Uij,j + ,sz)dV
St 1%

—oyn; =T, oy +pfi =0,

0</Cijkl77i,j77k,ldva
v

f(e) =W(u+en) =W(u)+ term greater than zero.

9.5 Minimum complementary energy

A stress field o0;; is statically admissible if

oin; =1,

{Uz‘j,j +pfi =0,

045 = Cijki€kl-

Strain energy density

1 1
w = EaijEij = §Cijkl€kl€ij > 0.

The inverse hooke law can be written as

€ij = SijkiOkl,

where s = ¢7!. Then strain energy density

1
W = £84kl0kI0ij > 0.

2

. 1
W :/ §5ijkl0kl0ij — j{ O'ijnjUidS.
14 S

Here, U; are the set of prescribed displacements on the boundary.
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(701)
(702)

(703)

(704)

(705)

(706)

Therefore for any m, €, it causes the potential energy W to increase. Therefore W(u) is
an absolute minimum and the fourth statement in Eq. is proven.

(707)

(708)

(709)

(710)

(711)

Now let us define complementary energy W as the sum of the internal strain energy
and the potential of the boundary forces acting through the prescribed displacements
(force*distance=work). Then

(712)



The minimum complementary energy theorem is this. The complementary energy
achieves its absolute minimum for the stress field which is that of the equilibrium state.
That is, a stress field which satisfies the compatibility equations. To prove this, suppose
0;; is the equilibrium state. Then let

oij = 045 + Aoy;. (713)
We want to prove that R R
W(a:j + Aoyj) > W(ay;). (714)
To do this we analyze the quantity
W (Gi; + Aay;) — W(ai;) (715)
_ /V %sijkl(aij—i—Aaij)(Ukl+Aakl)dV— jé (654+- A Urd S— /V %sijklaklaij— }é 5., UsdS.
(716)
= /V Siji0i; Ao dV + /V %sikﬂAaijAakldV - jﬁ Aoyn;UdS = W (G,+A0,;) W (5;).

J/

TV
strain energy definition: must be>0

(717)
The middle term, as written, must be a positive number as it is a strain energy density
term by definition. Therefore,

W(&ij + AO'Z']') - W(&,-j) > / Sijkl5ijAgkldV - f AaijnjUidS (718)
\4 S
= / EklAO'kldV — f AaijnjUidS (719)
14 S
= / ﬂi,jAaijdV—%AaijnjUidS (720)
14 S
= / [(AO’l‘jl_Li),j — AO'Z'jJ'ai]dV - f AaijnjUidS (721)
14 S
= f AO'Z']‘UZ"I'Lde—/ AO’Z‘jJ‘ﬂZ‘dV —fAO'Z]TL]UZdS (722)
S \4 S
The middle term vanishes because if
Uz’j — 6'1']' = AO'Z']‘ (723)
and if
oy +pfi=0, Gij;+pfi=0 (724)
then
Aoij; = 0ij; — 0ij; = —pfi+ pfi = 0. (725)
Then,

W(&ij + AO‘Z‘]‘) - W(&ij) = % AO’ijﬂinde —W— f AO'UTL]UZdS (726)
S |4 S

ASEiZUZ’%’L_LZ‘—Ui:O,

W(&ij + AO'Z']') — W(&ij) > 0. (727)
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