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1 Ch1 Mathematical preliminaries

1.1 Vectors

Vector
x = x1e1 + x2e2 + x3e3. (1)

Basis vectors are unit vectors so that

|e1| = |e2| = |e3| = 1. (2)

The basis vectors are mutually perpendicular so that

e1 · e2 = e1 · e3 = e2 · e3 = 0. (3)

In general
ei · ej = δij (4)

where Kronecker delta

δij =

{
1, i = j,

0, i ̸= j.
(5)

Therefore by definition these three vectors form an orthonormal basis.
We can rewrite x as

x = xiei (6)

where summation convention acts like

δii =

{
δ11 + δ22, 2D,

δ11 + δ22 + δ33, 3D.
(7)

The Kronecker delta is the index notation form of identity matrix I and so δii = trI which
is defined as the sum of the diagonal entries.
The basis vectors form a right handed orthogonal triad and so

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 (8)

but
e1 × e3 = −e2, e3 × e2 = −e1, e2 × e1 = −e3. (9)

Generalizing in index notation,
ei × ej = ϵijkek (10)

where

ϵijk =


1, ijk ⇔ 1→ 2→ 3→
−1, ijk ⇔ 3→ 2→ 1→
0, ijk ⇔ incohesive loop.

(11)

For example
ϵ123 = ϵ231 = ϵ312 = 1, (12)
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ϵ321 = ϵ213 = ϵ132 = −1, (13)

ϵ112 = ϵ233 = . . . = 0. (14)

If there are two vectors
a = aiei, b = biei, (15)

then their dot product is

a · b = aiei · bjej = aibjei · ej = aibjδij = aibjδji = aibi = a1b1 + a2b2 + a3b3. (16)

The difference between two vectors

c = a− b (17)

has a magnitude which can be solved for using

(a− b cos θ)2 + (b sin θ)2 = c2 =⇒ a2 − 2ab cos θ + b2 cos2 θ + b2 sin2 θ = c2

⇐⇒ a2 + b2 − 2ab cos θ = c2 (18)

where θ is the angle that separates a and b. The length or magnitude of any a is

a = |a| =
√
a · a =

√
aiai =

√
a21 + a22 + a23. (19)

Substituting into Eq. 18,

a21 + a22 + a23 + b21 + b22 + b23 − 2ab cos θ = c21 + c22 + c23 (20)

⇐⇒ a21 + a22 + a23 + b21 + b22 + b23 − 2ab cos θ = (a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 (21)

⇐⇒ a21+a
2
2+a

2
3+b

2
1+b

2
2+b

2
3−2ab cos θ = a21−2a1b1+b21+a22−2a2b2+b22+a23−2a3b3+b23 (22)

⇐⇒ −2ab cos θ = −2a1b1 − 2a2b2 − 2a3b3 (23)

⇐⇒ ab cos θ = a1b1 + a2b2 + a3b3 ⇔ a · b. (24)

Therefore, dot product
a · b = ab cos θ. (25)

Cross product
a× b = aiei × bjej = aibjei × ej = aibjϵijkek. (26)

Expanding,
a× b =������

a1b1ϵ111e1 +������
a1b1ϵ112e2 +������

a1b1ϵ113e3 (27)

+������
a1b2ϵ121e1 +������

a1b2ϵ122e2 + a1b2ϵ123e3 (28)

+������
a1b3ϵ131e1 + a1b3ϵ132e2 +������

a1b3ϵ133e3 (29)

+������
a2b1ϵ211e1 +������

a2b1ϵ212e2 + a2b1ϵ213e3 (30)

+������
a2b2ϵ221e1 +������

a2b2ϵ222e2 +������
a2b2ϵ223e3 (31)
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+a2b3ϵ231e1 +������
a2b3ϵ232e2 +������

a2b3ϵ233e3 (32)

+������
a3b1ϵ311e1 + a3b1ϵ312e2 +������

a3b1ϵ313e3 (33)

+a3b2ϵ321e1 +������
a3b2ϵ322e2 +������

a3b2ϵ323e3 (34)

+������
a3b3ϵ331e1 +������

a3b3ϵ332e2 +������
a3b3ϵ333e3 (35)

= e1(a2b3 − a3b2) + e2(a3b1 − a1b3) + e3(a1b2 − a2b1)⇔ det

e1 e2 e3
a1 a2 a3
b1 b2 b3

 . (36)

It is also provable that
a× b = ab sin θn̂⇔ |a||b| sin θen (37)

where en points in the direction normal to the plane formed by a and b and can be
identified using the right hand rule. Volume of three new vectors a, b, c

a · (b× c) = (a) · (|b||c| sin θen) = |a||b||c| sin θ cosα (38)

where θ is the angle between b and c and α is the angle between a and vector b× c. In
index notation

a · (b× c) = a · (bicjϵijkek) = amem · bicjϵijkek = ambicjϵijkem · ek (39)

⇔ ambicjϵijkδmk = amδmkbicjϵijk = akbicjϵijk. (40)

Note indices are arbitrary in that

akbicjϵijk ⇔ aibjck ϵjki︸︷︷︸
I.

= aibjck ϵijk︸︷︷︸
I.

= a · (b× c). (41)

Because of the arbitrariness of the indices it can be shown that

a · (b× c) = b · (c× a) = c · (a× b) (42)

so long as the permutation between a,b,c remains intact so that ϵ does not change sign
(as evidenced by a×b = −b×a). Note that a vector is direction times magnitude. So, a
vector divided by its magnitude is just its direction (a/|a|). With that said the definition
of the projection p of b onto a is

p = |b| cos θ a

|a|
(43)

where θ is the angle between a and b. In other words this is the horizontal component
of b in the direction of a. Note

|b| cos θ a

|a|
=
|a||b| cos θ
|a|

a

|a|
=

a · b
|a|

a

|a|
(44)

because of the definition of dot product.

5



1.2 Change of basis

A set of basis vectors is an arbitrary way to judge the location of a point. Sometimes
it might be mathematically more simple to change the set of basis vectors as we desire,
which because of its arbitrariness we are totally allowed to do. Consider vector

v = v1e1 + v2e2 + v3e3 = viei (45)

where vi are the components of v and ei are the basis vectors. Let us define a new
orthonormal basis

v =
3∑

i=1

viei =
3∑

i=1

v̄iēi (46)

where the barred quantities are also components of v and basis vectors. Then

viei = v̄iēi ⇐⇒ vi ei · ej︸ ︷︷ ︸
I.

= v̄i ēi · ej︸ ︷︷ ︸
II.

⇐⇒
III.︷ ︸︸ ︷

vi δij︸︷︷︸
I.

= v̄i Rij︸︷︷︸
II.

⇐⇒
III.︷︸︸︷
vj = v̄iRij. (47)

where Rij = ēi · ej is the dot product between the old and new coordinate systems.
Note that this will not necessarily be identity I because it is not necessarily true that
ē1 · e1 = cos 0 = 1, etc. Further,

vj = v̄iRij = RT
jiv̄i ⇐⇒ v = RT v̄. (48)

Instead of how we started with Eq. 47 which was to multiply both sides by ej, we could
have also multiplied by ēj. What follows is

viei = v̄iēi ⇐⇒ vi ei · ēj︸ ︷︷ ︸
I.

= v̄i ēi · ēj︸ ︷︷ ︸
II.

⇐⇒ vi Rji︸︷︷︸
I.

=

III.︷ ︸︸ ︷
v̄i δij︸︷︷︸

II.

⇐⇒ Rjivi =

III︷︸︸︷
v̄j. (49)

⇐⇒ v̄ = Rv⇐⇒ v = R−1v̄. (50)

Combining Eq. 48 and Eq. 50,

R−1 = RT ⇔ RRT = RR−1 = I⇐⇒ RikRjk = δij (51)

where the indexing RikRjk defies the conventional rule of matrix multiplication that the
dummy index k neighbors itself (as in RikRkj) because of the transpose operation on RT .
A matrix R that satisfies RT = R−1 is said to be orthogonal. Rotation matrices are

always orthogonal. Consider

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (52)

This rotation matrix, when applied to a vector such that
v̄1
v̄2
v̄3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


v1
v2
v3

 , (53)
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is describing the component by component transformation

v̄1 = v1 cos θ + v2 sin θ, v̄2 = −v2 sin θ + v2 cos θ, v̄3 = v3 (54)

where θ is the angle of rotation. This particular transformation is describing a θ degrees
counterclockwise rotation between orthonormal bases in the dimensions e1 and e2.
The rules of determinants for matrices are

detST = detS, detST = detS detT, detS−1 = (detS)−1. (55)

Accepting this,

1 = det I = detRRT = detR detRT = detR detR = (detR)2. (56)

Therefore,
detR = ±1 (57)

if R is orthogonal. The signage determines the functionality of R. Particularly

detR =



1, rotation, e.g.

0 −1 0

1 0 0

0 0 1

 (90 degree clockwise rotation in xy)

−1, rotation and reflection, e.g.

1 0 0

0 1 0

0 0 −1

 (reflection in z ).

(58)

Note that under an orthogonal coordinate transformation the magnitude of the vector
v −→ v̄ does not change. Its square length

v̄iv̄i = RijvjRikvk = δjkvjvk = vjvj. (59)

A vector undergoing a transformation by R is considered a tensor with rank 1. A tensor
of rank 0 is a scalar, and a tensor of rank 2 is an m× n matrix.
If the relationships

v̄ = Rv→ RT v̄ = v, ū = Ru→ RT ū = u, v = Mu⇐⇒ v̄ =

I.︷︸︸︷
M̄ ū (60)

hold, then

(v) = M(u) −→ (RT v̄) = M(RT ū) −→ RRT v̄ = RMRT ū −→ v̄ =

I.︷ ︸︸ ︷
RMRT ū (61)

implies
RMRT = M̄︸ ︷︷ ︸

I.

⇐⇒ RikMklRjl = M̄ij. (62)
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In general this is how to transform a second order tensor. In general for a tensor of any
rank,

Āij...k = RipRjq...RkrApq...r. (63)

The trace of a matrix

trM̄⇐⇒ M̄ii = RijMjkRik = RijRik︸ ︷︷ ︸
I.

Mjk = δjk︸︷︷︸
I.

Mjk =Mkk ⇐⇒ trM. (64)

So the trace of a matrix under orthogonal transformation is invariant.
An isotropic tensor is one that does not change because of a coordinate transformation.

For example the Kronecker delta is isotropic in that

δ̄ij = RikRjlδkl = RilRjl = δij. (65)

In matrix notation this is more obvious as

Ī = RIRT = RRT = I. (66)

1.3 Symmetry and skew symmetry

A matrix S is symmetric if

S = ST ←→ Sij = Sji −→ [S] =

S11 S12 S13

S12 S22 S23

S13 S23 S33

 . (67)

A matrix A is skew symmetric if

A = −AT ←→ Aij = −Aji −→ [A] =

 0 A12 A13

−A12 0 A23

−A13 −A23 0

 . (68)

Any matrix M has symmetric and skewsymmetric components

M = S+A where S =
M+MT

2
= ST , A =

M−MT

2
= −AT . (69)

For example

M =

3 5 7
1 2 8
9 6 4

 =

3 3 8
3 2 7
8 7 4

+

 0 2 −1
−2 0 1
1 −1 0

 = S+A. (70)

Note that for skew symmetric A,

x ·Ax = xTAx = xTATxTT

= xTATx = −xTAx (71)

which implies
xTAx = −xTAx −→ x ·Ax = 0∀x. (72)
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Consider then a matrix M subjected to the matrix product

x ·Mx = x · (S+A)x = x · Sx+ x ·Ax = x · Sx. (73)

This is called the quadratic form of M. Expanded, the quadratic form is

xTMx⇐⇒ x ·Mx⇐⇒ xiMijxj (74)

= x1(M11x1+M12x2+M13x3)+x2(M21x1+M22x2+M23x3)+x3(M31x1+M32x2+M33x3)

= x21M11+x
2
2M22+x

2
3M33+x1x2(M12+M21)+x1x3(M13+M31)+x2x3(M23+M32). (75)

M is positive definite if its quadratic form x ·Mx > 0∀x and positive semidefinite if
x ·Mx ≥ 0∀x.

1.4 Derivatives and divergence

Consider the scalar function ϕ(xj). The chain rule states

∂ϕ

∂x̄i
=

∂ϕ

∂xj

∂xj
∂x̄i

. (76)

If xj = Rkjx̄k, then

∂xj
∂x̄i

=
∂

∂x̄i
(Rkjx̄k) = Rkj

∂x̄k
∂x̄i

= Rkjδki = δikRkj = Rij. (77)

Substituting this into Eq. 76,
∂ϕ

∂x̄i
= Rij

∂ϕ

∂xj
. (78)

The result of this is a tensor of rank 1. The del or nabla operator

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
= ei

∂

∂xi
. (79)

Gradient

∇ϕ =
∂ϕ

∂x1
e1 +

∂ϕ

∂x2
e2 +

∂ϕ

∂x3
e3 =

∂ϕ

∂xi
ei = ϕ,iei. (80)

This turns the scalar ϕ into a vector. Gradient increases rank.
A directional derivative is the amount that a function’s gradient aligns with direction

es. It is a scalar. It is

∂ϕ

∂s
= es · ∇ϕ⇔ |es||∇ϕ| cos θ = |∇ϕ| cos θ (81)

where θ is the angle between vector es and vector ∇ϕ.
Now consider vector function f(xj) = fjej. Divergence of f

∇ · f =
(
ei

∂

∂xi

)
·
(
fjej

)
= (ei · ej)

∂fj
∂xi

= δij
∂fj
∂xi

=
∂fi
∂xi

= fi,i. (82)
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This operation turns f from a vector into a scalar. Divergence decreases rank.
The Laplacian maintains rank. The Laplacian is the divergence of the gradient. Scalar

ϕ has Laplacian

∇2ϕ := ∇ · ∇ϕ = ∇ · ( ∂ϕ
∂xi

ei) = (
∂

∂xj
ej) · (

∂ϕ

∂xi
ei) = (ej · ei)

∂2ϕ

∂xj∂xi
(83)

= δji
∂2ϕ

∂xj∂xi
=
∂2ϕ

∂2xi
=
∂2ϕ

∂x21
+
∂2ϕ

∂x22
+
∂2ϕ

∂x23
= ϕ,ii. (84)

1.5 Divergence theorem

Consider a fluid with density ρ = ρ(x, y, z) and velocity

v = vxex + vyey + vzez (85)

where vx = vx(x, y, z), vy = vy(x, y, z), vz = vz(x, y, z). The meaning of this is that
vi and ρ can change in magnitude based on the specific point (x, y, z), but this has no
bearing towards the directionality of the components of the velocity vector (◦)ei which
always point in the xi direction.
Imagine this fluid is flowing through a small cube.

On the left side, the fluid enters at a rate

rate in = (ρ)(vx)(dydz) =
mass

����xyz vol

����x dist

time ����yz area =
mass

time
. (86)

On the right side, the fluid exits at a rate

rate out = (ρvx +
∂ρvx
∂x

dx)dydz (87)

ρvxdydz +
∂ρ

∂x
vxdxdydz + ρ

∂vx
∂x

dxdydz (88)

=
mass

time
+

mass

xyz vol× x dist

x dist

time
xyz vol +

mass

xyz vol

x dist

time× x dist
xyz vol =

mass

time
. (89)

Then the total gain of mass per time is

rate in− rate out = ρvxdydz − ρvxdydz −
∂ρvx
∂x

dxdydz = − ∂

∂x
(ρvx)dxdydz. (90)
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where the total loss is the negative of the total gain. Considering all directions, total loss
is

∂

∂x
(ρvx)dxdydz +

∂

∂y
(ρvy)dxdydz +

∂

∂z
(ρvz)dxdydz (91)

=
∂

∂xi
(ρvi)dxdydz = ∇ · (ρvi)dxdydz. (92)

If bounded by volume V then this becomes

total loss per time =

∫
V

∇ · (ρv)dV. (93)

The divergence theorem is the relationship between the amount of fluid exiting with
respect to the volume of the body and the amount of fluid crossing the outer surface
across the perimeter. Physically they are the same thing. The relationship for this
problem is ∫

V

∇ · (ρv)dV =

∮
S

ρv · ndS. (94)

In general for a vector f, the divergence theorem∫
V

∇ · fdV =

∮
S

f · ndS ⇐⇒
∫
V

fi,idV =

∮
S

finidS. (95)

Similar rules are the gradient theorem for scalar f∫
V

∇fdV =

∮
S

fndS (96)

and the curl theorem for vector f∫
V

∇× fdV =

∮
S

n× fdS. (97)

The divergence theorem can be approximated about a point P as

(∇ · f)P ≈
1

∆V

∮
S

f · ndS (98)

where ∆V is a small volume element surrounding point P . This means that the divergence
of f can be thought of as the outward flow of f normal to the surface per unit volume.
It can be said about the divergence theorem that the sum of the sources and sinks (V )
is equal to the net flow in and out of the surface (S ).
The utility of the integral theorems can also be demonstrated by considering the applied

pressure p(x, y, z) on a body. Pressure is force/area, so force is pressure × area or
(pressure/dist) × volume, and this force will act normal to the surface of the body. Then
the gradient theorem dictates

F = −
∮
S

pnDS = −
∫
V

∇pdV. (99)

If pressure is constant then force is zero because a uniform pressure load across the entire
body will result in no net force in any particular direction.
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1.6 Eigenvalue problems

If for square matrix A there is some pair x, λ such that

Ax = λx (100)

then x, λ are an eigenvector and eigenvalue pair of system matrix A. Consider

λx = λIx = Ax −→ (A− λI)x = 0. (101)

For nontrivial x ̸= 0, it must be that (A− λI) is singular, meaning that by definition

det(A− λI) = 0. (102)

This is called the characteristic equation or characteristic polynomial for the eigenvalue
problem. If A = n × n then the polynomial will be of degree n, will have n roots, and
thus will have n eigenvalues. For example suppose

[A] =

[
2 −1
−1 1

]
−→ detA− λI = (2− λ)(1− λ)− (−1)(−1) = 1− 3λ+ λ2 = 0. (103)

Then

λ =
3±
√
5

2
= {0.382, 2.618} (104)

−→ 0 =

{
0
0

}
= (A− λx) =

[
1.618 −1
−1 0.618

]{
x
(1)
1

x
(1)
2

}
−→ x(1) =

{
0.618
1

}
, (105)

−→ 0 =

{
0
0

}
= (A− λx) =

[
−0.618 −1
−1 −1.618

]{
x
(2)
1

x
(2)
2

}
−→ x(2) =

{
−1.618

1

}
. (106)

1.7 Even and odd functions

A function f is even if f(−x) = f(x), meaning the y values on the left are the same as
the y values on the right. It is odd if f(−x) = −f(x), meaning the y values on the left
are the opposite of the y values on the right. The following properties hold.

• f is even and smooth −→ f ′(0) = 0.

• f is odd −→ f(0) = 0.

• f, g are even −→ fg is even.

• f, g are odd −→ fg is even.

• f is even, g is odd −→ fg is odd.

• f is even −→ f ′ is odd.

• f is odd −→ f ′ is even.
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• f is even −→
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

• f is odd −→
∫ a

−a
f(x)dx = 0.

Any f can be broken into even and odd parts fe, fo so that

f(x) = fe(x)︸ ︷︷ ︸
I.

+ fo(x)︸ ︷︷ ︸
II.

=
1

2
[f(x) + f(−x)]︸ ︷︷ ︸

I.

+
1

2
[f(x)− f(−x)].︸ ︷︷ ︸

II.

(107)
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2 Strain

2.1 Admissible deformation

Consider an object undergoing deformation so that (x1, x2, x3) −→ (ξ1, ξ2, ξ3) is the trans-
formation between the coordinates of a point P in its original state to the coordinates
of the same point in a deformed state. We can express the deformed coordinates as a
function of each of the original coordinates, so that ξi = ξi(xj). Inversely, we can say
xi = xi(ξj). The derivative operators are related by

∂

∂x1
=

∂

∂ξ1

∂ξ1
∂x1

+
∂

∂ξ2

∂ξ2
∂x1

+
∂

∂ξ3

∂ξ3
∂x1

, (108)

∂

∂x2
=

∂

∂ξ1

∂ξ1
∂x2

+
∂

∂ξ2

∂ξ2
∂x2

+
∂

∂ξ3

∂ξ3
∂x2

, (109)

∂

∂x3
=

∂

∂ξ1

∂ξ1
∂x3

+
∂

∂ξ2

∂ξ2
∂x3

+
∂

∂ξ3

∂ξ3
∂x3

. (110)

As a system of equations,
∂/∂x1
∂/∂x2
∂/∂x3

 =

∂ξ1/∂x1 ∂ξ2/∂x1 ∂ξ3/∂x1
∂ξ1/∂x2 ∂ξ2/∂x2 ∂ξ3/∂x2
∂ξ1/∂x3 ∂ξ2/∂x3 ∂ξ3/∂x3


︸ ︷︷ ︸

[J]


∂/∂ξ1
∂/∂ξ2
∂/∂ξ3

 = [J]


∂/∂ξ1
∂/∂ξ2
∂/∂ξ3

 . (111)

Jacobian matrix J is the 3 × 3 transformation tensor. A physically real transformation
requires detJ > 0. For the inverse Jacobian J−1 to exist, detJ ̸= 0. If the body is not
deformed at all then detJ = 1. This is the case where there is no distinction between x
and ξ and so J becomes I.
Displacement vector 

u1
u2
u3

 =


ξ1 − x1
ξ2 − x2
ξ3 − x3

 (112)

implies
ξ1
ξ2
ξ3

 =


x1 + u1
x2 + u2
x3 + u3

 −→ [J] =

1 + ∂u1/∂x1 ∂u2/∂x1 ∂u3/∂x1
∂u1/∂x2 1 + ∂u2/∂x2 ∂u3/∂x2
∂u1/∂x3 ∂u2/∂x3 1 + ∂u3/∂x3

 . (113)

For example if 
u1
u2
u3

 =


x1 − 2x2
3x1 + 2x2

5x3

 (114)

then 
ξ1
ξ2
ξ3

 =


2x1 − 2x2
3x1 + 3x2

6x3

 −→ [J] =

 2 3 0
−2 3 0
0 0 6

 (115)
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and detJ = 2(18) +−3(−12) = 72 > 0, making it admissible.
J can be thought of as the ratio between the volume of the deformed configuration and

the undeformed configuration (new/old). Vectors

dx1 =


∂ξ1/∂x1
∂ξ2/∂x1
∂ξ3/∂x1

 dx1, dx2 =


∂ξ1/∂x2
∂ξ2/∂x2
∂ξ3/∂x2

 dx2, dx3 =


∂ξ1/∂x3
∂ξ2/∂x3
∂ξ3/∂x3

 dx3 (116)

are tangent to the coordinate curves of x1, x2, and x3 respectively, where for example
the x1 coordinate curve is obtained by fixing x2, x3 and changing x1. In the Cartesian
coordinate system the coordinate curves are just the axes. For example consider Fig. 1.
Going from (x1, x2, x3) −→ (x1 +∆x1, x2, x3) causes a change in both ξ1, ξ2 so that

∆x1 cos θ = ∆ξ1 −→
∆x1
∆ξ1

= cos θ, (117)

∆x1 sin θ = ∆ξ2 −→
∆x1
∆ξ2

= sin θ. (118)

Figure 1: 2D coordinate transformation

Because of the triple scalar product identity

a · b× c = det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 , (119)

we find

dx1 ·dx2×dx3 = det

∂ξ1/∂x1 ∂ξ2/∂x1 ∂ξ3/∂x1
∂ξ1/∂x2 ∂ξ2/∂x2 ∂ξ3/∂x2
∂ξ1/∂x3 ∂ξ2/∂x3 ∂ξ3/∂x3

 dx1dx2dx3 = detJdx1dx2dx3 = dV.

(120)
This justifies the claim that detJ must be positive because it leads to a volume element
that is positive and one cannot have negative volume.
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Since the determinant is a norm or magnitude of the matrix, detJ can be thought of as
a ratio between new and old volume, in the sense that it is the magnitude of the change
in new coordinates with respect to the old coordinates. Therefore,

detJ =
V +∆V

V
= 1 +

∆V

V
, (121)

where the change in volume with respect to the original volume ∆V/V is called the
volumetric strain. Recalling the representation of J that is Eq. 113,

detJ = det

1 + ∂u1/∂x1 ∂u2/∂x1 ∂u3/∂x1
∂u1/∂x2 1 + ∂u2/∂x2 ∂u3/∂x2
∂u1/∂x3 ∂u2/∂x3 1 + ∂u3/∂x3

⇔ det

1 + u1,1 u2,1 u3,1
u1,2 1 + u2,2 u3,2
u1,3 u2,3 1 + u3,3


= (1 + u1,1)[(1 + u2,2)(1 + u3,3)− u2,3u3,2] (122)

−u2,1[u1,2(1 + u3,3)− u1,3u3,2] + u3,1(u1,2u2,3 − u1,3(1 + u2,2)) (123)

= 1 + u1,1 + u2,2 + u3,3 + . . .︸︷︷︸
combinations of product terms

. (124)

If the displacement is small then the product terms are negligible because small times
small is extremely small. So in this case we can simplify to say

detJ = 1 +
∆V

V
= 1 + ui,i, (125)

of course meaning
∆V

V
= ui,i. (126)

2.2 Affine transformations

Let xi be the original coordinates and x′i(xj) be the new coordinates. Here we are only
concerned with the deformation behavior itself and not how it happens (temperature,
force, etc.). A special type of deformation is an affine transformation, which is when the
function describing the relationship between the deformed coordinates and the original
coordinates is linear. That is,

x′i = xi︸︷︷︸
original coordinate vector

+ αi0︸︷︷︸
translation vector

+ αijxj︸ ︷︷ ︸
rotation and stretch

⇔


x′1 = x1 + α10 + α1jxj
x′2 = x2 + α20 + α2jxj
x′3 = x3 + α30 + α3jxj


(127)

which implies
x′i = δijxj + αi0 + αijxj −→ x′i = αi0 + (δij + αij)xj (128)

or
x′ = α0 + (I+α)x. (129)
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So the term α would have to be 0, not I if it was assumed that there was no rotation
and no stretch. As another example the matrix

I+α =

[
c 0
0 c

]
−→ α = (c− 1)I (130)

represents uniform stretch by the factor c, NOT by the factor c− 1. The matrix

I+α+ I =

[
0 −1
1 0

]
−→ α =

[
−1 −1
1 −1

]
(131)

represents a 90 degree CCW rotation in that[
0 −1
1 0

]{
x1
x2

}
=

{
x′1
x′2

}
(132)

implies {
x′1
x′2

}
=

{
−x2
x1

}
(133)

which can be thought of visually, turning the axes x1, x2 90 degrees counterclockwise.
Like earlier, note that this does NOT imply the transformation αx = x′ but rather
(α+ I)x = x′. In the same way we can solve for x′ in terms of x using Eq. 128, we also
can solve for x in terms of x′. So there must exist some β0,β such that

xi = βi0 + (δij + βij)x
′
j, (134)

and this is also an affine/linear coordinate transformation.
Affine transformations have two interesting properties. First it transforms planes into

other planes. The general equation for a plane is

Ax+By + Cz = D

and if we plug in the affine transformations into this equation then we receive another
linear equation for a plane. The second interesting property of affine transformations is
that straight lines transform into other straight lines. This is a consequence of (1) since
lines are just intersections of planes. If planes turn into planes, then the straight lines on
that plane turn into other straight lines.
As a consequence of (2), a vector

A = Aiei =⇒affine A′
ie

′
i = A′ (135)

turns into another vector under an affine transformation. Let A be a vector within a
body that goes from one point xi0 to another point xi. Note this is NOT the displacement
vector that maps the undeformed coordinates to the deformed coordinates. This is simply
a vector that travels across the body in its undeformed state from one point to another
point. So

Ai = xi − xi0. (136)
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Then suppose the body undergoes an affine transformation. Then

A′
i = x′i − x′i0 = (xi +��αi0 + αijxj)− (xi0 +��αi0 + αijxj0) (137)

= (xi − xi0) + αij(xj − xj0) = Ai + αijAj. (138)

Let
δAi = αijAj = A′

i − Ai, (139)

where δAi = {δA1, δA2, δA3} are the components of the change between the vector before
and after deformation. It is also defined as the components of the rotation/stretch vector.
Both of these definitions follow from reading Eq. 139. Also, the length of A is

√
A ·A =

√
A2 cos 0 = A =⇒ A2 = A ·A = AiAi, (140)

and the length of δAi is
δA =

√
δAiδAi. (141)

Then

2AδA = 2
√
AiAi

√
δAiδAi = 2

√
AiδAi

√
AiδAi = 2AiδAi =⇒ AδA = AiδAi. (142)

Substituting in Eq. 139,

AδA = Ai δAi︸︷︷︸
I.

= Ai αijAj︸ ︷︷ ︸
I.

= αijAiAj. (143)

If there is rotation but no stretch, then the change in the length of vector A does not
change. Therefore δA = 0 and

αijAiAj = 0 ∀Ai. (144)

Expanding,
0 = α11A1A1 + α12A1A2 + α13A1A3 (145)

+α21A2A1 + α22A2A2 + α23A2A3 (146)

+α31A3A1 + α32A3A2 + α33A3A3 (147)

= 0 = α11A
2
1+α22A

2
2+α33A

2
3+A1A2(α12+α21)+A1A3(α13+α31)+A2A3(α23+α32). (148)

If this is true for any A1, A2, A3 = Ai, then

αii = 0, αij = −αji. (149)

This means αij is skew symmetric. Please note that this is in the specific case where
there is rotation but no stretch. This is not to say that αij in general is skew. Speaking
more generally, the tensor α like any tensor can be broken up into symmetric and skew
parts

αij =
1

2
(αij + αji) +

1

2
(αij − αji) = ϵij + ωij (150)

where ϵ is solely dedicated to deformation and ω is solely dedicated to rotation. ϵ⇔ ϵij
is called the strain tensor.
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2.3 Geometrical interpretations of strain components

Recalling Eq. 143,

AδA = αijAiAj = (ϵij + ωij)AiAj = ϵijAiAj + ωijAiAj. (151)

Consider the last term, recalling that ωij is skew. This means

ωijAiAj = −ωjiAiAj ⇔ −ωijAjAi =⇒ 2ωijAiAj = 0 =⇒ ωijAiAj = 0. (152)

Therefore,

AδA = ϵijAiAj =⇒
δA

A
=
ϵijAiAj

A2
. (153)

This represents the amount that the vector A has changed divided by its length. It is
rating of relative length change. For example suppose A only had a component in the
direction x1. This means the length A = A1 and

δA

A1

=
ϵ11A

2
1

A2
1

=⇒ δA

A
= ϵ11. (154)

So, the physical interpretation of the diagonal strain components ϵii is that they are a
measure of the change in length per unit length in the direction xi. As for off diagonal
components, consider two vectors that exist in the body

A = A2e2, B = B3e3. (155)

Here A only has a component in the direction x2 and likewise B in x3. Because of Eq.
139 (δAi = αijAj),

δA3 = α32A2, δB2 = α23B3. (156)

The correct interpretation of this equation set is this. InitiallyB2 is zero but a deformation
in the body changes B2 from zero to something that is not zero by the amount δB2. This
amount is equal to the initial component B3 transformed under the tensor α23. The same
is true of A. Both B and A change orientation, and this means they have a change in
angle in relationship to one another, and the quantity of this change is

α23 + α32 = 2 ∗ 1
2
(α23 + α32) = 2ϵ23 = change in angle between A and B. (157)

Note that 2ϵ23 = γ23, where γ is the engineering strain tensor. So to recap, the diagonal
strain components represent the change in length of a vector in a body with respect to
its original length, and off-diagonal components represent the shear-induced change in
angle between two vectors pointing in the two directions that correspond to the particular
component of interest.
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2.4 Strain as a tensor

Let us prove that strain ϵ is a tensor. Recall Eq. 153, which is

AδA = ϵijAiAj = Ai ϵijAj︸ ︷︷ ︸
some vector vi

= A · ϵA = ATϵA. (158)

The change in length δA times the length A is invariant under the transformation of
coordinates. Therefore

AδA = ĀδĀ⇐⇒ ATϵA = Ā
T
ϵ̄Ā. (159)

Let us define Ā as the transformation of A due to R. Then Ā = RA =⇒ A = RT Ā and

Ā
T
ϵ̄Ā = ATϵA = (RT Ā)Tϵ(RT Ā) = Ā

T
RϵRT Ā. (160)

Therefore
ϵ̄ = RϵRT =⇒ ϵ̄ij = RikϵklRjl = RikRjlϵkl (161)

which satisfies the definition of a transformed second order tensor.

2.5 General infinitesimal deformation

A major consequence of the affine transformation is Eq. 139, which is

δAi = αijAj = A′
i − Ai. (162)

Here Aj is a vector within some body and αij is a tensor that represents the rotation
and deformation of that body. The result is the vector δAi which represents the change
between the original vector A and the new vector A′

i.
Similarly to the concept of A, which is a vector in the undeformed body, let us con-

sider two points in the undeformed configuration xi0 and xi. After deformation, the
corresponding displacements are

ui0 =

I︷ ︸︸ ︷
x′i0 − xi0, ui = x′i − xi︸ ︷︷ ︸

II

. (163)

If vector A represents the distance between xi and xi0, so that

Ai = xi − xi0, (164)

δAi = A′
i − Ai = (x′i − x′i0)− (xi − xi0) = x′i − xi︸ ︷︷ ︸

II

−I︷ ︸︸ ︷
−x′i0 + xi0 = ui − ui0. (165)

Now we will represent displacement as a Taylor series. In general for some function f ,

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n. (166)

20



Neglecting higher order terms,

f(x) = f(x0) + f ′(x0)(x− x0)︸ ︷︷ ︸+ . . . . (167)

For two variables,

f(x, y) = f(x0, y0) +
∂f(x0, y0)

∂x
(x− x0) +

∂f(x0, y0)

∂y
(y − y0)︸ ︷︷ ︸+ . . . . (168)

For many variables

f(xi) = f(xi0) +
∂f(xj0)

∂xj
(xj − xj0) + . . . . (169)

Substituting in displacement,

ui = ui(xi) = ui0 +
∂ui0
∂xj

(xj − xj0) + . . . . (170)

Recalling the assumption Eq. 164 (Ai = xi − xi0),

ui = ui0 + u?i,jAj + . . . . (171)

or
ui − ui0 = ui,jAj. (172)

Because of Eq. 165 (δAi = ui − ui0),

δAi = ui,jAj. (173)

Substituting in Eq. 139 (δAi = αijAj),

αij = ui,j. (174)

The decomposition of αij in Eq. 150 implies

ui,j =
1

2
(ui,j + uj,i) +

1

2
(ui,j − uj,i) = ϵij + ωij, (175)

and the relationship between strain and displacement ((ui,j + uj,i)/2 = ϵij) is called the
strain/displacement equation.
For clarification purposes we now write u, v, w in place of ux, uy, uz. Then for instance

ϵxx =
∂u

∂x
, ϵyz =

1

2

(
∂v

∂z
+
∂w

∂y

)
=

1

2
γyz, etc. (176)

The diagonal components are called the normal strains and the off diagonal components
are called the shear strains.
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2.6 Compatibility equations

Given displacement field u, strain components

ϵij =
1

2
(ui,j + uj,i). (177)

However it is not necessarily true that given a number of strain components we can
calculate displacement. To answer this let us make the modification

2eripϵij = erip(ui,j + uj,i) (178)

where e here is the Levi Civita symbol. Differentiating with respect to xp,

2eripϵij,p = eripui,jp + eripuj,ip. (179)

The last term vanishes because

eripuj,ip = −erpiuj,ip ⇔ −eripuj,pi︸ ︷︷ ︸
arbitrary indices

= −eripuj,ip︸ ︷︷ ︸
arbitrary derivative order

=⇒ 2eripuj,ip = 0 =⇒ eripuj,ip = 0.

(180)
Therefore

2eripϵij,p = eripui,jp (181)

which implies

2eripesjqϵij,p = eripesjqui,jp =⇒ 2eripesjqϵij,pq = eripesjqui,jpq. (182)

However this RHS term also vanishes for the same reason as Eq. 180, which is that
an arbitrary switch of indices changes the sign of the Levi Civita constant but not the
derivative terms, meaning the whole term must be equal to be its own negative, meaning
the term must be zero. Therefore

eripesjqϵij,pq = 0 (183)

is a true set of equations called the compatibility equations. If you are given a number
of strain components you must be able to solve for this set of equations. Otherwise it is
impossible to infer a displacement solution from what strains you are given.
Indices r, s occur once, and so these are free indices. Each equation is unique to one

free index, meaning one r and one s. The other indices i, j, p, q occur multiple times and
so are dummy indices. Each equation has every version of the dummy index among 1,2,3.
Because of the many combinations of erip, esjq that are null, and also because of the

symmetry properties of ϵ, there are nine total equations based on different r, s but only
six of them are unique. The set of index pairs r, s that correspond to each unique equation
is r = s = 1, r = 1, s = 2, r = 1, s = 3, r = 2, s = 2, r = 2, s = 3, r = 3, s = 3. The set
of equations that correspond to this set is

2ϵ32,23 = ϵ22,33 + ϵ33,22 (184)
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2ϵ21,12 = ϵ11,22 + ϵ22,11 (185)

2ϵ31,13 = ϵ11,33 + ϵ33,11 (186)

ϵ11,23 = −ϵ23,11 + ϵ13,12 + ϵ12,13 (187)

ϵ22,13 = −ϵ13,22 + ϵ23,21 + ϵ21,23 (188)

ϵ33,12 = −ϵ12,33 + ϵ32,31 + ϵ31,32 (189)

or in general

ϵij,kl = −ϵkl,ij + ϵjl,ik + ϵik,jl =⇒ ϵij,kl + ϵkl,ij − ϵjl,ik − ϵik,jl = 0. (190)

Eq. 190 is another way to write the set of compatibility equations. It is necessary and
sufficient for all of these to be true in order for there to exist a displacement solution
given the strains.
What follow from the sufficiency of the compatibility equations are two things. First,

zero strains imply no deformation, and this is called rigid body motion, meaning there is
only translation and rotation. Second, a set of strains together with a particular set of
translation and rotation parameters yields a unique displacement solution.

2.7 Integrating the strain displacement equations

We have proven that if a set of given strains satisfies the compatibility equations, then
from that set we can infer a displacement solution. For example consider the 2D case

ϵxx = A =
∂u

∂x
, ϵyy = 0 =

∂v

∂y
, 2ϵxy = 0 =

1

2

(
∂u

∂y
+
∂v

∂x

)
. (191)

Then taking antiderivatives of the diagonals leads to

u(x) = Ax+ f(y), v(y) = g(x). (192)

Substituting into the off diagonal,

0 =
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2

(
∂(Ax+ f(y))

∂y
+
∂(g(x))

∂x

)
= f ′(y) + g′(x), (193)

meaning
f ′(y) = −g′(x). (194)

If a function of y is a function of x∀x, y then the function cannot depend on either x or
y, meaning it is a constant. So

f ′(y) = −g′(x) = B (195)

which implies
f(y) = By + C, g(x) = −Bx+D, (196)

which implies
u(x) = Ax+By + C, v(y) = Bx+D. (197)
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As a system of equations, {
u
v

}
=

{
A B
−B 0

}{
x
y

}
+

{
C
D

}
. (198)

Separating the stretch component associated with ϵxx, which is A, away from rigid body
components B,C,D,{

u
v

}
=

[
A 0
0 0

]
︸ ︷︷ ︸
deformation

{
x
y

}
+

[
0 B
−B 0

]
︸ ︷︷ ︸
rotation (skew)

{
x
y

}
+

{
C
D

}
︸ ︷︷ ︸

translation

. (199)

2.8 Principal axes of strain

Given strain tensor

[ϵ] =

ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33

 , (200)

we wish to know if there exists some coordinate rotation R such that the strain tensor is
diagonalized, i.e.

ϵ′ ⇔

ϵ′11 0 0
0 ϵ′22 0
0 0 ϵ′33

 = RϵRT =⇒ RTϵ′ = RRTϵRT = ϵRT . (201)

Suppose

R =


vT
1

vT
2

vT
3

⇐⇒ RT =
{
v1 v2 v3

}
, (202)

where vi are the i columns of RT . Then because of Eq. 201 (ϵRT = RTϵ′),

ϵ
{
v1 v2 v3

}
=

{
v1 v2 v3

}ϵ′11 0 0
0 ϵ′22 0
0 0 ϵ′33

 =
{
ϵ′11v1 ϵ′22v2 ϵ′33v3

}
. (203)

Therefore
ϵvi = ϵ′iivi ⇐⇒ ϵv = ϵ′v. (204)

This is called an eigenproblem, where ϵ′ are the eigenvalues and v are the eigenvectors.
The goal in solving Eq. 204 is to find nonzero v which, when transformed by ϵ (i.e. ϵv),
produce vectors parallel to v that are scaled by magnitude ϵ′ (i.e. ϵ′v). Eq. 204 implies

(ϵ− ϵ′I)v = 0. (205)

The solution to this is either the trivial solution v = 0, which is uninteresting, or non-
trivial solutions where ϵ− ϵ′I is singular, meaning

0 = det

ϵ11 − ϵ′ ϵ12 ϵ13
ϵ21 ϵ22 − ϵ′ ϵ23
ϵ31 ϵ32 ϵ33 − ϵ′

 (206)
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= (ϵ11 − ϵ′)[(ϵ22 − ϵ′)(ϵ33 − ϵ′)− ϵ32ϵ23]
−ϵ12[ϵ21(ϵ33 − ϵ′)− ϵ31ϵ23] + ϵ13[ϵ21ϵ32 − ϵ31(ϵ22 − ϵ′)] (207)

= −ϵ′3 + θ1ϵ
′2 − θ2ϵ′ + θ3 = 0 (208)

where 
θ1
θ2
θ3

 =


trϵ

(ϵiiϵjj − ϵijϵji)/2
det ϵ

 . (209)

The roots ϵ′ = {ϵ′11, ϵ′22, ϵ′33} to Eq. 208 are the principal eigenstrains, and the resulting
strain tensor is

ϵ′ =

ϵ′11 0 0
0 ϵ′22 0
0 0 ϵ′33

 , (210)

and the corresponding v are the principal coordinates.
The principal strains ϵ′ are coordinate independent. Therefore so must be the coeffi-

cients θ of the characteristic equation of the eigenproblem Eq. 208, which are called the
principal invariants. If ϵ′ are known, they can be solved as

θ1
θ2
θ3

 =


ϵ′11 + ϵ′22 + ϵ′33

ϵ′22ϵ
′
33 + ϵ′11ϵ

′
33 + ϵ′11ϵ

′
22

ϵ′11ϵ
′
22ϵ

′
33

 . (211)

This process is true of all second order tensors such as ϵ.

2.9 Properties of the real symmetric eigenvalue problem

Note that in the eigenproblem Eq. 204 (ϵv = ϵ′v), strain ϵ is symmetric because it is
strain, defined as the symmetric part of the displacement gradient. Suppose the compo-
nents of system matrix M in

Mx = λx (212)

are real and symmetric. Here λ are the eigenvalues and x are the eigenvectors. Real
symmetric eigenproblems have two properties of interest. The first property is that it
must yield real eigenvalues. To prove this recall the general definition of a complex
conjugate

z = a+ bi =⇒ z∗ = a− bi. (213)

Taking the complex conjugate of the eigenproblem as a whole,

Mx∗ = λ∗x∗. (214)

Note that M is real, so M = M∗ necessarily. Respectively from Eq. 212 and Eq. 214 we
can deduce

x∗TMx = x∗Tλx, xTMx∗ = xTλ∗x∗. (215)

The two Eqs. 215 are actually equal because

(x∗TMx)T = xTMx∗. (216)
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These equations are producing scalars, and all scalars are equal to their own transpose.
Therefore

x∗Tλx⇔
{
x∗1 x∗2 x∗3

}
λ


x1
x2
x3

 = λx1x
∗
1 + λx2x

∗
2 + λx3x

∗
3

= λ∗x1x
∗
1 + λ∗x2x

∗
2 + λ∗x3x

∗
3 =

{
x1 x2 x3

}
λ∗


x∗1
x∗2
x∗3

 = xTλ∗x∗. (217)

Rearranged,
(λ− λ∗)(x1x∗1 + x2x

∗
2 + x3x

∗
3) = 0. (218)

If this is true of all xi, x
∗
i , then

λ = λ∗, (219)

meaning there is no complex part to the eigenvalues and so they are real.
That was the first property of interest of a real symmetric eigenproblem. The second

property is that if the eigenvalues are distinct, then the eigenvectors are orthogonal.
Consider two of the possible three eigenvalue/eigenvector pairs that serve as solutions to
the same system matrix M in

Mx1 = λ1x1, Mx2 = λ2x2. (220)

These imply
xT
2Mx1 = xT

2 λ1x1, xT
1Mx2 = xT

1 λ2x2, (221)

or
xT
2Mx1 = λ2x2 · x1, xT

1Mx2 = λ2x1 · x2. (222)

Subtracting,
(λ1 − λ2)(x1 · x2) = xT

2Mx1 − xT
1Mx2 (223)

= xT
2Mx1 − (xT

2Mx1)
T = 0

where we know the whole expression is zero because the transpose of a scalar is itself.
Therefore

(λ1 − λ2)(x1 · x2) = 0, (224)

and if it is assumed that the eigenvalues are distinct so that λ1 ̸= λ2, then it must be
that x1 · x2 = 0, which is the definition of the two eigenvectors being orthogonal to one
another.

2.10 Geometrical interpretation of the first invariant

Recall the principal invariants Eq. 209. The first of them is

θ1 = trϵ⇔ ϵ11 + ϵ22 + ϵ33 = ϵii. (225)
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Remember that a diagonal strain component indicates the stretch in the direction of the
coordinate the component represents. Note also that shear components do not induce
volume change. So if the original volume of a cube is

V = l1l2l3 (226)

where l are the side lengths, then the volume change is

∆V = l1ϵ11l2ϵ22l3ϵ33, (227)

and the new volume is

V +∆V = l1(1 + ϵ11)l2(1 + ϵ22)l3(1 + ϵ33)

= l1l2l3(1 + ϵ11)(1 + ϵ22)(1 + ϵ33)

= l1l2l3(1 + ϵ22 + ϵ11 + ϵ11ϵ22)(1 + ϵ33)

= l1l2l3(1 + ϵ33 + ϵ22 + ϵ22ϵ33 + ϵ11 + ϵ11ϵ33 + ϵ11ϵ22 + ϵ11ϵ22ϵ33)

≈ l1l2l3(1 + ϵ11 + ϵ22 + ϵ33)

where such an approximation is made because products of small strain components are
very small and so are considered negligible. Then

∆V = V +∆V − V = l1l2l3(1 + ϵ11 + ϵ22 + ϵ33)− l1l2l3

= l1l2l3(ϵ11 + ϵ22 + ϵ33) = V ϵii = ∆V. (228)

Therefore

ϵii =
∆V

V
= θ1 (229)

which is the first invariant. So the first invariant can be interpreted as the volumetric
strain, or the change in volume with respect to the original volume.

2.11 Finite deformation

In the past we have neglected products of strain components because of the assumption
that they were so small that they could be considered negligible. Now though we wish
to consider a more general derivation for larger deformations. Displacement

ui = x′i − xi (230)

If dl is a small distance between xi and a neighboring point, then

dl2 = dxidxi, dl′2 = dx′idx
′
i. (231)

From Eq. 230,

dx′i = dxi + dui︸︷︷︸ = dxi +
∂ui
∂xj

dxj︸ ︷︷ ︸ = dxi + ui,jdxj︸ ︷︷ ︸ = dx′i. (232)
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Substituting this into Eq. 231,

dl′2 = (dxi + ui,jdxj)(dxi + ui,kdxk)

= dxidxi + dxiui,kdxk + dxiui,jdxj + ui,jui,kdxjdxk (233)

= dl2 + ui,jdxidxj + ui,kdxidxk︸ ︷︷ ︸+ui,jui,kdxjdxk︸ ︷︷ ︸
= dl2 + ui,jdxidxj + uj,idxjdxi︸ ︷︷ ︸

k→i, i→j

+uk,iuk,jdxidxj︸ ︷︷ ︸
i→k, k→j, j→i

.

Therefore
dl′2 − dl2 = ui,jdxidxj + uj,idxjdxi + uk,iuk,jdxidxj

= (ui,j + uj,i + uk,iuk,j)dxidxj. (234)

Think of the physical meaning of LHS. It is measuring the squared difference in length
between two neighboring points before and after a deformation. This is a rating of the
deformation itself. It is measuring to what extent points in the body are separating or
stretching. Units wise,

dl′2 − dl2 ∼ meters2, ϵ ∼ dimensionless, (235)

so we multiply strain by a representative small box of area. Particularly

dl′2 − dl2 = 2ϵijdxidxj ∼ meters2. (236)

Strain in this case is

ϵij =
1

2

dl′2 − dl2

dxidxj
(237)

which is one half the squared change in distance between two points with respect to the
area of a square with sides defined by a small unit distance dx. Conceptually it is a
rating of the extent that points on a body have separated after a deformation process
with respect to the original configuration. Substituting Eq. 236 into Eq. 234,

ϵij =
1

2

(
ui,j + uj,i + uk,iuk,j

)
(238)

where i, j are free and k is dummy. Remember, dummy means you sum over all indices.
Free is independent. So for example

ϵij|i=x,j=x = ϵxx =
1

2

(
ux,x︸︷︷︸
ui,j

+ ux,x︸︷︷︸
uj,i

+(ux,xux,x + uy,xuy,x + uz,xuz,x)︸ ︷︷ ︸
uk,iuk,j

)

=
∂u

∂x
+

1

2

((
∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2)
(239)

and

ϵzy =
1

2

(
uz,y + uy,z + ux,zux,y + uy,zuy,y + uz,zuz,y

)
=

1

2

(
∂w

∂y
+
∂v

∂z
+
∂u

∂z

∂u

∂y
+
∂v

∂z

∂v

∂y
+
∂w

∂z

∂w

∂y

)
= ϵyz (symmetric). (240)

Recall that for the small strain assumption the product terms can be neglected.
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3 Stress

In terms of force, a body can be acted upon by

• body forces, which act at every point on the body, such as gravity, and

• surface forces, which act only on surface points, such as traction or hydrostatic
pressure.

If a body’s density is ρ and its volume is V , then its mass is ρV or

m =

∫
V

ρdV. (241)

Therefore gravitational force

Fg = mg =

∫
V

ρgdV. (242)

In general the net body force is f is ∫
V

ρfdV (243)

and torque/moment is

r× F =

∫
V

r× ρfdV = ||r||||ρf || sin θn̂ (244)

if r = xiei is the position of a point on the body with respect to the origin and θ is the
angle between r and F (really f).
Stress is force per area. If a stress vector is t and the area of a surface is S, then surface

force is tS or ∮
S

tdS. (245)

Summing the surface forces with the body forces, the net force is∫
V

ρfdV +

∮
S

tdS (246)

and the net torque/moment is ∫
V

r× ρfdV +

∮
S

r× tdS. (247)

Surface force t = t(x,n) depends on the location of a point on the surface x and on the
vector which is normal to the surface n. Let σij (NO SUM, not a tensor), be the jth
component of t if the surface was normal to ei (NO SUM). That is

σij = ej · t(x, ei) (no sum). (248)
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For example

σ12 = e2 ·


t1,(1)
t2,(1)
t3,(1)

 =
{
0 1 0

}
t1,(1)
t2,(1)
t3,(1)

 = t2,(1) (249)

where in this example, the result t2,(1) denotes the 2nd component of the stress vector
acting on a surface which is normal to e1. In three dimensionsσ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

t1,(1) t2,(1) t3,(1)
t1,(2) t2,(2) t3,(2)
t1,(3) t2,(3) t3,(3)

 where t ∼ tcomponent of t, (direction of vector normal to surface).

(250)
A visualization of the stress components in 2D is Fig. 2. For example consider the right
face. The direction of the vector normal to this surface is e1 or x → t ,(x). Then
σxx = t1,(1) is the 1st or x− component of t for that surface→ tx,( ). On the other hand
the stress component σx,y = t2,(1) is the 2nd or y− component of t for the face whose
normal points in the direction e1 or x. For normal components the stress vector always

Figure 2: Stress components in 2D and their associated signs (+/-)

points away from the applied surface. Whether or not a shear component is positive is
directly related to whether or not the vector normal to the surface is positive. So, the
bottom face will have a negative shear component because the face’s normal vector points
in the direction −y. However the right face will have a positive shear component because
the face’s normal vector points in the direction +x.
Thus far we have only considered n = {e1, e2, e3}, but we wish to establish a general re-

lationship between t(x,n) and σij (no sum) for any n. Consider Fig. 3, a four faced pyra-
mid shape (which is called a tetrahedron) with vertices {O, (x1, 0, 0), (0, x2, 0), (0, 0, x3)}.
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Figure 3: Stresses on trirectangular (three right triangle) tetrahedron

Let the height h (̸= x3) be the shortest distance between origin O and the closest point
on the ”inclined” surface, which is the triangle formed by (x1, 0, 0), (0, x2, 0), (0, 0, x3). If
∆S is the area of this triangle and ∆Si is the area of each of the three right triangles
with unit normal ei, then

∆Si = ni∆S ⇔


area of triangle with unit normal x
area of triangle with unit normal y
area of triangle with unit normal z

 =


∆S1

∆S2

∆S3

 =


n1∆S
n2∆S
n3∆S

 ,

(251)
where n is the vector normal to the inclined surface ∆S, and the components of n are
called the direction cosines.
Suppose h is small. In this case the volume is small. We assume density is constant.

Therefore mass is also small. Therefore net force is also small. If we assume there is no
net force, then using Eq. 246 (net force =

∫
V
ρfdV +

∮
S
tdS = body + surfaces),

⇔ ρfiV + ti∆S −? σji∆Sj︸ ︷︷ ︸
ith component of t for surface whose normal is ej

= 0. (252)

For all tetrahedra, V = h∆S/3. Making this substitution as well as Eq. 251 (∆Sj =
nj∆S),

ρfih∆S/3 + ti∆S − σji(nj∆S) = 0

⇔ ρfih∆S/3 + ∆S(ti − σjinj) = 0. (253)

We have supposed h is small, so h −→ 0. Because of this,

∆S(ti − σjinj) = 0 −→ ti − σjinj = 0

−→ ti = σjinj ⇔


t1
t2
t3

 =


σ11n1 + σ21n2 + σ31n3

σ12n1 + σ22n2 + σ32n3

σ13n1 + σ23n2 + σ33n3

 . (254)

The way to interpret Eq. 254 is this. On an arbitrary surface, the components of the
stress vector for that surface is determined by the set of the individual stress components
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on that surface and the direction in which the vector normal to the surface points. This
relationship is important because even though it is easy to infer σij based on t(x, ei), we
are not usually given t. Instead we are usually given [σij]⇔ σ and from that are needing
to figure out t(x,n).

3.1 Momentum equation

The net force on the body is the product of the body’s mass and acceleration, according
to Newton. Getting the net force from Eq. 246,∫

V

ρfdV +

∮
S

tdS = ma =

∫
V

üρdV. (255)

In index notation, ∫
V

ρfidV +

∮
S

ti︸︷︷︸ dS =

∫
V

üiρdV. (256)

Substituting in Eq. 254, ∫
V

ρfidV +

∮
S

σjinj︸ ︷︷ ︸ dS =

∫
V

üiρdV. (257)

Because of the divergence theorem Eq. 95 (
∮
S
[◦]jnjdS =

∫
V
[◦]j,jdV ),∫

V

ρfidV +

∫
V

σji,jdV =

∫
V

üiρdV. (258)

Rearranged, ∫
V

ρfidV +

∫
V

σji,jdV −
∫
V

üiρdV (259)

implies ∫
V

(σji,j + ρfi − ρüi) = 0 (260)

implies
σji,j + ρfi − ρüi = 0 −→ σji,j + ρfi = ρüi. (261)

This is called the momentum equation because it arises from the balance of net force,
which is related to linear momentum.

3.2 Angular momentum

The angular analog to force is torque, and the angular analog to linear momentum is
angular momentum. So the sum of the torques implies a balance of angular momentum.
Getting the net torque from Eq. 247,∫

V

r×ρfdV +

∮
S

r×tdS = r×ma = r×m d

dt
(v) = r×m d

dt
(u̇) =

d

dt

∫
V

r×ρu̇dV (262)
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where u is displacement and r = xiei. In index notation,∫
V

r× ρfdV +

∮
S

r× tdS =
d

dt

∫
V

r× ρu̇dV

⇐⇒
∫
V

ρxifjϵijkdV +

∮
xi(tj)ϵijkdS =

∫
V

ρxiüjϵijkdV (263)

⇐⇒
∫
V

ρxifjϵijkdV +

∮
xi(σljnl)ϵijkdS =

∫
V

ρxiüjϵijkdV (264)

⇐⇒
∫
V

ρxifjϵijkdV +

∫
V

(xiσljϵijk),ldV =

∫
V

ρxiüjϵijkdV (265)

⇐⇒
∫
V

ρxifjϵijkdV +

∫
V

(xi,lσljϵijk + xiσlj,lϵijk)dV =

∫
V

ρxiüjϵijkdV (266)

⇐⇒
∫
V

ρxifjϵijkdV +

∫
V

(δilσljϵijk + xiσlj,lϵijk)dV =

∫
V

ρxiüjϵijkdV (267)

⇐⇒
∫
V

ρxifjϵijkdV +

∫
V

(σijϵijk + xiσlj,lϵijk)dV =

∫
V

ρxiüjϵijkdV (268)

⇐⇒
∫
V

[ρxifjϵijk + σijϵijk + xiσlj,lϵijk − ρxiüjϵijk]dV = 0 (269)

⇐⇒
∫
V

[xiϵijk(ρfj + σlj,l − ρüj) + σijϵijk]dV = 0. (270)

Then because of Eq. 261 (σlj,l + ρfj = ρüj), the parenthetical term cancels, leaving

⇐⇒
∫
V

σijϵijkdV = 0 −→ σijϵijk = 0. (271)

Switching indices,
σjiϵjik = 0. (272)

By definition,
ϵjik = −ϵijk. (273)

Therefore
σjiϵjik = −σjiϵijk = σijϵijk −→ σij = σji. (274)

This means stress σ is symmetric. Reconsidering then Eqs. 261 and 254,

σij,j + ρfi = ρüi ⇔


σxx,x + ρfx + σxy,y + σxz,z
σyx,x + ρfy + σyy,y + σyz,z
σzx,x + ρfz + σzy,y + σzz,z

 =


ρü
ρv̈
ρẅ

 , ti = σijnj ⇔ t = σn.

(275)
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3.3 Stress as a tensor

Here is proof that σ is a rank two tensor. If traction t = σn in the original coordinate
system xi, then in another coordinate system x̂i,

t̂ = σ̂n̂. (276)

For rank one tensors,

t̂ = Rt, n̂ = Rn −→ RT t̂ = t, RT n̂ = n. (277)

Substituting back into Eq. 275b (t = σn),

RT t̂ = σRT n̂ −→ RRT t̂ = t̂ = RσRT n̂. (278)

Substituting this result into Eq. 276,

σ̂ = RσRT n̂, (279)

which establishes σ as a rank two/second order tensor. σ is symmetric and real. As
as shown in Sec. 2.9, the two properties that follow from this are (1) the characteristic
eigenproblem must yield real eigenvalues and (2) if the eigenvalues are distinct then
the eigenvectors are mutually orthogonal. The characteristic eigenproblem to determine
principal stresses/eigenvalues σ̂ is

σx = σ̂x. (280)

The stress vector t = σn is a vector normal to the surface n which is transformed by
tensor σ. Therefore this vector t will not necessarily point in the direction of n. To find
out what component of t points in n, normal stress

σn = n · t = n · σn = nTσn (281)

=
{
n1 n2 n3

}σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


n1

n2

n3

 =
{
n1 n2 n3

}
σ11n1 + σ12n2 + σ13n3

σ21n1 + σ22n2 + σ23n3

σ31n1 + σ32n2 + σ33n3


(282)

= n1(σ11n1+σ12n2+σ13n3)+n2(σ21n1+σ22n2+σ23n3)+n3(σ31n1+σ32n2+σ33n3) (283)

⇔ niσijnj = σn (284)

is the normal component of stress on that surface. This calculation of σ is permissible
for all second order tensors, so normal strain

ϵn = niϵijnj. (285)
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3.4 Mean stress in a deformed body

If for a body subject to Eq. 275a (σij,j + ρfi = ρüi) there are no body forces and if the
body is static, then ü = 0 and fi = 0, meaning

σij,j = 0. (286)

This implies

0 =

∫
V

σij,jxkdV =

∫
V

[(σijxk),j − σijxk,j]dV (287)

=

∫
V

[(σijxk),j − σijδkj]dV (288)

=

∫
V

(σijxk),jdV −
∫
V

σikdV = 0 −→
∫
V

(σijxk),jdV =

∫
V

σikdV (289)

−→ 1

V

∫
V

(σijxk),jdV =
1

V

∫
V

σikdV. (290)

We define mean stress over volume as

σ̄ik =
1

V

∫
V

σikdV. (291)

Substituting,

σ̄ik =
1

V

∫
V

(σijxk),jdV =
1

V

∮
S

σijxknjdS =
1

V

∮
S

tixkdS. (292)

Changing indices,

σ̄ij =
1

V

∮
S

tixjdS. (293)

Note that the product tixj ↔ t⊗x produces a second order tensor. Also, we understand
that [σ̄ij] is symmetric. Therefore the symmetric component of this tensor is the only
component, and that is

σ̄ij = sym(σ̄ij) =
1

2

(
1

V

∮
S

[(tixj) + (tixj)
T ]dS

)
=

1

2V

∮
S

(tixj + tjxi)dS = σ̄ij. (294)

The utility of this is that you can solve for the mean value of the stress tensor using only
surface tractions.

3.5 Fluid structure interface condition

The stress normal to an elastic structure in contact with an inviscid fluid is just the
inward pressure. That is,

σn = −p. (295)
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4 Equations of elasticity

4.1 Hooke’s law

It is necessary to relate the forces at hand, or stress, to the resulting kinematics, or strain.
Some materials obey Hooke’s Law, which is

σ = Eϵ, (296)

where E is called Young’s modulus. In general in three dimensions, there are nine stress/s-
train components. The generalized Hooke’s Law is then

σij + Cijklϵkl (297)

where the elastic constants are contained in C. If i, j are fixed, then there are nine terms.
To prove Cijkl is a fourth order tensor, let

σ̄ = RσRT −→ σ = RT σ̄R (298)

−→ σij = Rkiσ̄klRlj︸ ︷︷ ︸ = CijklRmkRnlϵ̄mn︸ ︷︷ ︸ = Cijklϵkl (299)

−→ RoiRpj Rkiσ̄klRlj︸ ︷︷ ︸ = RoiRpj RmkRnlCijklϵ̄mn︸ ︷︷ ︸ . (300)

Note that indices switch with the transpose operator. Therefore if I were to multiply RR
the result is RijRjk, but if I multiply RRT = I it is RijRkj = δik. Applying this idea to
Eq. 300,

δokδplσ̄kl = RoiRpjRmkRnlCijklϵ̄mn. (301)

−→ σ̄op = C̄opmnϵ̄mn. (302)

Because Copmn = RoiRpjRmkRnlCijkl, it is a fourth order tensor. There are four indices
where each can be one of three numbers. Therefore it possesses 34 = 81 constants.
However, note that since stress and strain are symmetric,

σij = σji −→ Cijklϵkl = Cjiklϵkl −→ Cijkl = Cjikl, (303)

Cijklϵkl = Cijlkϵlk = Cijlkϵkl −→ Cijkl = Cijlk. (304)

The strain and stress tensors possess six unique constants, where the lower left triangle of
entries σ21, σ31, σ32 are nonunique with respect to the upper right triangle σ12, σ13, σ23. C
is then tasked with relating six unique stress constants with six unique strain constants.
Because stress and strain must be symmetric, that is the most uniqueness possible, and
so there is no possible further variation than that. Therefore C cannot contain more than
62 = 36 unique constants.
Consider the impracticality of writing down a fourth order tensor. But because of the

generalized Hooke’s Law (σij = Cijklϵkl ⇐⇒ {6 constants} = {36}{6} −→ {6 × 1} =
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{6× 6}{6× 1}), we can rearrange the unique constants like

σ11
σ22
σ33
σ12
σ23
σ13


=


C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313





ϵ11
ϵ22
ϵ33
2ϵ12
2ϵ23
2ϵ13


= [C]



ϵ11
ϵ22
ϵ33
γ12
γ23
γ13


. (305)

Note the duplication on off diagonal terms. This is because Cijkl = Cijlk, ϵkl = ϵlk, so for
some unique ij, ϵ/C terms will accumulate. For example

σ12 = C1211ϵ11+C1212ϵ12︸ ︷︷ ︸
I

+C1213ϵ13︸ ︷︷ ︸
II

+C1221ϵ21︸ ︷︷ ︸
I

+C1222ϵ22+C1223ϵ23︸ ︷︷ ︸
III

+C1231ϵ31︸ ︷︷ ︸
II

+C1232ϵ32︸ ︷︷ ︸
III

+C1233ϵ33

= C1211ϵ11 + 2C1212ϵ12 + 2C1213ϵ13 + C1222ϵ22 + 2C1223ϵ23 + C1233ϵ33

= C1211ϵ11 + C1222ϵ22 + C1233ϵ33 + C1212(2ϵ12) + C1223(2ϵ23) + C1213(2ϵ13). (306)

The same can be shown for any i, j.
Because Eq. 305 takes the shape of some ai =Mijbj, it is not unreasonable to rename

the components as 

σ1
σ2
σ3
σ4
σ5
σ6


=


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6


(307)

where 2ϵ12 = ϵ4, NOT 2ϵ12 = 2ϵ4.

4.2 Strain energy

Hooke’s law essentially says that in a spring (elastomer), the relationship between stress/-
force and strain/displacement is linear. A rod in uniaxial tension has elastic behavior
and so acts like a spring. Another way to write Hooke’s law is

F = ku, (308)

where F is force, u is displacement, and k is a spring constant. As the displacement u
increases, so does F , with a slope of k. This is visualized in Fig. 4. As is shown in the
figure, let us define F (ū) = F̄ = kū. Now the work done in moving from u = 0 to u = ū
is

W = F∆u =

∫ ū

0

F (u)du =

∫ ū

0

kudu =
1

2
ku2

∣∣∣∣ū
0

=
1

2
kū2 =

1

2
(kū)ū =

1

2
F̄ ū. (309)
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Figure 4: Force displacement curve for rod in uniaxial tension

Recall that stress is force per area σ = F̄ /A and strain is change in length over original
length ϵ = ū/L. So,

W =
1

2
F̄ ū =

1

2
(σA)(ϵL) =

1

2
σϵV, (310)

where V = AL in that the rod volume is its cross sectional area times its length.
Work is defined as the energy transferred to an object by applying a force across a

displacement. So it is also a measure of internal energy, which we call strain energy.
Then strain energy density

w = W/V =
1

2
σϵ (311)

is work/strain energy per unit volume. In just 1D,

∂w

∂ϵxx
=

∂

∂ϵxx

(
1

2
σxxϵxx

)
=

∂

∂ϵxx

(
1

2
Eϵ2xx

)
= Eϵxx = σxx. (312)

This means the derivative of strain energy with respect to the strain is the stress. In
other words, the way in which the density of energy changes in the rod based on changes
in its shape is a rating of how much stress is being applied. A greater magnitude of stress
will cause the energy density to change more rapidly as the shape deforms. Now in 2- or
3D,

w =
1

2
σijϵij ⇔

1

2
σ : ϵ, (313)

or

w =
1

2
Cijklϵklϵij︸ ︷︷ ︸
Eq. 305

⇐⇒ w =
1

2
Cijϵiϵj︸ ︷︷ ︸
Eq. 307

=
1

2
ϵiCijϵj ⇔

1

2
ϵ ·Cϵ. (314)

Because of Eq. 73 (x ·Mx = x · sym[M]x), Cij must be symmetrical in Eq. 314. This
means

Cij = Cji︸ ︷︷ ︸
Eq. 307

⇐⇒ Cijkl = Cklij︸ ︷︷ ︸
Eq. 305

. (315)

Differentiating Eq. 314 with respect to some strain component,

∂w

∂ϵmn

=
1

2
Cijkl

∂ϵkl
∂ϵmn

ϵij +
1

2
Cijklϵkl

∂ϵij
∂ϵmn

=
1

2
Cijklδkmδlnϵij +

1

2
Cijklϵklδimδjn
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=
1

2
Cijmnϵij +

1

2
Cmnklϵkl =

1

2
Cmnijϵij +

1

2
Cmnijϵij = Cmnijϵij︸ ︷︷ ︸ = σmn. (316)

Differentiating again,

∂2w

∂ϵmn∂ϵkl
=

∂

∂ϵkl
[Cmnijϵij] = Cmnij

∂ϵij
∂ϵkl

= Cmnijδikδjl = Cmnkl. (317)

Differentiating in the opposite order,

∂2w

∂ϵkl∂ϵmn

= Cklmn −→ Cmnkl = Cklmn. (318)

To summarize, if there exists a w that obeys

∂w

∂ϵij
= σij, (319)

then Eq. 318 is true. So the existence of strain energy implies the symmetry of C. So since
strain energy exists, then Cij is symmetric and so there are at most 6+5+4+3+2+1=21
unique upper triangular elastic constants in Eq. 307.

4.3 Material symmetry

The most anisotropic material possesses 21 elastic constants, but further symmetries
of some materials permit further reduction. For instance consider a material which is
symmetric in the xy plane. This means some coordinate transformations such as

x̂1 = x1
x̂2 = x2
x̂3 = −x3

 −→ R =

1 0 0
0 1 0
0 0 −1

⇔ Rij =


1
1
−1

 δij (NO SUM) = aiδij. (320)

would not vary in the elastic constants of that material. For any C,

Cijkl = RimRjnRkoRlpCmnop = aiδimajδjnakδkoalδlpCmnop = aiajakalCijkl (NO SUM)
(321)

implies either
aiajakal = 1 or Cijkl = 0. (322)

Since a = {1 1 − 1}T , the only way where a product of any number of the internal
components is negative is if one is multiplying an odd number of the third component,
which is -1. So for example

a1a1a2a3 = 1 ∗ 1 ∗ 1 ∗ −1 = −1 ̸= 1 −→ C1123 = 0 (323)

while
a2a1a3a3 = 1 ∗ 1 ∗ −1 ∗ −1 = 1 −→ C2133 ̸= 0. (324)

39



This reduces the total number of elastic constants from 21 down to 13, in that

[C] =


C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313

 =


C1111 C1122 C1133 C1112 0 0
C2211 C2222 C2233 C2212 0 0
C3311 C3322 C3333 C3312 0 0
C1211 C1222 C1233 C1212 0 0
0 0 0 0 C2323 C2313

0 0 0 0 C1323 C1313



=


C1111 C1122 C1133 C1112 0 0

C2222 C2233 C2212 0 0
C3333 C3312 0 0

C1212 0 0
C2323 C2313

sym C1313

 =


C11 C12 C13 C14 0 0

C22 C23 C24 0 0
C33 C34 0 0

C44 0 0
C55 C56

sym C66

 .
(325)

A material with orthotropic symmetry has three planes of symmetry xy, xz, yz, mean-
ing all of the following coordinate transformations

x̂1 = x1
x̂2 = x2
x̂3 = −x3

 ,


x̂1 = x1
x̂2 = −x2
x̂3 = x3

 ,


x̂1 = −x1
x̂2 = x2
x̂3 = x3

 (326)

Do not affect the elastic constants of the material. These mean that an odd number of the
first, second, or third component of the a vectors will yield the product −1, meaining the
corresponding C value must compensate by being itself zero. Therefore for orthotropic
materials,

[C] =


C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313

 =


C1111 C1122 C1133 0 0 0
C2211 C2222 C2233 0 0 0
C3311 C3322 C3333 0 0 0
0 0 0 C1212 0 0
0 0 0 0 C2323 0
0 0 0 0 0 C1313



=


C11 C12 C13 0 0 0

C22 C23 0 0 0
C33 0 0 0

C44 0 0
C55 0

sym C66

 . (327)

This leaves a total of just nine elastic constants.

4.4 Isotropic materials

There does not exist an isotropic tensor off odd rank. As for rank 2, if a tensor is isotropic
then it must take the form cδij. If it is rank 4, it must take the form aδijδkl+bδikδjl+cδilδjk.
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Specifically for Cijkl,
Cijkl = λδijδkl + µδikδjl + βδilδjk. (328)

Since Cijkl = Cjikl,

����λδijδkl + µδikδjl + βδilδjk =����λδjiδkl + µδjkδil + βδjlδik (329)

→ (µ− β)(δikδjl) + (β − µ)(δilδjk) = 0. (330)

For this to be true of all i, j, k, l, β = µ. Therefore,

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (331)

Here λ and µ are called the Lamé constants of elasticity. With Hooke’s law,

σij = Cijklϵkl = λδijδklϵkl + µδikδjlϵkl + µδilδjkϵkl (332)

= λϵkkδij + µϵij + µϵji = λϵkkδij + 2µϵij = σij. (333)

Expanding this,

σ11
σ22
σ33
σ12
σ23
σ31


=


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





ϵ11
ϵ22
ϵ33
2ϵ12
2ϵ23
2ϵ31


. (334)

This structure emerges from Eq. 333, because for a diagonal component, e.g.

σ11 = λ(ϵ11 + ϵ22 + ϵ33)δ11 + 2µϵ11 = (2µ+ λ)ϵ11 + λϵ22 + λϵ33, (335)

and for an off diagonal component, e.g.

σ23 =(((((((((((
λ(ϵ11 + ϵ22 + ϵ33)δ23 + 2µϵ23 = 2µϵ23 = µ(2ϵ23). (336)

Eq. 333 is a way to get stress from the strains. We wish also to have a way to find strains
based on the stress. Using contraction on Eq. 333 (σij = λϵkkδij + 2µϵij),

σkk = λϵkkδkk + 2µϵkk = 3λϵkk + 2µϵkk = (3λ+ 2µ)ϵkk −→ ϵkk =
σkk

3λ+ 2µ
. (337)

Substituting this back into Eq. 333,

σij = λ
σkk

3λ+ 2µ
δij + 2µϵij =⇒ ϵij =

1

2µ

[
σij − λ

σkk
3λ+ 2µ

δij

]
. (338)
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5 Simplest problems of elastostatics

Eqs. 275 are the momentum and stress equations. They are

σij,j + ρfi = ρüi, ti = σijnj. (339)

If the body is not moving, there is no acceleration. Therefore, the momentum equation
reduces to

σij,j = −ρfi. (340)

If there are no body forces, such as gravity, then

σij,j = 0. (341)

5.1 Simple shear

Consider the deformation map 
u1 = kx2 = x2 tan θ

u2 = 0

u3 = 0.

(342)

The corresponding displacement gradient and strain tensor (where the latter is the

Figure 5: Simple shear: tan θ = opposite/adjacent = o/a = ∆x1/x2 → ∆x1 = u1 =
x2 tan θ

symmetric part of the displacement gradient) is

[u] =

0 k 0
0 0 0
0 0 0

 , [ϵ] =

 0 k/2 0
k/2 0 0
0 0 0

 . (343)

If the material is isotropic then we use 333 (λϵkkδij+2µϵij = σij) to calculate the stresses.
Here ϵkk = 0, so

σ12 = λϵkkδ12 + 2µϵ12 = 2µ(k/2) = µk = σ21. (344)

Otherwise, σij = 0. This is to say that there are only two nonzero components of stress.
Recall that γij = 2ϵij is the engineering shear strain. Therefore, γ12 = 2ϵ12 = 2(k/2) =

k, meaning σ12 = µk = µγ12. Here µ is the shear modulus and also a Lamé constant.
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5.2 Simple tension

Figure 6: Simple tension

The stress tensor corresponding to simple tension is

[σ] =

σ 0 0
0 0 0
0 0 0

 , (345)

meaning σkk = σ11 + σ22 + σ33 = σ and, from Eq. 338,

ϵ11 =
1

2µ

[
σ11 − λ

σkk
3λ+ 2µ

δ11

]
=

1

2µ

[
σ − λσ

3λ+ 2µ

]
=

σ

2µ

[
3λ+ 2µ+ λ

3λ+ 2µ

]
=
σ

µ

λ+ µ

3λ+ 2µ
.

(346)
Young’s modulus

E = σ/ϵ = σ

/[
σ

µ

λ+ µ

3λ+ 2µ

]
= µ

3λ+ 2µ

λ+ µ
. (347)

Also from Eq. 338 we can derive the other on-diagonal strains. They are

ϵ22 =
−λ
2

σ

µ

[
1

3λ+ 2µ

]
=
−λ
2

1

λ+ µ
ϵ11 = ϵ33. (348)

Now, we let Poisson’s ratio be the negative of the ratio between transverse strain to axial
strain, or

ν = −ϵ22/ϵ11 =
λ

2(λ+ µ)
. (349)

Poisson’s ratio is a measure of how things shrink in the perpendicular direction with
respect to how things stretch in the axial direction. For example if you stretch out a
piece of gum it will also become thinner. The extent to which the gum slice becomes
thinner (shrinkage in the transverse direction) as the slices stretches (stretch in the loading
direction) is ν.
Now notice that E can be written as

E = µ
λ+ 2λ+ 2µ

λ+ µ
= µ(

λ

λ+ µ
+ 2) = µ(2ν + 2) = 2µ(1 + ν). (350)

Therefore

µ =
E

2(1 + ν)
= G −→ 2µ =

E

1 + ν
, (351)
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where G is how shear modulus µ is represented sometimes in engineering applications.
To solve for the other Lame constant λ in terms of E and ν, we isolate λ in Eq. 349, as
in

λ = 2λν + 2µν → λ(1− 2ν) = 2µν → λ = µ
2ν

1− 2ν
=

E

1 + ν

ν

1− 2ν
. (352)

With knowledge of the Lame constants µ, λ in terms of the engineering constants E, ν,
we can represent the generalized Hooke’s law (how to find stress and strain) in terms of
the elastic constants instead of the Lame constants. Solving for stress using Eq. 333,

σij = λϵkkδij + 2µϵij =

[
E

1 + ν

ν

1− 2ν
ϵkkδij

]
+

[
E

1 + ν
ϵij

]
=

E

1 + ν

[
ν

1− 2ν
ϵkkδij + ϵij

]
.

(353)
Solving for strain using Eq. 338,

ϵij =
1

2µ

[
σij − λ

σkk
3λ+ 2µ

δij

]
=

1 + ν

E

[
σij −

E

1 + ν

ν

1− 2ν

σkk[
3 E
1+ν

ν
1−2ν

+ 2 E
1+ν

]δij]

=
1 + ν

E

[
σij −

ν

1 + ν
σkkδij

]
=

1

E

[
σij(1 + ν)− νσkkδij

]
= ϵij.

Expanding the subscript k,

ϵij =
1

E

[
σij(1 + ν)− ν(σ11 + σ22 + σ33)δij

]
. (354)

Solving for diagonal strain components,

ϵ11 =
1

E
[σ11 − νσ22 − νσ33] =

σ11
E
− σ22

E
ν − σ33

E
ν, (355)

ϵ22 = −
σ11
E
ν +

σ22
E
− σ33

E
ν, (356)

ϵ33 = −
σ11
E
ν − σ22

E
ν +

σ33
E
. (357)

Because of the definitions of ν and E this is not at all unexpected. Remember, elastic
modulus is stress over strain, and Poisson’s ratio is the negative transverse strain relative
to axial strain.

5.3 Uniform compression

The displacement gradient associated with uniform compression is

[u]↔ ui,j =

ϵ 0 0
0 ϵ 0
0 0 ϵ

 = ϵI = ϵ. (358)
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This means there is an application of uniform stress in xx, yy, andzz with the same
magnitude, leading to the same magnitude of strain on all sides. The volumetric strain,
which in this case is called dilatation, is

∆ =
∆V

V
= ui,i = trϵ = 3ϵ. (359)

From Hooke’s law Eq. 333 (σij = λϵkkδij + 2µϵij),

σij = 3ϵλδij + 2µ(ϵδij) = 3ϵδij(λ+ 2µ/3) = ∆(λ+ 2µ/3)δij. (360)

If −p is the average normal stress, then

−p = 1

3
σii. (361)

Then
−p = σ11 = σ22 = σ33 = ∆(λ+ 2µ/3). (362)

Then we define the bulk modulus, also called the modulus of compression, as

K =
−p
∆

= λ+
2

3
µ =

E

1 + ν

ν

1− 2ν
+

2

3

E

2(1 + ν)

=
3Eν + E(1− 2ν)

3(1 + ν)(1− 2ν)
=

E(ν + 1)

3(1 + ν)(1− 2ν)
=

E

3(1− 2ν)
. (363)

Note that ν > 1/2 implies K < 0. It is not possible for the volume to increase. Therefore

ν ≤ 1

2
. (364)

The special case ν = 1/2 implies an infinite bulk modulus which means that the ma-
terial is incompressible, or does not increase or decrease in volume. Rubber is nearly
incompressible.
Substituting K = λ+ 2µ/3 into Eq. 360,

σij = Kδij∆ = Kϵkkδij. (365)

5.4 Stress and strrain deviators

Recall the considerations of this chapter. Simple shear is a change in shape without a
change in volume. Uniform compression is a volume change without a shape change. In
simple shear, the stress field is

σij = 2µϵij,

and for uniform compression it is

σij = Kϵkkδij.

Uniform compression is also called hydrostatic or isotropic compression.
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Any deformation is a combination of pure shape change (simple shear) and pure volume
change (uniform compression). Let express the strain tensor as

ϵij = ϵij −
1

3
ϵkkδij +

1

3
ϵkkδij = eij +

1

3
ϵkkδij, (366)

where eij is the simple shear component, since the sum of the diagonals is zero, as
evidenced by

ϵ11 = ϵ11 −
1

3
ϵ11 −

1

3
ϵ22 −

1

3
ϵ33︸ ︷︷ ︸

eij

+
1

3
ϵkkδij =

1

3
ϵkkδij (ϵkk = 3ϵ, ϵ11 = ϵ22 = ϵ33 = ϵ),

and the last term is a hydrostatic compression component. The first term and the second
term are respectively called the deviatoric and isotropic terms. Similarly for stress,

σij = sij +
1

3
σkkδij = sij − pδij, (367)

where mean normal stress −p = σkk/3 and

sij = σij −
1

3
σkkδij. (368)

Substituting Eqs. 367,366 into Eq. 333 (σij = λϵkkδij + 2µϵij),

sij − pδij = λϵkkδij + 2µ

(
eij +

1

3
ϵkkδij

)
. (369)

Using contraction such that j = i, sii = 0, eii = 0 by definition and
∑

i δii = 3. Therefore

−3p = 3λϵkk + 2µ

(
0 + ϵkk

)
= (3λ+ 2µ)ϵkk = 3Kϵkk. (370)

Therefore,
−p = Kϵkk, (371)

which we already knew. Substituting this back into Eq. 369,

sij +

(
λ+

2

3
µ

)
ϵkkδij = λϵkkδij + 2µ

(
eij +

1

3
ϵkkδij

)
, (372)

which implies very simply
sij = 2µeij. (373)

Therefore Hooke’s law can be written simply as{
sij = 2µeij, i ̸= j

σii/3 = Kϵii, i = j.
(374)

These are not conditional statements as though they are not both true always. It is just
that if i ̸= j, the second equation will be zero on both sides and so not relevant. If i = j,
then both sides of the first equation will be zero and likewise irrelevant.
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5.5 Stable reference states

Strain energy density is Eq. 313, which is

w =
1

2
cijklϵklϵij =

1

2
σijϵij.

Substituting in 366,367,

w =
1

2

(
sij +

1

3
σkkδij

)(
eij +

1

3
ϵllδij

)

=
1

2

(
sijeij +

1

3
ϵllsijδij +

1

3
σkkeijδij +

1

9
σkkϵllδijδij

)
=

1

2

(
sijeij +

1

3
ϵllsii +

1

3
σkkeii +

1

3
σkkϵll

)
=

1

2

(
sijeij +

1

3
ϵkksii +

1

3
σkkeii +

1

3
σkkϵll

)
= w. (375)

If the material is isotropic, this means Hooke’s law Eq. 369 applies. This means

w = µeijeij +
1

2
Kϵiiϵll

µeijeij +
1

2
Kϵiiϵii = w. (376)

We define a stable reference state as

w = cijklϵklϵij > 0. (377)

For this to be true, cijkl must be positive definite such that the expression is positive for
all ϵ. If the material is isotropic such that the strain energy density is given by Eq. 376,
then

w = µeijeij +
1

2
Kϵiiϵii > 0. (378)

If the deformation is pure volume change with no shape change, then deviatoric strain
eij = 0, meaning K > 0 ↔ w > 0. If the deformation is pure shear with no volume
change, then isotropic strain ϵii = 0 meaning µ > 0↔ w > 0. Together,

K > 0, µ > 0 (379)

which imply for isotropic mateirals that

E > 0, −1 < ν < 1/2 (380)

because of the definitions for bulk and shear modulus Eqs. 363 and 351.
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6 Boundary value problems in elastostatics

The basic equations of elastostatics are

σij,j + ρfi = 0, (381)

σij = cijklϵkl, (382)

ϵij =
1

2
(ui,j + uj,i), (383)

ti = σijnj. (384)

Substituting Eq. 383 into Eq. 382,

σij =
1

2
cijkl(uk,l + ul,k) =

1

2
cijkluk,l +

1

2
cijklul,k (385)

=
1

2
cijkluk,l +

1

2
cijlkul,k (386)

=
1

2
cijkluk,l +

1

2
cijkluk,l (dummy index) (387)

= cijkluk,l = σij. (388)

Substituting this into Eq. 381,

(cijkluk,l),j + ρfi = 0. (389)

This system of three PDEs is the Navier equations of elasticity. The unknowns here
are the three Cartesian displacement components. These equations apply to anisotropic
materials. For isotropic materials,

σij = λϵkkδij + 2µϵij = λuk,kδij + µ(ui,j + uj,i). (390)

Differentiating with respect to xj,

σij,j = λuk,kjδij + µ(ui,jj + uj,ij) = λuk,ki + µ(ui,jj + uj,ij) = (λ+ µ)uj,ji + µui,jj. (391)

We have assumed that λ, µ ∼ E, ν are constants and not dependent on position. In doing
so we assume that the material is homogeneous. A nonhomogeneous material has position
dependent properties. So for an isotropic homogeneous material the Navier equations are

(λ+ µ)uj,ji + µui,jj + ρfi = 0. (392)

A boundary value problem or BVP is dedicated to finding the stress/displacement distri-
butions in the interior of an elastic body in equilibrium with specified boundary conditions
and boundary tractions. A purely displacement problem has a unique existing solution
and is therefore said to be well-posed. However a boundary traction problem is not well
posed because its displacement solution is not unique. However the stress solution is
unique because stress is derivative of displacement gradients?.
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6.1 Uniqueness

In a displacement BVP the goal is to find u such that{
(cijkluk,l),j + ρfi = 0 −→ (cijkluk,l),j = −ρfi, V,

ui = Ui, S,
(393)

where S is the surface and V is the volume. Ui is the set of prescribed displacement
boundary conditions on S. The two equations must hold at all points in V and S.
If the BVP is homogeneous, then every term of the PDE and boundary condition is

proportional to u. Otherwise, the BVP is nonhomogeneous. Eq. 393 is nonhomogeneous
because not every term in the PDE is proportional to u.
Let us try to prove that Eq. 393 has a unique solution. To do so let us assume it does

not have a unique solution. Suppose there is a second solution vi such that{
(cijklvk,l),j = −ρfi, V,

vi = Ui, S.
(394)

Subtracting Eq. 394 from Eq. 393 so that wi = ui − vi,{
(cijklwk,l),j = 0, V,

wi = 0, S.
(395)

This is now a homogeneous problem because ρfi and Ui were nonhomogeneous terms
(as in, they were not proportional to u), but they were removed through subtraction.
Proving that wi = ui − vi = 0 is the only solution to the system Eq. 395 is the same
as proving that ui := vi and therefore the original system Eq. 393 is the same as Eq.
394 and therefore there is only one solution and so the solution is unique. So to prove
the uniqueness of Eq. 393 all we need to do is show that Eq. 395 is true, which can be
renamed as {

(cijkluk,l),j = 0, V,

ui = 0, S.
(396)

This implies that ∫
V

(cijkluk,l),jdV = 0 (397)

→
∫
V

ui(cijkluk,l),jdV = 0 (398)

→ 0 =

∫
V

[(uicijkluk,l),j − ui,jcijkluk,l]dV (399)

=

∫
V

(uicijkluk,l),jdV −
∫
V

ui,jcijkluk,ldV (400)

=

∮
S

uicijkluk,lnjdS −
∫
V

ui,jcijkluk,ldV (401)
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=

∮
S

uicijklϵklnjdS −
∫
V

ϵi,jcijklϵkldV (402)

=

∮
S

uiσijnjdS −
∫
V

2wdV (403)

=
��

���
∮
S

uitidS −
∫
V

2wdV (404)

= −
∫
V

2wdV = 0 −→ w = 0. (405)

The traction term cancels out because ui = 0 on the surface S. Note that w = cijklϵijϵkl =
0. Therefore, ϵ = 0 at all points in the volume. Zero strain implies no deformation, only
rotation and translation. Therefore, ui = 0 for all V. Indeed this is what we were trying
to prove. Therefore the Eq. 396 is true and therefore we have established uniqueness for
the displacement solution that is Eq. 393.

6.2 Uniqueness for thr traction problem

In a traction BVP the goal is to find u such that Eq. 384 and Eq. 381 are true, meaning{
(cijkluk,l),j = −ρfi, V,

σijnj = ti, S.
(406)

In the same way as in the previous section, to prove uniqueness of Eq. 406 we can
alternatively prove uniqueness of{

(cijkluk,l),j = 0, V,

σijnj = 0, S.
(407)

We arrive at
w = 0→ ϵ = 0→ ui = 0 ∈ V, (408)

but recall that there is no such requirement on S. Therefore the displacements are not
unique. However it is true that the strains are unique in the volume, as shown. Therefore,
so are the stresses.

6.3 Uniqueness for the mixed problem

Uniqueness follows immediately from Eq. 404 because if ui or ti are zero at every point
then the whole term vanishes.
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7 Torsion

7.1 Circular shaft

Consider a circular shaft with length L fixed at one end such that z = 0 and subjected to
shear forces/torques at z = L. Instead of specifying tractions at z = L we will instead find
the displacement field and see if all required equations are satisfied and if the resulting
surface tractions/body forces are reasonable.
Let α be an angle of twist per unit length. That is, α = θ/z. So θ is the twist angle

and z is the length of the shaft. Note that

θ = αz (409)

because of our definition of α.

Figure 7: Torsional rotation of cross section of circular shaft in xy plane

Assume that the angle of twist per unit length α is small. Therefore, θ is small.
Therefore, it can be assumed that sin θ ≈ θ. Therefore, the segment r sin θ ≈ rθ. Consider
also that this segment rθ runs (almost) perpendicularly to r. This means that when
β = 0, r is completely aligned with the x axis, meaning rθ is aligned with the y↔
x2 axis. Conversely if β = 90, r is competely aligned with the y axis and so rθ is
ANTIPARALLEL with the x ↔ x1 axis (runs parallel, but the two ends of rθ go from
right to left, whereas the x axis goes from left to right). These statements mean that
displacement u is completely vertical when β = 0 → cos β = 1, so that u = u2. On the
other hand, u = u1 when β = 90→ sin β = 1. Therefore,{

u1 = −rθ sin β
u2 = rθ cos β.

(410)

Let the x component of r be x and the y component of r be y. Then, r cos β = x and
r sin β = y. (r2 = x2 + y2.) This means that

cos β = x/r, sin β = y/r. (411)

Substituting this in, 
u1 = −rθ(y/r) = −θy = −αzy,
u2 = rθ(x/r) = θx = αzx,

u3 = 0.

(412)
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The corresponding deformation gradient is

[ui,j] =

u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3

 =

 0 −αz −αy
αz 0 αx
0 0 0

 . (413)

The symmetric part of this is

ϵ =
1

2
(u+ uT ) =

1

2

 0 0 −αy
0 0 αx
−αy αx 0

 =
α

2

 0 0 −y
0 0 x
−y x 0

 . (414)

Assuming an isotropic material so that σij = λ��ϵkkδij + 2µϵij,

[σij] = αµ

 0 0 −y
0 0 x
−y x 0

 . (415)

Note that the trace of the strain tensor ϵkk indicates no volume change.
Recall Fig. 2, which says that a stress component σmn is the n-component of traction

t for the surface whose normal is xm. Therefore, the n-components of t for the surface
whose normal is z = x3 are

σ3n = σ3j = αµ{−y x 0}T . (third row). (416)

Note that this vector is orthogonal to the vector {x y 0} because

αµ{−y x 0}T · {x y 0}T = −αµyx+ αµxy = 0. (417)

The vector {x, y, 0} represents a radial vector outward from the center of a cross section
from z = 0 to z = r (because x2 + y2 = r2.) This means that the vector {σ3i}, which
indicates the tractions on the top face, will always be orthogonal/perpendicular to the
radial vector. In other words, for every radial vector, there is a perpendicular traction
components vector. This means that in the same way the radial vectors are symmetrical,
the tractions on the top face also have rotational symmetry, as in Fig. 8. This is called
a shear stress vector since the diagonal stress component σ33 = 0.

Figure 8: Rotational symmetry of shear stress (σ31, σ32) on the top face

If the rod has physical radius R, then the unit normal along the radius of the shaft is

n = {x/R y/R 0}T → x2/R2 + y2/R2 = R2/R2 = 1. (418)
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Then, the traction vector is

t = σn =
αµ

R

 0 0 −y
0 0 x
−y x 0


x
y
0

 =
αµ

R


0x+ 0y − 0y
0x+ 0y + 0x
−yx+ xy + 0

 =


0
0
0

 . (419)

As for the traction components on the surface – that is, where r = R – they vanish. This
is a requirement for the torsional problem because there is an absence of surface forces
assumed. It is also assumed that there is an absence of body forces, meaning for the
equilibrium equation Eq. 381 to be satisfied, then

σij,j +�
�ρfi = σij,j = 0. (420)

Here, σ1j,j = σ11,1 + σ12,2 + σ13,3 = 0 + 0− d
dz
y = 0. Likewise, σ2j,j = σ3j,j = 0. Therefore

the equilibrium equation is satisfied in the absence of body forces, which is a proper
assumption. Als, the compatibility equations need not be validated because we were
given displacement to start with and not strain.
Finally, note that the magnitude of this shear stress is proportional to r. That is, at

r = 0 (the center) the stres is zero and at r = R the stress is maximized. Therefore the
stress written in polar coordinates is some

σzθ = αµr. (421)

The relationship between torque/moment M and twist angle α is

M = r × F = rσA =

∫ ∫
rσdA =

∫ ∫
rσzθrdrdθ (422)

where dA = rdrdθ and the cross product vanishes because the angle between the radius
and the stress, as shown in the figure earlier, is always 90 degrees. Then

M =

∫ 2π

0

∫ R

0

r3αµdrdθ = µα(2π)R4/4 = µπR4α/2 = µαI = GαI = GIθ/L, (423)

where moment of inertia for a circle??? I = πR4/2 and L = z is the outer circle. Then

θ =
ML

IG
(424)

solves for the twist angle. Uniqueness implies that the solution derived is unique and
correct.

7.2 Noncircular shaft

Above was a circular torsion case. But suppose the cross section of the body is not
circular. This leads to the same derivation as the previous section until Eq. 418, where
the normal vector n was always assumed to be {x/R, y/R, 0}, which points from the
center of the circle to a point outside of the circle (x, y) and has length 1. Instead the
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normal cannot always assume to point radially outward in this way. Instead we remove
this assumption and let the normal vector be some general

n = {n1, n2, 0}. (425)

Then from Eq. 419 we get

t = σn =
αµ

R

 0 0 −y
0 0 x
−y x 0


n1

n2

0

 =

 0
0

−yn1 + xn2

 . (426)

Because of our lack of knowledge of the traction vector in z we thus have to remove the
assumption that plane sections remain in the plane. Therefore we have to assume there
could be some z-component of displacement, and this can be represented as

u1 = −αzy
u2 = αzx

u3 = αϕ(x, y),

(427)

where ϕ(x, y) is the warping function. Exactly to what magnitude the shape is warped
could be unique to each point in the plane which is why the function depends on plane
dimensions x, y. Then the displacement gradient is

[ui,j] =

 0 −αz −αy
αz 0 αx
αϕ,x αϕ,y 0

 . (428)

The strain matrix is the symmetric part of the displacement gradient (u)i, j = uj,i)
T/2

or

[ϵij] =
1

2

 0 0 α(ϕ,x − y)
0 0 α(ϕ,y + x)

α(ϕ,x − y) α(ϕ,y + x) 0

 . (429)

If the material is isotropic then

σij = 2µϵij + δij��ϵkkλ→ [σij] = µα

 0 0 (ϕ,x − y)
0 0 (ϕ,y + x)

(ϕ,x − y) (ϕ,y + x) 0

 . (430)

Then traction

t = σn = µα

 0 0 (ϕ,x − y)
0 0 (ϕ,y + x)

(ϕ,x − y) (ϕ,y + x) 0


n1

n2

0

 =


0
0

(ϕ,x − y)n1 + (ϕ,y + x)n2


(431)

if the normal is n = {n1, n2, 0}. This applies to some point on the side of the shaft where
n goes from the center to x, y. Now the top face of the shaft is perpendicular to this (as
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a cylinder’s top face is perpendicular to its side). Normal is always of length 1 and so
the normal vector going from the center to the top face is n = {0, 0, 1}, meaning

t = σn = µα

 0 0 (ϕ,x − y)
0 0 (ϕ,y + x)

(ϕ,x − y) (ϕ,y + x) 0


0
0
1

 =


ϕ,x − y
ϕ,y + x

0

 . (432)

As enforced in the circular problem by Eq. 419, traction must be zero on the sides
because the absence of surface forces is assumed. Therefore, the last component of the
side traction

(ϕ,x − y)n1 + (ϕ,y + x)n2 = 0→ ϕ,xn1 + ϕ,yn2 = n1y − n2x. (433)

The left hand side is the same as

ϕ,xn1 + ϕ,yn2 =
{
ϕ,x ϕ,y 0

}
n1

n2

0

 = ∇ϕ · n =
∂ϕ

∂n
. (434)

Therefore, substituting this in,
∂ϕ

∂n
= n1y − n2x. (435)

Recall that the equilibrium equation

σij,j = 0 (436)

must be satisfied, as the absence of body forces is also assumed. Taking stress components
from Eq. 430,

σ1j,j = (ϕ,x − y),z = 0, (437)

σ2j,j = (ϕ,y + x),z = 0, (438)

σ3j,j = (ϕ,x − y),x + (ϕ,y + x),y = ϕ,xx + ϕ,yy = 0 = ∇2ϕ. (439)

Therefore the warping function must satisfy the 2D Laplace equation. Solutions of these
will be harmonic functions. Therefore the solution to the noncircular shaft reduces to
solving the equations {

∇2ϕ = 0,

ϕ,xn1 + ϕ,yn2 = ∂ϕ/∂n = n1y − n2x.
(440)

PDEs whose boundary conditions specify the value of the unknown function are Dirichlet
problems. However, PDEs whose BCs are given by gradients of functions are called
Neumann problems. This is a Neumann problem.
The resulting moment on top and sides of the shaft is ultimately desired. To do this

first of all we calculate force in x, which is

Fx = txA =

∫
µα(ϕ,x − y)dA. (441)
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Notice that

ϕ,x − y = ϕ,x − y +�������:0
(ϕ,xx + ϕ,yy) = ϕ,x − y + x(ϕ,xx + ϕ,yy) (442)

= (−y + xϕ,xx + ϕ,x) + (xϕ,yy) =
∂

∂x
(−yx+ xϕ,x) +

∂

∂y
(x2 + xϕ,y) (443)

=
∂

∂x
(x(−y + ϕ,x)) +

∂

∂y
(x(x+ ϕ,y)). (444)

Therefore

Fx =

∫
µα

{
∂

∂x
(x(−y + ϕ,x)) +

∂

∂y
(x(x+ ϕ,y))

}
dA. (445)

With the divergence theorem,

Fx = µα

∮
S

{
n1(x(−y + ϕ,x)) + n2(x(x+ ϕ,y))

}
dS (446)

= µα

∮
S

x

{
n1(−y + ϕ,x) + n2(x+ ϕ,y)

}
dS = Fx = 0, (447)

because 2d area is to 1d curve as 3d volume is to 2d surface area. The quantity is zero
because again the force is related to the traction and the traction components must be
zero. This result is similar to that of Fy = 0.
Moment on the top face is

M = rx × Fy + ry × Fx︸ ︷︷ ︸
perpendicular components

= rx × Fy − ry × Fx︸ ︷︷ ︸
Fx=0

=

∫
A

(xt2 − yt1)dA (448)

= µα

∫
A

[(ϕ,y + x)x− (ϕ,x − y)y]dA = µα

∫
A

(ϕ,yx− yϕ,x + x2 + y2)dA. (449)

Recall from the previous section that moment of inertia is

I = πR4/2 =

∫ 2π

0

∫ R

0

r3drdθ =

∫ 2π

0

∫ R

0

(r2)rdrdθ =

∫ ∫
(x2 + y2)dA. (450)

Therefore,

M = µα

(
I +

∫
A

(ϕ,yx− yϕ,x)dA

)
= µαJ, (451)

where

I +

∫
A

(ϕ,yx− yϕ,x)dA = J (452)

is called the torsional constant. Note that if ϕ = 0 then J = I. From Eq. 451,

J − I =

∫
A

(ϕ,yx− yϕ,x)dA =

∫
A

[
∂

∂y
(ϕx)− ∂

∂x
(ϕy)]dA (453)

=

∮
C

(ϕxn2 − ϕyn1)dS =

∮
C

(xn2 − yn1)ϕdS. (454)
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Sustituting in Eq. 435 (∂ϕ
∂n

= n1y − n2x),

J − I =

∮
C

(ϕxn2 − ϕyn1)dS = −
∮
C

∂ϕ

∂n
ϕdS = −

∮
C

(ϕ,xn1 + ϕ,yn2)ϕdS (455)

= −
∮
C

(∇ϕ · n)ϕdS ↔ −
∮
C

(ϕϕ,i)nidS = −
∫
A

(ϕϕ,i),idA (456)

= −
∫
A

(ϕ,iϕ,i + ϕϕ,ii)dA↔ −
∫
A

(∇ϕ · ∇ϕ+ ϕ∇2ϕ)dA = J − I. (457)

Because of Eq. 440a,

J − I = −
∫
A

(∇ϕ · ∇ϕ)dA −→ J = I −
∫
A

(∇ϕ · ∇ϕ)dA. (458)

7.3 Uniqueness of warrping function in torsion problem

To solve the noncircular shaft problem we have to solve for the warping function ϕ such
that {

∇2ϕ = 0,

∂ϕ/∂n = n1y − n2x,
(459)

as stated in Eq. 440. Now consider the logic used to prove uniqueness in Sec 6.1. It
states that if uniqueness of the solution was NOT true then there would be some other
warping function ψ such that ∂ψ/∂n = n1y−n2x. Then the difference of these two would
be the system ∇2λ = 0, ∂λ/∂n = 0. This can be renamed as{

∇2ϕ = 0

∂ϕ/∂n = 0.
(460)

So the uniqueness of this problem is the same as the uniqueness of the earlier problem
because if this is true then it follows that ∂λ/∂n = 0 = ∂ϕ/∂n − ∂ψ/∂n −→ ∂ϕ/∂n =
∂ψ/∂n −→ the solutions are the same and so there is only one solution. From the first
equation of the system,

0 = ∇2ϕ = ϕ,ii −→ 0 =

∫
ϕϕ,iidA =

∫
(ϕϕ,i),idA−

∫
ϕ,iϕ,idA (461)

=

∮
ϕ(ϕ,ini)dS −

∫
A

∇ϕ · ∇ϕdA =

∮
ϕ�����(∂ϕ/∂n)dS −

∫
A

∇ϕ · ∇ϕdA = 0. (462)

Therefore ∫
∇ϕ · ∇ϕdA =

∫
|∇ϕ|2dA = 0. (463)

This implies ∇ϕ = 0 and so ϕ is a constant. This means that the difference between ϕ
and ψ can be at most a constant.
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7.4 Existence of warping function in torsion problem

The solution to the problem of torsion a nonciruclar shaft is related to the solution of ϕ
in {

∇2ϕ = 0

∂ϕ/∂n = ϕ,xn1 + ϕ,yn2 = yn1 − xn2.
(464)

Following the first equation,

0 =

∫
A

∇ϕ2dA =

∫
A

∇ · ∇ϕdA =

∮
S

∇ϕ · ndS =

∮
S

∂ϕ/∂ndS. (465)

=

∮
S

(n1y − n2x)dS =

∫
A

y,1 − x,2dA =

∫
A

∂

∂x
y − ∂

∂y
xdA = 0. (466)

7.5 Some properties of harmonic functions

Functions that satisfy Laplace’s equation are called harmonic functions. Harmonic func-
tions

• (inside a circular domain) have a center value equal to the average of the surrounding
values, and

• achieve their maxima and minima on the boundary.

Physically the first statement is seen in a steady state heat conduction on a circular plate.
All boundary points have equal influence on the center point so the temperature at the
center is the average of the surroundings.

7.6 Stress function for torsion

Recall the stress tensor is

[σ] = µα

 0 0 ϕ,x − y
0 0 ϕ,y + x

ϕ,x − y ϕ,y + x 0

 . (467)

For a certain i (row) the stress components must obey the equilibrium equation

σij,j = 0

if the absence of body forces is assumed. For row three,

σ3j,j = µα(ϕ,x− y),x+µα(ϕ,y +x),y = µα(ϕ,xx+ϕ,yy) = µα∇2ϕ = 0 −→ ∇2ϕ = 0 (468)

must be true. But instead of the expansion carried out as such let us instead assume a
stress function ψ so that

σ31 = ψ,y, σ32 = −ψ,x. (469)
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Then
σ31,1 = ψ,yx, σ32,2 = −ψ,xy. (470)

This leads to the automatic satisfaction of the equilibrium equation in that

σ31,1 + σ32,2 = ψ,yx − ψ,xy = 0 (471)

without any further assumption. Substituting in the appropriate values for σ in Eq. 469,

ψ,y = µα(ϕ,x − y), −ψ,x = µα(ϕ,y + x). (472)

Then
ψ,yy + ψ,xx = ∇2ψ = µα(ϕ,xy − 1− ϕ,yx − 1) = −2µα = ∇2ψ. (473)

Recall that Laplacain is divergence of gradient and so maintains rank. Therefore the
curves ψ(x, y) are constants, just as −2µα is a constant. So, their derivatives are zero.
Taking the derivative of ψ(x, y) with respect specifically to x,

d

dx
ψ(x, y) =

∂ψ

∂x
+
∂ψ

∂y

∂y

∂x
= 0. (474)

Rearranged,
∂y

∂x
= −∂ψ

∂x

/
∂ψ

∂y
. (475)

Substituting in Eq. 469,
∂y

∂x
=
σ32
σ31

=
σzy
σzx

. (476)

This is the change in y relative to the change in x of the curve ψ. In other words it is its
slope. So the tangent vector is

σzyey + σzxex = T. (477)

Recall also that the z ↔ 3 component of the traction vector is

t3 = σ31n1 + σ32n2 = T · n = 0. (478)

This is to say that the dot product of the slope of ψ and the normal vector n is zero,
meaning the stress function is perpendicular to the boundary and so is constant at the
boundary. For convenience we let ψ = 0 because a constant shift in the stress function is
not meaningful since the derivatives of ψ are σ, and this will be zero regardless of what
constant ψ is.
So the two conditions are {

∇2ψ = −2µα, body,

ψ = 0, boundary,
(479)

where
ψ,y = σ31, ψ,x = σ32. (480)
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Note that
∇ψ ·T = σ32σ31 − σ31σ32 = 0, (481)

meaning the rate of change of ψ is perpendicular to the tangent vector. Therefore ∇ψ
happens most when it is perpendicular to ψ (technically the line vector that is tangent
to ψ at a certain point).
Torque/moment at the top face (n = {0, 0, 1}) is

M =

∫
A

(xt2 − yt1) =
∫
A

(xσ23n3 − yσ13n3)dA =

∫
A

xσ32 − yσ31dA =

∫
A

−xψ,x − yψ,ydA

(482)

= −
∫ ∫

x
∂ψ

∂x
dxdy −

∫ ∫
y
∂ψ

∂y
dxdy (483)

= −
∫ (∫

x
∂ψ

∂x
dx

)
dy −

∫ (∫
y
∂ψ

∂y
dy

)
dx. (484)

Integration by parts is ∫
udv = uv −

∫
vdu. (485)

Looking at the first term, if u = x −→ du = dx and dv = (∂ψ/∂x)dx,−→ v = ψ, then

M = −
∫ (

�
�ψx−

∫
ψdx

)
dy −

∫ (
��ψy −

∫
ψdy

)
dx (486)

= 2

∫ ∫
ψdxdy = 2

∫
A

ψdA =M. (487)

If it is also true from Eq. 451 that

M = αµJ, (488)

then

J =
2

µα

∫
A

ψdA. (489)

7.7 Torsion of elliptical cylinder

The ellipse equation is

x2

a2
+
y2

b2
= 1 −→ x2

a2
+
y2

b2
− 1 = 0. (490)

Note a few things, that a = b = 1 leads to a circle equation with r = 1 and that an
increase in |a| leads to stretchiness in x while an increase in |b| leads to strethiness in y.
The boundary of a elliptical cylinder is clearly an ellipse. Also remmeber that the

stress function at the boundary is ψ = 0. This is given by Eq. 479. Therefore,

0 = ψ = c

(
x2

a2
+
y2

b2
− 1

)
. (491)
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Here c is a constant. Remember the other condition contained in Eq. 479 which is that
∇2ψ = −2µα. Therefore

−2µα = ∇2ψ = c

(
2

a2
+

2

b2

)
. (492)

Therefore,

c = −µα
/(

1

a2
+

1

b2

)
. (493)

Substituting this into Eq. 491,

ψ = −µα
(
x2

a2
+
y2

b2
− 1

)/(
1

a2
+

1

b2

)
(494)

= µα

(
1− x2

a2
− y2

b2

)/(
b2

a2b2
+

a2

b2a2

)
(495)

= µα

(
1− x2

a2
− y2

b2

)(
a2b2

a2 + b2

)
(496)

=
µαa2b2

a2 + b2

(
1− x2

a2
− y2

b2

)
= ψ. (497)

From Eq. 489,

J =
2

µα

∫
A

ψdA (498)

=
2a2b2

a2 + b2

∫
A

(
1− x2

a2
− y2

b2

)
dA (499)

=
2a2b2

a2 + b2

[
A− 1

a2

∫
A

(x2 + 0)dA− 1

b2

∫
A

(0 + y2)dA

]
(500)

=
2a2b2

a2 + b2

[
A− 1

a2

∫ 2π

0

∫ a

0

r3drdθ − 1

b2

∫ b

0

r3drdθ

]
(501)

=see end of chapter 2a2b2

a2 + b2

[
πab− π

4
ab− π

4
ba

]
=

πa3b3

a2 + b2
= J. (502)

Using Eq. 497,

ψ,y = σ31 =
µαa2b2

a2 + b2

(
−2y

b2

)
= −2µαa2y

a2 + b2
, (503)

−ψ,x = σ32 = −
µαa2b2

a2 + b2

(
−2x

a2

)
=

2µαb2x

a2 + b2
. (504)

At the boundary,

σ31

∣∣∣∣
y=b

= −2µαa2b

a2 + b2
= −

(
2µαab

a2 + b2

)
a, (505)

σ32

∣∣∣∣
x=a

=

(
2µαba

a2 + b2

)
b. (506)
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7.8 Torsion of rectangular bars: warping function

The torsion problem can be solved in terms of either the warping function or the stress
function: ϕ or ψ, just like the cylindrical bar. Here we start with ϕ. Consider a rectangle
with side lengths 2a = Lx and 2b = Ly. The origin is the center so that the corners
are (a,−b), (a, b), (−a, b), (−a,−b), if starting from the bottom right and going counter-
clockwise. Then, also starting from the bottom right and going CCW, the corresponding
stress functions are 

x = a, ∂ϕ/∂n = ∂ϕ/∂x = y

y = b, ∂ϕ/∂n = ∂ϕ/∂y = −x
x = −a, ∂ϕ/∂n = ∂ϕ/∂x = −y
y = −b, ∂ϕ/∂n = ∂ϕ/∂y = x

∇2ϕ = 0, body.

(507)

So the change in stress function is commensurate with the point on the boundary. That
is if the boundary point is on the right boundary then ∂ϕ/∂n increases as you go ”up”
it, i.e. as y increases.
Notice that these are all odd functions of x and y. That is because they mirror each

other along y = x. That is, f(−x) = −f(x). Because of this the solution to this system
must be antisymmetric in y and x. This means that ∂ϕ/∂n in between the two boundaries
must be exactly zero, from which it can be concluded that ϕ is a constant here, which
we set to zero. Then a reduced system is

x = a, ∂ϕ/∂n = ∂ϕ/∂x = y

y = b, ∂ϕ/∂n = ∂ϕ/∂y = −x
x = 0, ϕ = 0,

y = 0, ϕ = 0,

∇2ϕ = 0, body.

(508)

We then introduce the transformation function w = w(x, y) such that

ϕ(x, y) = xy − w(x, y) (509)

−→ ∂ϕ

∂x
= y − ∂w

∂x
,

∂ϕ

∂y
= x− ∂w

∂y
. (510)

Then,
∂w

∂x
= y − ∂ϕ

∂x
,

∂w

∂y
= x− ∂ϕ

∂y
. (511)

Then, the system becomes

x = a, ∂w/∂x = y − y = 0,

y = b, ∂w/∂y = x− (−x) = 2x,

x = 0, w = 0,

y = 0, w = 0,

body, ∇2w = 0.

(512)
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Using separation of variables the solution to the function w(x, y) can be represented as
some

X(x)Y (y) = w(x, y). (513)

Then

∇2w =
∂2

∂x2
w +

∂2

∂y2
w = X ′′(x)Y (y) +X(x)Y (y)′′ = 0, (514)

which implies
X ′′

X
= −Y

′′

Y
= −λ2, (515)

where λ is some so-called separation constant. The form of Eq. 515 can be used to form
the two separate ODEs

X ′′ = −λ2X, Y ′′ = λ2Y. (516)

These have the solutions

X(x) = A sinλx+B cosλx↔ X = Aeiλx +Be−iλx, (517)

Y (y) = C sinhλy +D coshλy. (518)

Since the stress function is odd across the axes x, y, the established boundary conditions
were w(0, y) = w(x, 0) = 0. Therefore,

X(0)Y (y) = X(x)Y (0) = 0 −→ X(0) = Y (0) = 0 (519)

−→ X(0) = A sinλ0 +B cosλ0 = B = 0, (520)

Y (0) = C sinhλ0 +D coshλ0 = D = 0. (521)

Therefore the solutions reduce to

X(x) = A sinλx, Y (y) = C sinhλy. (522)

The other boundary conditions are ∂w/∂y|y=b = 2x, ∂w/∂x|x=a = 0. Because of the
latter statement,

X ′(a)Y (y) = 0 −→ 0 = X ′(a) = λA cosλx→ λn = (2n− 1)
π

2
. (523)

This is because cos 90 = cos 180 = cos 270 ↔ cos(π/2) = cos(3π/2) = cos(5π/2) =
cos((2n− 1)π/2) = 0. Note that this implies the existence of a series of λ’s with index n,
called λn. Therefore,

X(x) = A sinλnx, Y (y) = C sinhλny, (524)

and altogether,

w = XY =
∞∑
n

An sinλnx sinhλny, (525)
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where AC has been combined (as constants are arbitrarily named) and indexed for each
λn. This series satisfies ∇2w = 0, which was the original statement given by Eq. 514.
Using the final boundary condition y = b→ w = ∂ϕ/∂y = 2x,

2x = XY ′ =
∞∑
n

Anλn sinλnx coshλnb. (526)

Multiplying on both sides,∫ a

0

2x sinλmxdx =
∞∑
n

Anλn coshλnb

∫ a

0

sinλmx sinλnxdx, (527)

where on the right side, ∫ a

0

sinλmx sinλnxdx =

{
0, n ̸= m,

a/2, n = m,
(528)

and on the left side, ∫ a

0

x sinλmxdx =
1

λ2m
(−1)m+1. (529)

Since only n = m remains in the series, it no longer becomes an infinite series, and

ϕ = xy − w = xy − 32a2

π3

∞∑
n=1

−1n+1

(2n− 1)3
1

coshλnb
sinλnx sinhλnym, (530)

and the torsional constant is estimated as

J = I +

∫ b

−b

∫ a

−a

(
x
∂ϕ

∂y
− y∂ϕ

∂x

)
dxdy (531)

≈ 16

3
a3b

[
1− 192a

π5b

∞∑
n=1

tanhλnb

(2n− 1)5

]
= κa3b ≈ J, (532)

where κ depends on the b/a ratio. Particularly,

κ =


2.249, b/a = 1.0,

3.659, b/a = 2.0,

4.661, b/a = 5.0,

5.333, b/a→∞.

(533)

Ignoring higher order terms of the series, another reasonable approximation for the tor-
sional constant is

J ≈ 16

3
a3b

(
1− 192a

π5b
tanh

πb

2a

)
. (534)

Some steps of this derivation are not shown (Li pp. 74-75).
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7.9 Torsion of rectangular bars: stress function

We now move to solving the torsion problem in terms of ψ.
The two conditions on the stress function are Eq. 479, which are{

∇2ψ = −2µα, body,

ψ = 0, boundary.

where
−ψ,x = σ32 = σzy, ψ,y = σ31 = σzx.

One solution to the first equation is

ψ = −µαx2 + C. (535)

Then, ∇2ψ = ∂2ψ/∂x2 = −2µα. Then, let

C = µαa2 + µαv. (536)

Substituting this in,
ψ = µα(a2 − x2) + µαv. (537)

The other boundary conditions are satisfied if
v = 0, x = ±a→ ψ = 0 +���µαv,

v = x2 − a2, y = ±b→ ψ = µα(a2 − x2) + µαv,

∇2v = 0, body→ ∇2ψ = −2µα +����µα∇2v.

(538)

We observe that these boundary conditions are even along axes x and y because f(x) =
f(−x) and likewise f(y) = f(−y). ... The eventual result is

ψ = µα(a2 − x2) + µα
∞∑
n=1

An cosλnx coshλny, (539)

J =
16

3
a3b− a4

(
4

π

)5 ∞∑
n=1

tanhλnb

(2n− 1)5
. (540)

Eq. 540 is similar to Eq. 532.

Note

Letting

y = br sin θ, x = ar cos θ ←− x2

a2
+
y2

b2
= r2(sin2 θ + cos2 θ) = r2 = 1↔ r = 1, (541)

the conversion from the Cartesian space to the polar space is∫
Ω

f(x, y)dA =

∫ ∫
f(r, θ) detJdrdθ. (542)
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See jjmarzia-mae529 pp. 17. The determinant of the Jacobian is

detJ = det

[
∂x/∂r ∂y/∂r
∂x/∂θ ∂y/∂θ

]
= det

[
a cos θ b sin θ
−ar sin θ br cos θ

]
= abr cos2 θ + abr sin2 θ = abr.

(543)
Therefore ∫

A

y2dA =

∫ 2π

0

∫ 1

0

(b2r2 sin2 θ)abrdrdθ = ab3
∫ 2π

0

sin2 θdθ

∫ 1

0

r3dr. (544)

The trig identity

cos 2θ = cos2 θ − sin2 θ = (1− sin2 θ)− sin2 θ = 1− 2 sin2 θ (545)

→ sin2 θ =
1

2
− 1

2
cos 2θ. (546)

Substituting this in, ∫
A

y2dA = ab3
∫ 2π

0

(
1

2
− 1

2
cos 2θ

)
dθ

∫ 1

0

r3dr (547)

= ab3(π − 1

4
sin 2θ|2π0 )

1

4
=

1

4
πab3. (548)

Likewise, ∫
A

x2dA =
1

4
πa3b. (549)
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8 Plane deformation

8.1 Plane strain

A body is in plane strain if u1 = u1(x, y), u2 = u2(x, y), u3 = 0. This means that for each
xy plane with a fixed z, there is no z displacement. In other words, cross sections do not
overlap. For cylindrical bodies this is true if they either have infinite length or have finite
length with fixed ends. Under plane strain conditions,

ϵ31 = ϵ32 = ϵ33 = 0↔ ϵ3j = 0, (550)

because

ϵij =
1

2
(ui,j + uj,i) (551)

→ ϵ31 =
1

2
(u1,3 + u3,1) = 0 + 0 = 0, (552)

etc. Now, recall Eq. 357, which is strictly a way to compute diagonal strain elements of
isotropic materials. It is

ϵ33 = −
σ11
E
ν − σ22

E
ν +

σ33
E
.

This implies
0 = −σ11ν − σ22ν + σ33 −→ σ33 = ν(σ11 + σ22). (553)

Using Eq. 333 (σij = δijϵkkλ+2µϵij), it is known that σij = σij(x, y) because this is true
of ϵij = ϵij(x, y), and this is the case because of the displacements. Therefore

σ11 = σ11(x1, x2)

σ22 = σ22(x1, x2)

σ33 = ν(σ11 + σ22)

σ12 = σ12(x1, x2)

σ23 = 0

σ13 = 0.

(554)

Recall the equilibrium equation Eq. 275, which comes from Eq. 261 → Eq. 275. It
assumes the absence of body acceleration. It is

σij,j + ρfi = 0.

Using this,
0 = σ11,1 + σ12,2 + σ13,3 + ρf1 = σ(x, y) + f1 = 0→ f1 = f1(x, y),

0 = σ21,1 + σ22,2 + σ23,3 + ρf2 = σ(x, y) + f2 = 0→ f2 = f2(x, y),

0 = σ3j,j + f3 = 0→ f3 = 0.

(555)

So there is no z component of the body force, only x, y components. Of the compatibility
equations Eq. 190 there is only one nontrivial iteration, and that is

2ϵ21,12 = ϵ11,22 + ϵ22,11

because it does not involve any 3−components.
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8.2 Plane stress

Recall that plane strain implies ϵ3j = 0.Very similarly, a body is in a state of plane stress
if

σ3j = 0↔ σ31 = σ32 = σ33 = 0. (556)

Hooke’s law is Eq. 333 (σij = λϵkkδij + 2µϵij), and so
σ31 = 0 = 2µϵ31 → ϵ31 = 0,

σ32 = 0 = 2µϵ32 → ϵ32 = 0,

σ33 = 0 = λϵ11 + λϵ22 + (λ+ 2µ)ϵ33,

(557)

the last statement implying

ϵ33 = −
λ

λ+ 2µ
(ϵ11 + ϵ22). (558)

If Eq. 349 is true (ν = λ/(2λ+ 2µ)), then

− λ

λ+ 2µ
=
−λ/(2λ+ 2µ)

λ+ 2µ/(2λ+ 2µ)
(559)

=
−ν

−λ+ 2λ+ 2µ/(2λ+ 2µ)
=
−ν
−ν + 1

. (560)

Therefore,

ϵ33 = −
ν

1− ν
(ϵ11 + ϵ22). (561)

Again because of Eq. 357, if the material is isotropic then

ϵ33 = −
σ11
E
ν − σ22

E
ν +

�
��
σ33
E

=
−ν
E

(σ11 + σ22). (562)

The static equilibrium equations Eq. 275, or

σij,j + ρfi = 0 (563)

imply 
0 = σ11,1 + σ12,2 + σ13,3 + ρf1,

0 = σ21,1 + σ22,2 + σ23,3 + ρf2,

0 = σ31,1 + σ32,2 + σ33,3 + ρf3 = ρf3 → f3 = 0.

(564)

Of the compatibility equations Eq. 190 there is only one nontrivial iteration, and that is

2ϵ21,12 = ϵ11,22 + ϵ22,11

because it does not involve any 3−components.
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8.3 Formal equivalence between plane stress/plane strain

Restating the inverse Hooke’s law of Eq. 357,

ϵxx =
1

E
σxx −

ν

E
σyy −

ν

E
σzz, (565)

ϵyy = −
ν

E
σxx +

1

E
σyy −

ν

E
σzz, (566)

ϵzz = −
ν

E
σxx −

ν

E
σyy +

1

E
σzz. (567)

8.3.1 Plane stress

In plane stress conditions where σzz = 0,

ϵxx =
1

E
σxx −

ν

E
σyy →

{
σxx = Eϵxx + νσyy

σyy = −E
ν
ϵxx +

1
ν
σxx

(568)

ϵyy =
−ν
E
σxx +

1

E
σyy →

{
σxx = E

−ν
ϵyy +

1
ν
σyy

σyy = Eϵyy + νσxx.
(569)

Substituting the first branched equation into the fourth,

σyy = Eϵyy+ν(Eϵxx+νσyy) = Eϵyy+νEϵxx+ν
2σyy −→ σyy =

E

1− ν2
(ϵyy+νϵxx). (570)

Substituting the second branch into the third,

σxx = −E
ν
ϵyy +

1

ν
(−E

ν
ϵxx +

1

ν
σxx) = −

E

ν
ϵyy −

E

ν2
ϵxx +

1

ν2
σxx

→ σxx

(
1

ν2
− 1

)
= E(

1

ν
ϵyy +

1

ν2
ϵxx)

→ σxx

(
1− ν2

ν2

)
= E(

1

ν
ϵyy +

1

ν2
ϵxx)

→ σxx =
E

1− ν2
(νϵyy + ϵxx). (571)

Then substituting these results into Eq. 567,

ϵzz = −
ν

E
(σxx + σyy) = −

ν

E

E

1− ν2
(ϵyy + νϵxx + νϵyy + ϵxx) (572)

= − ν

(v + 1)(−v + 1)
((v + 1)(ϵyy + ϵxx)) (573)

= − ν

−v + 1
(ϵyy + ϵxx) = ϵzz. (574)
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8.3.2 Plane strain

Also using Eq. 567 but assuming instead plane strain conditions or ϵzz = 0,

0 = − ν
E
σxx −

ν

E
σyy +

1

E
σzz (575)

−→ σzz = ν(σxx + σyy) (576)

which implies, using Eqs. 565-566,

ϵxx =
1

E
σxx −

ν

E
σyy −

ν2

E
(σxx + σyy) =

1− ν2

E
σxx −

ν + ν2

E
σyy, (577)

ϵyy = −
ν

E
σxx +

1

E
σyy −

ν2

E
(σxx + σyy) = −

ν + ν2

E
σxx +

1− ν2

E
σyy. (578)

Let the constants

1

Ē
=

1− ν2

E
,

ν̄

Ē
=
ν + ν2

E
−→ ν̄ =

ν(ν + 1)

E

E

1− ν2
=

ν(ν + 1)

(ν + 1)(−ν + 1)
(579)

8.3.3 Conversion

=
ν

−ν + 1
= ν̄, Ē =

E

−ν2 + 1
. (580)

This is the conversion between plane stress results and plane strain results. So if one
obtains results for plane stress they can substitute E, ν with Ē, ν̄ and in doing so obtain
results for plane strain. This is because if this is substituted into Eqs. 577,578, then

ϵxx =
1

Ē
σxx −

ν̄

Ē
σyy, (581)

ϵyy = −
ν̄

Ē
σxx +

1

Ē
σyy, (582)

and this in stead of E, ν perfectly matches up with ϵxx, ϵyy in plane stress conditions,
represented by Eqs. 568,569.

8.4 Compatibility equation in terms of stress

Recall that for 2d plane stress/plane strain problems, the only nontrivial compatibility
equation which remains is

2ϵ21,12 = ϵ11,22 + ϵ22,11. (583)

If the material is isotropic then Eq. 338 is used to obtain

ϵ11 =
1

E
σ11 −

ν

E
σ22, (584)

ϵ22 = −
ν

E
σ11 +

1

E
σ22, (585)
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ϵ12 =
1

2µ
σ12 =

1 + ν

E
σ12 −→ 2ϵ12 = 2

1 + ν

E
σ12, (586)

where the last equation is obtained from the conversion between µ and E which is intro-
duced in Eq. 351. Substituting these into Eq. 583,

2
1 + ν

E
σ12,12 =

1

E
σ11,22 −

ν

E
σ22,22 −

ν

E
σ11,11 +

1

E
σ22,11 (587)

implies
2(1 + ν)σ12,12 = σ11,22 − νσ22,22 − νσ11,11 + σ22,11. (588)

At the same time, static equilibrum conditions with zero body force is assumed so that{
σ11,1 + σ12,2 = 0,

σ21,1 + σ22,2 = 0,
(589)

meaning
σ12,21 = −σ11,11, (590)

σ21,12 = −σ22,22. (591)

By the arbitrariness of the order in which partial derivatives are taken, and by virtue of
the stress tensor being symmetric,

σ12,21 = σ21,12. (592)

Therefore,
σ12,12 = −σ11,11 = −σ22,22. (593)

Therefore,
σ12,12 + σ12,12 = −σ11,11 − σ22,22 = 2σ12,12. (594)

Substituting this into Eq. 588,

−(1 + ν)(σ11,11 + σ22,22) = −ν(σ11,11 + σ22,22) + (σ11,22 + σ22,11) (595)

−→ −(σ11,11 + σ22,22)−(((((((((
ν(σ11,11 + σ22,22) = −(((((((((

ν(σ11,11 + σ22,22) + (σ11,22 + σ22,11). (596)

This leaves
σ11,11 + σ11,22 + σ22,11 + σ22,22 = 0, (597)

or
(σ11 + σ22),11 + (σ11 + σ22),22 = ∇2(σ11 + σ22) = 0. (598)

This is the stress compatibility equation which is valid both for isotropic, static materials
under no body forces and under plane stress and plane strain conditions (as there is no
dependence on material constants).
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8.5 Airy stress function

A so-called Airy stress function U automatically solves the static equilibrium equations
if it is defined as

σ11 = U,22, σ22 = U,11, σ12 = −U,12 = −U,21. (599)

This is because

σij,j = 0→

{
σ11,1 + σ12,2 = U,221 − U,212 = 0

σ21,1 + σ22,2 = −U,121 + U,112 = 0.
(600)

That is because the partial derivative order is arbitrary. Substituting U into the stress
compatibility equation Eq. 598,

0 = ∇2(U,11 = U,22) = U,1111 + U,1122 + U,2211 + U,2222 (601)

=

(
∂2

∂2x
+

∂2

∂2y

)(
∂2

∂2x
+

∂2

∂2y

)
U = ∇2∇2U = ∇4U = 0. (602)

This is called the biharmonic equation, which U satisfies in 2d. The Airy function is
useful if you

• Let U be different polynomials of various degrees to see what problem is solved
(Sec. 8.6), or

• pose a problem of interest and attempt to solve it using the Airy function definition
(Sec. 8.7).

In accordance with the above citations, the next sections are dedicated to applying these
methods.

8.6 Polynomial solutions of the biharmonic equation

If
U =

a

2
x2 − bxy + c

2
y2 (603)

Then
U,xx = σyy = a, U,yy = σxx = c, −U,xy = σ12 = b. (604)

This means that all the stress components are constant. a, c are constant diagonal el-
ements, meaning they are uniform tension/compression parameters. Constant b is a
uniform shear parameter.
If

U =
1

6
ax3 +

1

2
bx2y +

1

2
cxy2 +

1

6
dy3 (605)

then

U,xx = σyy = ax+ by, U,yy = σxx = +cx+ dy, −U,xy = σxy = −bx− cy. (606)
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Different problems emerge from how the constants are set.
For example if only d ̸= 0 but a, b, c = 0, then only the term σxx = dy remains and it is a

case of uniform bending where, because of the linear form, y < 0→ σ < 0, y > 0→ σ > 0.
So the body is bent where the top half is a tension while the bottom half is a compression.
If only b ̸= 0 but a, c, d = 0, then only σyy = by, σxy = −bx remain. So the stress has

four different overall behaviors based on the quadrants (x, y), (−x, y), (x,−y), (−x,−y),
if the origin is the center.
Letting U be a fourth order polynomial or high does not necessarily satisfy the equation
∇4U = 0. That is, constants remain. They are not all eliminated in the process of taking
derivatives. Therefore the coefficients can not be picked arbitrarily.

8.7 Bending of a narrow cantilever of rectangular cross section
under end load

Consider a beam fixed at x = L and free at x = 0 (so that the free end is the origin) and
depth d. If the thickness of the beam in the z direction is h ≪ d then we can assume
plane stress conditions because then the stress does not change virtually at all across
the depth. So, the beam can be treated in 2 dimensions as a plane. We are solving for
displacement due to the applied load P.
The stress in x will be proportional to x and y; particularly it will be higher as both x

and y increase. So the quantity

σxx = c1xy = U,yy (607)

is chosen. Taking antiderivatives,

U,y =
1

2
c1xy

2 + f1(x), (608)

U =
1

6
c1xy

3 + yf1(x) + f2(x). (609)

It is known that U satisfies the biharmonic equation and so

0 = ∇4U = U,xxxx + 2U,xxyy + U,yyyy = yf ′′′′
1 (x) + f ′′′′

2 (x). (610)

The only way for this to be true of all y is the trivial solution, which is f ′′′′
1 (x), f ′′′′

2 (x) = 0.
That is because if f ′′′′

2 is some constant, then y can change and make the product yf ′′′′
1

change, but f ′′′′
2 cannot change. So both must go to zero so that a change in y does not

change the relationship. Therefore,

f1(x) = c2x
3 + c3x

2 + c4x+ c5, (611)

f2(x) = c6x
3 + c7x

2 + c8x+ c9. (612)

Substituting this in,

U =
1

6
c1xy

3 + y(c2x
3 + c3x

2 + c4x+ c5) + (c6x
3 + c7x

2 + c8x+ c9). (613)
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Then the other stress components are automatically supported by the equilibrium equa-
tion and are

σyy = U,xx = 6c2yx+ 2c3y + 6xc6 + 2c7, (614)

σxy = −U,xy = −
1

2
c1y

2 − 3c2x
2 − 2c3x− c4. (615)

There is an assumption of a lack of external stresses, meaning the boundary is traction
free, and this means that σyy(y = ±d/2) = 0. Therefore,

0 = 3c2dx+ c3d+ 6xc6 + 2c7, 0 = −3c2dx− c3d+ 6xc6 + 2c7. (616)

Setting these equal,

3c2dx+ c3d+ 6xc6 + 2c7 = −3c2dx− c3d+ 6xc6 + 2c7 (617)

→ 3c2dx+ c3d = −3c2dx− c3d→ c2 = c3 = 0. (618)

→ 6xc6 + 2c7 = 0→ c6 = c7 = 0. (619)

So all the coefficients c2, c3, c6, c7 = 0 and therefore the system becomes

σxx = c1xy, σyy = 0, σxy = −
1

2
c1y

2 − c4. (620)

The same assumption implies a lack of shear on the boundary, so that σxy(y = ±d/2) = 0.
Therefore,

0 = −1

2
c1
d2

4
− c4, (621)

meaning

c4 = −
1

8
c1d

2. (622)

Substituting this in,

σxx = c1xy, σyy = 0, σxy = −
1

2
c1y

2 +
1

8
c1d

2 = −1

8
c1(4y

2 − d2). (623)

Suppose we are analyzing the load/force of magnitude P , based on the stress experienced
by a cross section of thickness h << d and depth d. Then the force

−P =

∫ d/2

−d/2

σxyhdy, (624)

where the shear component is used because the load P in the diagram is applied in the
y direction on a surface whose normal is x. The sign of P is negative because of the sign
convention of shear stress.
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Note

(At x < 0, σxy pointing down is positive. The axes usually goes from left to right with
the origin at the fixed end, meaning the bar normally goes from x = 0 (fixed) to x = L
(free). However in this example the axes go from right to left so that x = −L (free) and
x = 0 (fixed). ALSO, the origin is reset to the free end so that x = 0 (free and x = L
(fixed). So that is why P is negative despite the application of load being at x = 0 by
name. Conventionally it would be x = −L.)
Substituting in σxy,

−P =

∫ d/2

−d/2

(−1

2
c1y

2 +
1

8
c1d

2)hdy = −1

8
c1h

∫ d/2

−d/2

(4y2 − d2)dy (625)

= −1

4
c1h(

4

3
(d/2)3 − d2(d/2)) = −1

4
c1h(d

3/6− 3d3/6) =
1

12
c1hd

3 (626)

−→ P = − 1

12
c1hd

3. (627)

Rearranging,

c1 = −
12P

hd3
= − 12

hd3
P = −P/I, (628)

where moment of inertia

I =
hd3

12
(629)

Substuting this into the system,

σxx = −P
I
xy, σyy = 0, σxy = −

P

8I
(4y2 − d2). (630)

Now that the stresses are computed, the strain/stress Inverse Hooke Law Eq. 357 can be
summoned, and that is

ϵxx =
1

E
σxx −

�
�
�ν

E
σyy = −

Pxy

IE
, (631)

ϵyy = −
ν

E
σxx +

�
�
�1

E
σyy =

νPI

xyE
(632)

2ϵxy =
σxy
µ

=

(
1 + ν

E

)(
− P
8I

(4y2 − d2)
)
=

(1 + ν)P

8EI
(d2 − 4y2) (633)

Of course,

ϵxx =
∂u

∂x
, ϵyy =

∂v

∂y
, ϵxy =

1

2

(
∂u

∂y
+
∂v

∂x

)
. (634)

Then, the procedure of Li pg. 90-92 can be followed, which is analogous to that of Sec.
2.7. The eventual result is

u = − P

2EI
x2y +

P

3EI
(1 + ν/2)y3 +

P

2EI

[
L2 − (1 + ν)

d2

2

]
y, (635)
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v =
νPxy2

2EI
+
Px3

6EI
− PL2x

2EI
+
PL3

3EI
, (636)

and

u(L, y)≪ u(0, y) ≈ PL2y

2EI
= O(L2y). (637)

It is important to note that this solution requires the assumption in elementary beam
theory that u(L, 0) = v(L, 0) = ∂v

∂x
(L, 0) = 0, remembering that x = L is the fixed end.

So, it is assumed that the fixed end in the middle of the bar moves none whatsoever.
These boundary conditions can be applied after finding u and v in terms of unknown
constants, in order to solve for those constants.
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Page dedicated to working out the rest of the cantilever problem by hand.
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8.8 Bending of a beam by uniform load

Consider the uniformly loaded beam of length 2L and depth 2d. If q is the force per
length then the total force is 2qL, and the reaction to this is shared by the two ends
each with magnitude qL. If thickness h≪ d then we can assume plane stress conditions
because it can be assumed that there is no change in stress across the beam, and so the
beam can be treated like a 2 dimensional plane.
Recall the sign conventions for shear components in Fig. 2. On the left side, positive

is down. On the right side, positive is up. Similarly, on the top side positive is to the
right and on the bottom side positive is to the left. So since the shear stress on both
sides is pointing down, the left side will be positive and the right side will be negative.
Particularly, ∫ d

−d

σxy(±L, y)dy = ∓qL
h
. (638)

With that in mind, the other nonzero boundary condition is

σyy(x,−d) = −
q

h
. (639)

It is negative because the bottom of the body is pushing back up, and up is negative on
the bottom side.
Finally other boundaries are set to zero. Those are stress on the top side, and shear

components on both the top and the bottom. So,

σxy(x,±d) = 0, (640)

σyy(x, d) = 0. (641)

Finally, there is no net moment at the left and right ends. This means∫ d

−d

σxx(±L, y)dy = 0, (642)

r × F = r × σA ∼
∫ d

−d

yσxx(±L, y)dy = 0. (643)

A fifth order polynomial U with a total of 6+5+4+3=18 terms is utilized for the Airy
function. That is, 6 fifth-order terms x5t0, x4y1, . . . , x0y5, 5 fourth-order terms, etc. down
to second order terms. Linear terms and constants do not affect the stress field since the
second derivative of the Airy function is how the stress field is defined. Therefore, they
are set to zero.
To solve this problem, it is not much different than the method used in Sec. 8.7. It is

known that Using
∇4U = 0, (644)

and also that
σxx = U,yy, σyy = U,xx, σxy = −U,xy. (645)

Then, the problem is simplified in the fact that because σ−x,y = −σx,y, it is an odd
function and so
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The moment of inertia of the cross sectional area in this example with respect to the
z axis is

I =
2

3
hd3, (646)

and the stress field is solved as

σxx = − q

2I
(L2 − x2)y + q

I
(
1

3
y3 − 1

5
d2y), (647)

σyy = −
q

6I
y3 +

qd2

2I
y − qd3

3I
, (648)

σxy = −
q

2I
(d2 − y2)x. (649)
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9 General theorems of infinitesimal elastostatics

9.1 Work theorem

A stress field is statitically admissible if{
σij,j + ρfi = 0,

σijnj = Ti.
(650)

Here Ti is the surface force/traction vector. Static admissibility requires smoothness of
the stress field.
A strain field is kinematically admissible if{

ϵij =
1
2
(ui,j + uj,i)

ui = Ui,
(651)

where Ui are the boundary displacements. Kinematic admissibility assumes smoothness
of the displacement fields.
Note that these stress and strain fields need not necessarily be related to the same

problem.
The work done by surface tractions is∮

S

TiuidS =

∮
S

σijnjuidS =

∫
(σijui),jdV =

∫
V

σij,jui + σijui,jdV (652)

=

∫
V

−ρfiui + σijϵijdV =

∮
S

TiuidS. (653)

Rearranging, ∮
S

TiuidS +

∫
V

ρfiuidV =

∫
V

σijϵijdV. (654)

The way to interpret Eq. 654 is this. Work done by surface tractions and body forces
is equal to a strain energy computing the stress and strain of the two, not necessarily
identical problems. Eq. 654 is called the work theorem.
The work theorem can be reverse engineered. That is, given σij, fi, and Ti, if the work

theorem is true for these then σij is also statically admissible. Starting with the RHS of
Eq. 654,∫

V

σijϵijdV =

∫
V

σijui,jdV =

∫
V

[(σijui),j − σij,jui]dV =

∮
S

σijuinjdS −
∫
V

σij,juidV.

(655)
Substituting this into the LHS,∮

S

TiuidS +

∫
V

ρfiuidV =

∮
S

σijuinjdS −
∫
V

σij,juidV. (656)

Rearranged, ∮
S

(σijnj − Ti)uidS =

∫
V

(ρfi + σij,j)uidV. (657)
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If the work theorem holds for all displacements then this means it holds in particular if
the surface displacements are zero, meaning the surface term goes to zero and

∫
V

(ρfi + σij,j)uidV =
�
�

���
0∮

S

(...) = 0, (658)

meaning
ρfi + σij,j = 0 (659)

always, in order for the LHS to hold for all volumetric body displacements ui. Then
releasing the earlier surface displacements assumption,

0 =

∮
S

(σijnj − Ti)uidS, (660)

meaning
σijnj + Ti. (661)

9.2 Betti’s reciprocal theorem

Suppose we have knowledge of some σij, ρfi, Ti, ui, ϵij for one problem, and suppose we also
know some other set σ̄ij, ρf̄i, T̄i, ūi, ϵ̄ij for a second elasticity problem with the same body.
(That is, a different displacement/strain/stress response that the same body exhibits in
response to two different conditions.) Betti’s theorem is that given these two sets, the
work done by the first system of forces acting through the displacements of the second
system is equal to the second system of forces acting through the displacements of the
first system. That is, F(1)u(2) = F(2)u(1) = W . More specifically,∫

V

ρfiūidV +

∮
S

TiūidS =

∫
V

ρf̄iuidV +

∮
S

T̄iuidS. (662)

To prove this we substitute in the work theorem Eq. 654 in for the LHS to get∫
V

ρfiūidV +

∮
S

TiūidS =

∫
V

σij ϵ̄ijdV. (663)

Substituting it in for the RHS,∫
V

ρf̄iuidV +

∮
S

T̄iuidS =

∫
V

σ̄ijϵijdV. (664)

These two sides become equal because

σij ϵ̄ij = cijklϵklϵ̄ij = cklijϵij ϵ̄kl = σ̄ijϵij. (665)
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9.3 Variational principles

If function
F (x) = x ·Mx− 2x · y, (666)

then the minimum of this function is located (not uniquely) by where F ′(x) = δF (x) = 0,
or

0 = δx ·Mx+ x ·Mδx− 2δx · y (667)

↔ δxiMijxj + xiMijδxj − 2δxiyi (668)

= δxiMijxj + δxjMjixi − 2δxiyi (669)

↔ δx ·Mx+ δx ·MTx− 2δx · y (670)

= δx · (Mx+MTx− 2y) (671)

= 2δx · (1
2
(M+MT )x− y) = 0 (672)

→ 1

2
(M+MT )x− y = 0 −→ y =

1

2
(M+MT )x (673)

for any δx and therefore for any x. If M is symmetric, then

Mx = y. (674)

So the function y determines the minimization of F .
Let us consider how this applies to strain energy

W (u) =
1

2

∫
V

cijklϵklϵijdV =
1

2

∫
V

cijkluk,lui,jdV. (675)

Let ū↔ y be the minimizing displacement, and let a slightly different displacement field
be ū(x) + ϵη(x) such that

f(ϵ) = W (ū+ ϵη) > W (ū) (676)

by virtue of ū being a minimum. Then

f(ϵ) =
1

2

∫
V

cijkl[ui,j + ϵηi,j][uk,l + ϵηk,l]dV (677)

=
1

2

∫
V

cijklui,juk,l +
1

2

∫
V

cijklui,jϵηk,ldV +
1

2

∫
V

cijklϵηi,juk,ldV +
1

2

∫
V

cijklϵ
2ηi,jηk,ldV

(678)

= W (ū) + ϵ

(∫
V

cijklui,jηk,ldV

)
+ϵ2W (η) = W (ū) + ϵQ(ū,η) + ϵ2W (η) = f(ϵ). (679)

Then
f ′(ϵ) = Q(ū,η) + 2ϵW (η). (680)
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Minimizing,

0 = f ′(0) = Q(ū,η) =

∫
V

cijklūi,jηk,ldV =

∫
V

cklijūi,jηk,ldV =

∫
V

σ̄klηk,ldV =

∫
V

σ̄ijηi,jdV

(681)

=

∫
V

[(σ̄ijηi),j − σ̄ij,jηi]dV =

∮
S

σ̄ijηinjdS −
∫
V

σ̄ij,jηidV. (682)

Because of the boundary conditions ui = Ui, therefore ηi = 0 on the surface and so∮
S

σ̄ijηinjdS = 0. (683)

Substituting this in,

0 = f ′(0) = −
∫
V

σ̄ij,jηidV (684)

which, if this is to be true for all η, implies

σ̄ij,j = 0. (685)

What this means is that the stress corresponding to the minimized displacements satisfies
the static equlibrium equation.

9.4 Theorem of minimum potential energy

In the previous section it was assumed that there are no body forces, and the displace-
ments are prescribed over the entire surface. A more general prescription is that the
surface has some amount of displacement boundary conditions and some amount of trac-
tion boundary conditions. Recall that an admissible displacement field is one which
satisfies the strain displacement relation ϵij = sym(ui,j), the boundary displacements
ui = Ui, and that the displacement fields are smooth enough to yield strains. This set of
conditions assumes

• cijkl = cklij,

• cijklϵklϵij > 0,

• the region Su on which the set of surface displacements Ui are imposed is not a line.

This is the theory of minimal potential energy, and it states that if u is admissible then
total work done

W (u) =
1

2

∫
V

cijklui,kuk,ldV −
∫
V

ρfiuidV −
∫
St

TiuidS (686)

implies 
(cijkluk,l),j + ρfi = 0,

ūi = Ūi,

σ̄ijnj = (cijkluk,l),jnj = Ti,

W (ū) < W (u).

(687)
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A way to state it is this. If a displacement field can satisfy the displacement boundary
conditions, potential energy W achieves its minimum for displacement fields that cor-
respond to a state of equilibrium. That is, the corresponding stresses obtained using
Hooke’s Law satisfy the equilibrium and traction boundary conditions. To prove this we
find the minimum of W , which is setting to zero the derivatiev

0 = δW (u) =
1

2

∫
V

[cijklδui,juk,l + cijklui,jδuk,l]dV −
∫
V

ρfiδuidV −
∫
St

TiδuidS (688)

=

∫
V

cijklδui,juk,ldV −
∫
V

ρfiδuidV −
∫
St

TiδuidS (689)

=

∫
V

[(cijklδuiuk,l),j − δui(cijkluk,l),j]dV −
∫
V

ρfiδuidV −
∫
St

TiδuidS (690)∮
S

cijklδuiuk,lnjdS −
∫
V

[δui(cijkluk,l),j − ρfiδui]dV −
∫
St

TiδuidS = 0 (691)

−→
∮
S

[cijkluk,lnj − Ti]dS −
∫
V

[(cijkluk,l),j − ρfi]dV = 0. (692)

This implies {
cijkluk,lnj − Ti = 0 −→ σijnj = Ti,

(cijkluk,l),j + ρfi = 0 −→ σij,j + ρfi = 0,
(693)

which is already known, and so the first three statements Eq. 687 of the MPE theorem
Eq. 686 is proved. To prove the fourth, consider some displacement field slightly greater
than the equilibrium displacement field

ū(x) + ϵη(x) > ū(x) (694)

where
η = 0 on Su. (695)

Then

f(ϵ) = W (ū+ϵη) =
1

2

∫
V

cijkl[ui,j+ϵηi,j][uk,l+ϵηk,l]dV−
∫
V

ρfi[ui−ϵηi]dV−
∮
St

Ti[ui−ϵηi]dS

(696)

=
1

2

(∫
V

cijklui,juk,l+cijklui,jϵηk,l+cijklϵηi,juk,l+ϵ
2cijklηi,jηk,l

)
−
∫
V

ρfi[ui−ϵηi]dV−
∮
St

Ti[ui−ϵηi]dS

(697)

= W (ū) + ϵ

[
Q(ū,η)−

∫
V

ρfiηidV −
∮
S

TiηidS

]
+
1

2
ϵ2
∫
V

cijklcijklηi,jηk,ldV. (698)

The minimum is where f ′(0) = 0 and f ′′(0) > 0. That is

0 =

∫
V

cijklηi,juk,ldV −
∫
V

ρfiηidV −
∮
S

TiηidS +
����������
0

∫
V

cijklηi,jηk,ldV , (699)

=

∫
V

σijηi,jdV −
∫
V

ρfiηidV −
∮
St

TiηidS (700)
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=

∫
V

[(σijηi),j − σij,jηi]dV −
∫
V

ρfiηidV −
∮
St

TiηidS (701)

=

∮
St

σijηinjdS −
∫
V

ηi(σij,j + ρfi)dV −
∮
St

TiηidS (702)

−→ 0 =

∮
St

(σijnj − Ti)dS −
∫
V

(σij,j + ρfi)dV (703)

→ σijnj = Ti, σij,j + ρfi = 0, (704)

and

0 <

∫
V

cijklηi,jηk,ldV, (705)

meaning
f(ϵ) = W (ū+ ϵη) = W (ū) + term greater than zero. (706)

Therefore for any η, ϵ, it causes the potential energy W to increase. Therefore W (ū) is
an absolute minimum and the fourth statement in Eq. 687 is proven.

9.5 Minimum complementary energy

A stress field σij is statically admissible if{
σij,j + ρfi = 0,

σijnj = Ti,
(707)

where
σij = cijklϵkl. (708)

Strain energy density

w =
1

2
σijϵij =

1

2
cijklϵklϵij > 0. (709)

The inverse hooke law can be written as

ϵij = sijklσkl, (710)

where s = c−1. Then strain energy density

w =
1

2
sijklσklσij > 0. (711)

Now let us define complementary energy Ŵ as the sum of the internal strain energy
and the potential of the boundary forces acting through the prescribed displacements
(force*distance=work). Then

Ŵ =

∫
V

1

2
sijklσklσij −

∮
S

σijnjUidS. (712)

Here, Ui are the set of prescribed displacements on the boundary.
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The minimum complementary energy theorem is this. The complementary energy
achieves its absolute minimum for the stress field which is that of the equilibrium state.
That is, a stress field which satisfies the compatibility equations. To prove this, suppose
σ̄ij is the equilibrium state. Then let

σij = σ̄ij +∆σij. (713)

We want to prove that
Ŵ (σ̄ij +∆σij) > Ŵ (σ̄ij). (714)

To do this we analyze the quantity

Ŵ (σ̄ij +∆σij)− Ŵ (σ̄ij) (715)

=

∫
V

1

2
sijkl(σ̄ij+∆σij)(σ̄kl+∆σkl)dV−

∮
S

(σ̄ij+∆σij)njUidS−
∫
V

1

2
sijklσ̄klσ̄ij−

∮
S

σ̄ijnjUidS.

(716)

=

∫
V

sijklσ̄ij∆σkldV+

∫
V

1

2
sikjl∆σij∆σkldV︸ ︷︷ ︸

strain energy definition: must be>0

−
∮
S

∆σijnjUidS = Ŵ (σ̄ij+∆σij)−Ŵ (σ̄ij).

(717)
The middle term, as written, must be a positive number as it is a strain energy density
term by definition. Therefore,

Ŵ (σ̄ij +∆σij)− Ŵ (σ̄ij) >

∫
V

sijklσ̄ij∆σkldV −
∮
S

∆σijnjUidS (718)

=

∫
V

ϵ̄kl∆σkldV −
∮
S

∆σijnjUidS (719)

=

∫
V

ūi,j∆σijdV −
∮
S

∆σijnjUidS (720)

=

∫
V

[(∆σijūi),j −∆σij,jūi]dV −
∮
S

∆σijnjUidS (721)

=

∮
S

∆σijūinjdS −
∫
V

∆σij,jūidV −
∮
S

∆σijnjUidS. (722)

The middle term vanishes because if

σij − σ̄ij = ∆σij (723)

and if
σij,j + ρfi = 0, σ̄ij,j + ρfi = 0 (724)

then
∆σij,j = σij,j − σ̄ij,j = −ρfi + ρfi = 0. (725)

Then,

Ŵ (σ̄ij +∆σij)− Ŵ (σ̄ij) =

∮
S

∆σijūinjdS −��������
∫
V

∆σij,jūidV −
∮
S

∆σijnjUidS. (726)

As ūi = Ui → ūi − Ui = 0,

Ŵ (σ̄ij +∆σij)− Ŵ (σ̄ij) > 0. (727)
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