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1 Mod1 Linear algebra

1.1 Lec 1a Matrices

Matrix equations
Ax = b (1)

represent sets of linear algebraic equations or LAEs. A is the system matrix with shape
mxn, where m is rows and n is columns. x is unknown vector with shape nx1, and b is
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the known vector with shape nx1.
The matrix eigenproblem is

Ax = λx. (2)

A is the nxn system matrix, λ is a scalar eigenvalue, and x is the nx1 eigenvector. This
is saying that there is some xλ such that a system matrix A transforms x into a vector
parallel to itself λx. Rearranged,

x(A− λI) = 0. (3)

Solving Eq. 1 can be done by isolating the unknown x, so that

x = A−1b, (4)

provided A−1,b are known or able to be calculated.
If a matrix A is mxn, and if m=n so that A is actually nxn, then the matrix is square.

If AT = A↔ Aij = Aji then A is called symmetric. If AT = −A↔ Aij = −Aji then A
is called skew symmetric. In general A can always be broken down into symmetric and
skew parts, in that

A = Asym +Askew =
1

2
(A+AT ) +

1

2
(A−AT ). (5)

This is shown using the simple 2d example

A =
1

2

[
A11 + A11 A12 + A21

A21 + A12 A22 + A22

]
+

1

2

[
A11 − A11 A12 − A21

A21 − A12 A22 − A22

]
. (6)

orthogonality of a system martrix A is defined by

A−1 = AT , (7)

and identity is defined by
A−1 = A = I. (8)

Matrices are communitative with respect to addition so that B+A = A+B, but are not
with respect to multiplication so that BA ̸= AB. The transpose of multiple matrices is

(AB)T = BTAT , (9)

(A1A2 . . .An−1An)
T = AT

nA
T
n−1 . . .A

T
2A

T
1 . (10)

1.2 Lec 1b Norms and determinants

1.2.1 Norms

A norm is a measure of a vector. Euclidean or L2 norm

||x|| = (x2
1 + x2

2 + . . .+ x2
n)

1/2. (11)

It is a rating of the vector length. Properties of the Euclidean norm are
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• ||x|| ≥ 0. ||x|| = 0 iff x = 0.

• ||kx|| = k||x|| for all k.

• ||x + y|| ≤ ||x|| + ||y|| for all x,y of same dimension n (Triangle equality). The
hypotenuse of the triangle represents the LHS and the opposite/adjacent sides rep-
resent the RHS.

Another representation of the L2 norm is

||x||2 =
( n∑

i=1

x2
i

)1/2

. (12)

In general, the Lp norm is

||x||p =
( n∑

i

xp
i

)1/p

(13)

For matrices, the L2 norm is

||A||2 =
( n∑

i

n∑
j

A2
ij

)1/2

. (14)

Of an eigenproblem, the Le norm of system matrix A is

||A||e = max(λi), (15)

or the greatest of the eigenvalues.

1.2.2 Determinants

Determinant of 2x2

det

[
1 2
3 4

]
= 1 ∗ 4− 3 ∗ 2 = −2. (16)

Determinant of 3x3

det

1 2 3
4 5 6
7 8 9

 = 1(5 ∗ 9− 8 ∗ 6)− 2(4 ∗ 9− 7 ∗ 6) + 3(4 ∗ 8− 7 ∗ 5). (17)

It is also permissible to do

det

1 2 3
4 5 6
7 8 9

 = −4(2 ∗ 9− 8 ∗ 3) + 5(1 ∗ 9− 7 ∗ 3)− 6(1 ∗ 8− 7 ∗ 2). (18)

The coefficients must be
∑n

j=1 aij(−1)i+j. In other words, some row i is picked as the set
of coefficients, and the row is summed across the columsn j. The sign of the coefficient
depends on the specific placement of the element: if i + j is even, then the coefficient is
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positive, but if i + j is odd, then it is negative. Then the terms inside the parentheses
are called the minor of aij denoted as Mij. For a 3x3 matrix they are defined as the 2x2
matrix of elements not found in row i or column j. In total the determinant of A is

detA =
n∑

j=1

aij(−1)i+jMij =
n∑

j=1

aijβij, (19)

where βij = (−1)i+jMij.
Properties of determinants are

• detA = detAT ,

• An entire row or column of zeros in A implies detA = 0.

• Two proportional rows or columns implies singularity/linear dependence/detA = 0.

• Interchanging two rows switches the determinant’s sign.

• Multiplying a row or column by a scalar multiplies the determinant by that scalar.

• Multiplying all n rows (thus multiplying the entire matrix) by a scalar c is the same
as det(cA) = cn detA.

• Adding a row by a multiple of another row does not change the determinant.

1.3 Lec 1c Linear algebraic equations (LAEs)

1.3.1 Nonsingular unique trivial

An example of a set of LAEs is

3x+ 2y = 0, −x+ 5y = 0 (20)

→
[
3 2
−1 5

]{
x
y

}
=

{
0
0

}
. (21)

Another representation is [
3 2
−1 5

]{
x1

x2

}
=

{
0
0

}
. (22)

This way Ax = b = 0. A simple, trivial solution x = {0, 0}T exists. The determinant
determines whether or not this is the only solution. detA ̸= 0 implies the solution is
unique/nonsingular. detA = 0 implies the solution is singular/linearly dependent.

1.3.2 Singular nonunique trivial/nontrivial

Another example is [
3 2
−1 −2/3

]{
x1

x2

}
=

{
0
0

}
. (23)

Here detA = 0 meaning the matrix is singular/nonunique/linearly dependent. Therefore
there are many solutions including the trivial solution. Particularly every point on the
line is a solution.
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1.3.3 Nonsingular unique nontrivial

Another example is [
3 2
−1 5

]{
x1

x2

}
=

{
4
−6

}
. (24)

Here detA ̸= 0 and x = 0 is not a solution. So the matrix is nonsingular/unique/linearly
independent and the unique solution is nontrivial.

1.3.4 Singular nonunique nontrivial

Another example is [
3 2
−1 −2/3

]{
x1

x2

}
=

{
4
−4/3

}
. (25)

Here detA = 0 but x = 0 is not a solution. Therefore the matrix is linearly dependen-
t/singular/nonunique and all the solutions are nontrivial.

1.3.5 Consistency vs. inconsistency

The matrix in Eq. 25 is singular and the solution elements b are similarly proportional
to one another. Thuis means that they describe the same equation and so they are
consistent. However, if b had elements that were not proportional then this would be
describing equations with the same y, x,m but different b, meaning they are parallel but
have different y ↔ x2 intercepts. Because they are not the same equation, they are
inconsistent.

1.3.6 Homogeneity vs nonhomogeneity

If the known vector b=0, then the equation system is homogeneous. If not, then it is
nonhomogeneous.

1.4 Lec 1d Terminology and solution methods

To recap, b ̸= 0 implies nonhomogeneity of the system, and x ̸= 0 implies nontriviality
of the solution.

1.4.1 Augmented matrix

An augmented matrix [A|b] −→Gaussian elimination−→ [I|x]. That is, Gaussian elimination
methods can be used to transform the augmented matrix into an augmentation of the
identity matrix and the solution vector. This is because [A|b]→ [A−1A|A−1b]→ [I|x].

1.4.2 Rank

• If the largest square submatrix with a nonzero determinant has size mxm, then the
rank of the matrix is m. If the entire matrix has a nonzero determinant then the
rank is just the size.
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• If the rank of a matrix Ais the same as the rank of the augmented matrix [A|b]
then the solution to Ax = b exists. Otherwise, there are no solutions. For example,

rank[A|b] = r

[
3 2 4
−1 −3/2 2

]
= 2↔ 2 ∗ 2 + (3/2) ∗ 4 ̸= 0, (26)

rankA = r

[
3 2
−1 −3/2

]
= 1↔ 3 ∗ (−3/2) + 1 ∗ 2 = 0. (27)

Here the ranks are not equal and so the system

Ax = b↔
[
3 2
−1 −3/2

]{
x1

x2

}
=

{
4
2

}
(28)

has no solution (they are parallel equations).

• If A is nxn and rA =r[A|b] = n, then the solution is unique. In this case b = 0→
x = 0, b ̸= 0→ x ̸= 0. For example

rank

[
1 2
3 4

]
= 2, (29)

rank

[
1 2 0
3 4 0

]
= 2 −→ b = 0→ x = 0. (30)

• If A is nxn and rA =r[A|b] < n, then many solutions exist. For example

r

[
1 3
2 6

]
= 1, (31)

r

[
1 3 1
2 6 2

]
= 1 −→ same equation −→ infinite solutions along line. (32)

1.4.3 Linear dependence vs independence

If one of the equations can be written as a linear combination of the other equations in
a system, then that system is linearly dependent. Otherwise, it is linearly independent.
Linear independence implies full rank.

1.4.4 Cramer’s rule

If Ax = b and Ai is the same as A except the column i is replaced by b, then

xi =
detAi

detA
. (33)

For example

Ax = b −→
[
3 2
−1 5

] [
x1

x2

]
=

{
4
−6

}
(34)
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implies

A1 =

[
4 2
−6 5

]
, A2 =

[
3 4
−1 −6

]
(35)

and

x1 =
detA1

detA
=

4 ∗ 5 + 6 ∗ 2
3 ∗ 5 + 1 ∗ 2

=
32

17
, (36)

x2 =
detA2

detA
=

3 ∗ −6 + 1 ∗ 4
3 ∗ 5 + 1 ∗ 2

=
−14
17

. (37)

1.5 Lec 1e Elimination and decomposition methods

The three elementary row operations or EROs are the last three of the list in Sec. 1.2.2
and are

• Multiply row by scalar: detA→ c detA

• Swap rows: detA→ − detA

• Add a linear multiple of one row to another row: detA→ detA.

1.5.1 Gaussian elimination

Gaussian elimination seeks to reduce some system matrix A into a triangular matrix so
that, for example, A11 A12 A13

0 A22 A23

0 0 A33


x1

x2

x3

 =


b1
b2
b3

 . (38)

Then

A33x3 = b3 → x3 =
b3
A33

, (39)

A22x2 + A23x3 = b2 → x2 =
b2 − A23x3

A22

, (40)

A11x1 + A12x2 + A13x3 = b1 → x1 =
b1 − A12x2 − A13x3

A11

. (41)

More generally, for a matrix of size n,

xn =
bn
Ann

, (42)

xn−1 =
bn−1 − An−1,nxn

An−1,n−1

, (43)

and so on until x1 is solved for.

1.5.2 Gauss Jordan elimination

Gauss Jordan continues using EROs until the identity matrix is the system matrix so
that b = x.
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1.5.3 LU decomposition

If Ax = b then let A = LU, where L is a lower triangular matrix and U is an upper
triangular matrix. Then

LUx = b. (44)

If it is supposed that Ux = z then the two equations in the order of

Lz = b, Ux = z (45)

can be solved for. That is because L,U,b are known, therefore z can be solved for,
therefore x can be solved for.

1.5.4 Positive definiteness

This is for symmetric positive definite matrices. A positive matrixA satisfies the criterion

xTAx > 0 (46)

for all x. In 2d, this looks like{
x1 x2

} [
a11 a12
a21 a22

]{
x1

x2

}
=

{
x1 x2

}{a11x1 + a12x2

a21x1 + x22x2

}
= a11x

2
1+a22x

2
2+(a12+a21)x1x2 > 0.

(47)
Note that the skew symmetric part of A goes to zero because a12 = −a21 and aii =
−aii = 0.

1.5.5 Positive definiteness/Cholesky

If Ax = b, Cholesky decomposition assumes A = LU = UTU so that

UT Ux︸︷︷︸
y

= b. (48)

If A is known, U can be found. In 2d,[
a11 a12
a12 a22

]
=

[
u11 0
u12 u22

] [
u11 u12

0 u22

]
=

[
u2
11 u11u12

u12u11 u2
12 + u2

22

]
(49)

→ a11 = u2
11 → u11 =

√
a11, (50)

a12 = u11u12 → u12 =
a12√
a11

, (51)

a22 = u2
12 + u2

22 → u22 =

√
a22 −

a212
a11

. (52)

The general formula is

uii =

√√√√aii −
i−1∑
k=1

u2
ki, (53)
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uij =

 1
uii

(
aij −

∑i−1
k=1 ukiukj

)
, i < j,

0, i > j (upper triangular).
(54)

Once U is known and if b is known, then the two equations

UTy = b, Ux = y (55)

can be solved for in the listed order to find y, then x.
Matrices that are not symmetric and positive definite cannot be decomposed with the

Cholesky method.
The operation counts of some popular linear solvers are

• Cramer’s: n! (20! ≈ 2× 1018)

• Gauss: n3/3 (203/3 = 2600)

• Gauss Jordan: n3/2 (203/2 = 4000)

• Cholesky: n3/6 (203/6 = 13000).

1.6 Lec 1f Determinants and iterative methods

1.6.1 Using Gaussian elimination

The determinant of a triangular matrix is the product of the diagonal entries. For this
reason it is efficient to use Gauss elimintation to turn A into a triangular matrix Ā. Then
detA = (−1)np det Ā, where np is the number of row swapping operations done. (This
assumes none of the rows were multiplied by a constant. This would not be necessary
unless Gauss Jordan was being done.) This implies

detA = (−1)np
∏
i

Āii. (56)

1.6.2 Using LU decomposition

detA = detLU = detL detU. (57)

Again for triangular matrices, detU =
∏

i uii. If U is a unit triangular matrix, then the
diagonal entries are 1 and so detU = 1. Then detA =

∏
i lii.

1.6.3 Jacobi iteration

For any A in Ax = b there is the admissible decomposition

A = Ad +Ao, (58)

where Ad denotes a matrix containing only the diagonal elements of A and Ao denotes
a matrix containing all of the other elements with zeros on the diagonal. Then

(Ad +A0)x = b (59)
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implies
Adx = −A0x+ b (60)

which implies
x = A−1

d (−Aox+ b) (61)

in which A−1
d is simply a matrix containing elements a−1

ii on the diagonals. Given an
initial guess x(0), Jacobi iteration goes like

x(1) = A−1
d (−Aox(0) + b), (62)

x(2) = A−1
d (−Aox(1) + b), (63)

etc. Iteration continues until
||x(k+1) − x(k)|| ≤ ϵx (64)

where ϵx denotes a convergence criterion or a tolerance. It says, if the difference between
iterations is sufficiently small, stop iterating because an approximate solution has been
reached.
This system will converge if A is diagonally dominant, i.e. if |aii| >

∑
j ̸=i |aij| for all i.

1.6.4 Gauss Seidel iteration

Jacobi updates all xi ∈ x simultaneously. The Gauss Seidel method on the other hand
updates xi one at a time. Given some x(0), iteration is represented by

xi,(k+1) = a−1
ii

(
bi −

∑
j<i

aijxj,(k+1) −
∑
j>i

aijxj,(k)

)
. (65)

Iteration step by step in 2d goes like

x(1) =


x1,(1) = a−1

11

(
b1 −�������∑

j<1 aijxj,(1) − a12x2,(0)

)
,

x2,(1) = a−1
22

(
b2 − a21x1,(1) −�������∑

j>i aijxj,(0)

)
,

(66)

x(2) =


x1,(2) = a−1

11

(
b1 −�������∑

j<1 aijxj,(2) − a12x2,(1)

)
,

x2,(2) = a−1
22

(
b2 − a21x1,(2) −�������∑

j>i aijxj,(1)

)
,

(67)

etc. Diagonal dominance is still required for convergence. Gauss Siedel usually converges
faster than Jacobi iteration.
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1.6.5 Southwell relaxation method

Eq. 65 can be rewritten as

xi,(k+1) = a−1
ii

(
bi −

∑
j<i

aijxj,(k+1) −
∑
j>i︸︷︷︸
I

aijxj,(k)

)

−→ xi,(k+1) = xi,(k)︸︷︷︸
I

+a−1
ii

(
bi −

∑
j<i

aijxj,(k+1) −
∑
j=1︸︷︷︸
I

aijxj,(k)

)
(68)

−→ xi,(k+1) = xi,(k) +∆xi,(k+1). (69)

The term ∆xi,(k+1) is called a correction term and is the term that drives iteration. If
this term is weighted by a coefficient ω, which is called the relaxation parameter, then
the Southwell relaxation method

−→ xi,(k+1) = xi,(k) + ω∆xi,(k+1) (70)

emerges, where 
0 < ω < 1, successive under relaxation,

1, Gauss Seidel,

1 < ω < 2, successive over relaxation,

ω > 2, divergence.

(71)

1.7 Lec 1g Advanced solution methods

1.7.1 Conjugate gradient method

If A is symmetric and positive definite, let there be some

f(x) =
1

2
xTAx− bx (72)

so that
0 = f ′(x) = Ax− b = ∇f. (73)

Iterate the solution using the Jacobi method in Sec. 1.6.3. During this iteration, let
pk = −∇f(xk) = b−Axk be the residual at the kth step and

αk =
pT
kpk

pkApk

. (74)

Then it can be written that x(k+1) = x(k) + αkpk.

1.7.2 Biconjugate gradient method

”Uses biorthogonality and biconjugacy conditions to establish pk, αk to drive residual to
zero.”
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1.7.3 Preconditioned biconjugate gradient method

If Ax = b and Gaussian elimination is done to reduce A to some diagonally dominant
matrix then

ÂAx ≈ x = Â
−1
b. (75)

For large systems, the amount of operations done can be cut down dramatically with
sparse matrices, or a matrices where most of the elements are zeros except for elements
on the diagonal or tridiagonal. The solver can then avoid operating on zeros and prevent
the (tri-)diagonal band from growing.

1.8 Lec 1h Matrix eigenproblem

1.8.1 Mass spring systems

If a set of masses in a row mi moving in distances ui have a set of springs si with
coefficients ki attached to their backs, and springs si+1 with coefficients ki+1 attached
to their fronts. The total number of contributions to the force on mi, called Fi, is four.
Those are

• ui−1 moving forward will shorten si and push mi forward. =⇒

• ui moving forward will elongate si and push mi backward. ⇐=

• ui moving forward will also shorten si+1 and prevent mi from moving forward. ⇐=

• ui+1 moving forward will elongate si+1 and push mi forward. =⇒

This is because a long si works against ui, but a long si+1 works with ui. So a shortening
of si suppresses its negative effect on mi, but a shortening of si+1 suppresses its positive
effect on mi.
Altogether,

Fi = kiui−1 − kiui − ki+1ui + ki+1ui+1. (76)

Also, Newton’s second law states
Fi = miüi. (77)

Therefore,
miüi = kiui−1 − kiui − ki+1ui + ki+1ui+1 (78)

which implies
miüi + ui(ki + ki+1)− kiui−1 − ki+1ui+1 = 0. (79)

If n = 3, m1 0 0
0 m2 0
0 0 m3


ü1

ü2

ü3

+

k1 + k2 −k2 0
−k1 k2 + k3 −k3
0 −k3 k3


u1

u2

u3

 =


0
0
0

 . (80)
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In the equation for u1, there is no such term as u0 = ui−1, and u3 is irrelevant. In the
equation for u3, there is no such term as u4 = ui+1, and u1 is irrelevant. Represented
otherwise,

Mü+Ku = 0, (81)

where K is a tridiagonal stiffness matrix and M is a mass matrix. Now if we let the
solution

u = ϕeαt −→ ü = α2ϕeαt, (82)

then
α2Mϕeαt +Kϕeαt = 0 −→ α2Mϕ+Kϕ = 0. (83)

Letting α = iω −→ α2 = i2ω2 = −ω2,

−ω2Mϕ+Kϕ = 0 −→ (K− ω2M)ϕ = 0. (84)

If ω2 = λ, then
(K− λM)ϕ = 0, (85)

and this is the general matrix eigenproblem with eigenvalues λ and eigenvectors ϕ. The
solution to this equation is either the trivial ϕ = 0 or the nontrivial

0 = det(K− λM). (86)

If for example n = 2, k1 = k2 = k,m1 = m2 = m, then

0 = det

[
k1 + k2 − λm1 −k2

−k1 k2 − λm2

]
= (k1 + k2 − λm1)(k2 − λm2)− k1k2

= (2k − λm)(k − λm)− k2

= k2 − 3kλm+ λ2m2 −→ λ =
3km±

√
9k2m2 − 4m2k2

2m2
=

(
3±
√
5

2

)
k

m
= λ = ω2.

If ω0 =
√

k/m→ ω2
0 = k/m, then

ω2 =

{
ω2
1 = (3 +

√
5)ω2

0/2

ω2
2 = (3−

√
5)ω2

0/2
−→ ω =

{
ω1 = 0.618ω0

ω2 = 1.618ω0.
(87)

Then the eigenvectors ϕ1,ϕ2 are calculated by plugging the known λ1, λ2 into the general
matrix eigenproblem Eq. 85.

1.8.2 Stress tensor

The rotation matrix

T =

[
cos θ − sin θ
sin θ cos θ

]
(88)

is orthogonal because

TTT =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

]
= I (89)
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which implies
TTTT−1 = IT−1 → TT = T−1. (90)

An orthogonal transformation of the stress tensor σ is

σ̄ = TTσT. (91)

This implies
Tσ̄ = σT −→ ΦΛ = AΦ. (92)

There is some pair of T,Λ where Λ = λI. Then this becomes the general eigenproblem.
If λ ↔ σ̄ is a diagonal matrix then the entries σ̄ are the principal stresses/eigenvalues,
and the eigenvectors T are the principal directions. An example of this is

σ =

[
50 30
30 −20

]
. (93)

Eigenvalues are found through

0 = det

[
50− λ 30
30 −20− λ

]
= (50− λ)(−20− λ)− 900 = λ2 − 30λ− 1900 (94)

→ λ =
30±

√
2800

2
= 61.1,−31.1 = λ(1), λ(2). (95)

Eigenvectors are found through{
0
0

}
=

[
50− 61.1 30

30 −20− 61.1

]{
ϕ1,(1)

ϕ2,(1)

}
, (96)

{
0
0

}
=

[
50 + 31.1 30

30 −20 + 31.1

]{
ϕ1,(2)

ϕ2,(2)

}
. (97)

Then Φ =
{
ϕ(1),ϕ(2)

}
and Λ =

[
λ(1) 0
0 λ(2)

]
so that AΦ = ΦΛ or

{
AΦ(1) = λ(1)Φ(1),

AΦ(2) = λ(2)Φ(2).
(98)

1.8.3 Intertia tensor

The symmetric inertia tensor is

G =

∫V ρ(y2 + z2)dV −
∫
V
ρxydV −

∫
V
ρxzdV

−
∫
V
ρyxdV

∫
V
ρ(x2 + z2)dV −

∫
V
ρyzdV

−
∫
V
ρzxdV −

∫
V
ρzydV

∫
V
ρ(x2 + y2)dV

 (99)

and some rotational transformation is

Ḡ = TTGT→ TḠ = GT→ (G− ḠI)T = 0. (100)

Here Ḡ are the principal inertias and the principal directions are T.
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1.8.4 Quadratic forms

The mass matrix M is positive definite provided mi > 0 and x is nontrivial. The stiffness
matrix K is positive definite if rigid body motion is prevented. It is positive semi definite
if one or more rigid body motion is allowed. The identity matrix I is real, symmetric,
and positive definite. The last statement is true because

xT Ix = xTx = x · x = x2
i > 0∀x ̸= 0. (101)

1.9 Lec 1i Standard eigenproblem

The standard eigenproblem is
(A− λI)ϕ = 0, (102)

and the characteristic polynomial in which to find roots λ is

det(A− λI) = 0. (103)

If A is real, then λ are usually complex. However if A is symmetric then λ are all real.
This is because if eigenvalues are complex, then they are conjugates by virtue of the
quadratic formula having a ± discriminant. So if A = AT ,

Aϕ = λϕ→ ϕTAϕ = ϕTλϕ→ λ =
ϕTAϕ

||ϕ||2
→ λ∗ =

ϕTATϕ

||ϕ||2
=

ϕTAϕ

||ϕ||2
= λ. (104)

Since λ = λ∗, the eigenvalues must be real.

1.9.1 orthogonality

Because the eigenvalues are real for symmetric matrices, the eigenvectors are orthogonal.
This is because if λ1,ϕ1 and λ2,ϕ2 are distinct eigenpairs, then

λ1ϕ1 ·ϕ2 = Aϕ1 ·ϕ2 ↔ Aijϕ(1)jϕ(2)i = ϕ(1)jAjiϕ(2)i ↔ ϕ1 ·ATϕ2 = ϕ1 ·Aϕ2 = ϕ1 ·λ2ϕ2.
(105)

Therefore,
(λ1 − λ2)(ϕ1 · ϕ2) = 0, (106)

but we assumed λ1 ̸= λ2, and therefore ϕ1 · ϕ2 = 0 which implies orthogonality. In this
proof the statement

Au · v = u ·ATv←→ Aijujvi = ujAjivi (107)

was also made, and this how a transposed matrix is defined, so that AT
ij = Aji, [AT

ij] =
Aji(ei ⊗ ej).
If A is also positive definite as well as symmetric, then the eigenvalues must be positive

because
0 < xTAx = xTλx = λxTx = λ||x||2. (108)

If the whole term is positive and since xixi must be positive, λ must also be positive,
and this is true for any number of eigenpairs because positive definiteness implies this
relationship is true for any x.
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1.9.2 Spectral decomposition properties

An orthonormal set is defined by the dot products of two of any of the elements being
zero and the magnitude of every individual element in the set being one. For example,
([0, 1], [1, 0]) is orthonormal because 0 ∗ 1 = 1 ∗ 0 = 0 and

√
02 + 12 =

√
12 + 02 = 1. Let

there be some orthonormal set Φ = [ϕ1ϕ2 . . .ϕn]. Then

ΦTΦ =


ϕT

1

ϕT
2

. . .
ϕT

n

 [ϕ1ϕ2 . . .ϕn] =


ϕT

1ϕ1 ϕT
1ϕ2 . . . ϕT

1ϕn

ϕT
2ϕ1 ϕT

2ϕ2 . . . ϕT
2ϕn

. . . . . . . . . . . .
ϕT

nϕ1 ϕT
nϕ2 . . . ϕT

nϕn

 = I. (109)

Therefore,
ΦT = Φ−1, (110)

and this is the definition of an orthogonal tensor/orthogonal matrix. If one eigenpair is
represented as

Aϕi = λiϕi = ϕiλi, (111)

and this is the standard eigenproblem, then the set of all eigenpairs is represented as

AΦ = ΦΛ =
[
A
]
3x3

[
ϕ1 ϕ2 ϕ3

]
3x3

=
[
ϕ1 ϕ2 ϕ3

]
3x3

λ1 0 0
0 λ2 0
0 0 λ3


3x3

=


Aϕ1 = λ1ϕ1

Aϕ2 = λ2ϕ2

Aϕ3 = λ3ϕ3.

(112)
and this is the matrix eigenproblem. Then because of the orthogonality property Eq.
110,

A = ΦΛΦT , (113)

and this is called the spectral decomposition of A.
If Ax = b and the eigenvectors are used as a basis for the set of solutions so that

x = Φc where c is a coefficient vector, then

AΦc = b→ ΦTAΦc = ΦTb→ Λc = ΦTb→ c = Λ−1ΦTb, (114)

where Λ−1 is simply a matrix with the reciprocals of the eigenvalues on the diagonals.
Now, consider that if the eigenvectors are used as an orthonormal basis/coordinate

system then
Aij = ϕi ·Aϕj. (115)

For instance, in the Cartesian coordinate system ei,

eT1

A11 A12 A13

A21 A22 A23

A31 A32 A33

 e2 =
{
1 0 0

}A11 A12 A13

A21 A22 A23

A31 A32 A33


0
1
0

 =
{
1 0 0

}
A12

A22

A32

 = A12.

(116)
Substituting the eigenproblem into Eq. 115,

Aij = ϕi · λjϕj. (117)
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ThenA11 A12 A13

A21 A22 A23

A31 A32 A33

 =

λ1(ϕ1 · ϕ1) λ2(ϕ1 · ϕ2) λ3(ϕ1 · ϕ3)
λ1(ϕ2 · ϕ1) λ2(ϕ2 · ϕ2) λ3(ϕ2 · ϕ3)
λ1(ϕ3 · ϕ1) λ2(ϕ3 · ϕ2) λ3(ϕ3 · ϕ3)

 =
∑
i

λi(ϕi ⊗ ϕi) (118)

=
∑
i

λiϕiϕ
T
i = A. (119)

Taking the inverse,

A−1 =
∑
i

ϕ−T
i ϕ−1

i

1

λi

=
∑
i

ϕTT

i ϕT
i

1

λi

=
∑
i

1

λi

ϕiϕ
T
i = A−1. (120)

Therefore the eigenvectors of A and its inverse are identical, and the eigenvalues are the
reciprocals. Another consequence of the spectral decomposition is

A2 = AA = (ΦΛΦT )(ΦΛΦT ) = ΦΛ2ΦT (121)

and to that effect,
An = ΦΛnΦT . (122)

1.9.3 Functions of square matrices

If there is some function p(x) = anx
n + an−1x

n−1 + . . .+ a1x
1 + a0 then we can say

p(A) = anA
n + an−1A

n−1 + . . .+ a1A+ a0I (123)

= anΦΛnΦT + an−1ΦΛn−1ΦT + . . .+ a1ΦΛΦT + a0ΦIΦT = Φp(Λ)ΦT . (124)

The Cayley Hamilton theorem states that if the characteristic equation to solve for the
eigenvalues of system matrixA is

p(x) = λn + an−1λ
n−1 + an−2λ

n−2 + . . .+ a1λ+ a0I = 0, (125)

then the matrix A also satisfies

p(A) = An + an−1A
n−1 + an−2A

n−2 + . . .+ aiA+ a0I = 0. (126)

So A satisfies its own characteristic equation. This is because the spectral decomposition
Am = ΦΛmΦT can be done and then the whole equation can be premultiplied/postmul-
tiplied by ΦT/Φ to just leave Λm. Then the equation

p(ΦΛΦT ) = ΦΛnΦT +an−1ΦΛn−1ΦT +an−2ΦΛn−2ΦT + . . .+aiΦΛΦT +a0I = 0 (127)

→ p(Λ) = Λn + an−1Λ
n−1 + an−2Λ

n−2 + . . .+ aiΛ+ a0I = 0 (128)

emerges. Then Eq. 128 is a set of three equations corresponding to each eigenvalue.
Another consequence of Eq. 126 is that any An can be written in terms of

∑
m≤nA

m.
Particularly

−(an−1A
n−1 + an−2A

n−2 + . . .+ a1A+ a0I) = An. (129)

Multiplying everthing by A,

−(an−1A
n + an−2A

n−1 + . . .+ a1A
2 + a0A) = An+1. (130)

19



1.10 Lec 1j General eigenproblem

The standard eigenproblem is
(A− λI)x = 0, (131)

and the general eigenproblem is

(A− λB)x = 0 −→ Ax = λBx. (132)

A,B being real and B being positive definite constitutes real eigenvalues. There also exist
a set of eigenvectors orthonormal with respect to B. A being positive definite constitutes
positive eigenvalues. The general matrix eigenproblem is

AΦ = BΦΛ (133)

implying
ΦTAΦ = ΦTBΦΛ. (134)

As the eigenvectors are orthonormal with respect to B,

ΦTBΦ = I −→ ΦTAΦ = Λ. (135)

1.10.1 Convert general to standard eigenproblem

The conversion of the general eigenproblem to standard form can be done in one of two
ways. Of course in general

B−1Ax = λx, (136)

provided B−1 exists/B is invertible/detB ̸= 0. However B−1A is rarely symmetric and
so this is not a good approach. Instead we can let B = UTU so that

Ax = λUTUx −→ U−TAx = λUx. (137)

Introducing Y = Ux→ x = U−1Y,

U−TAU−1︸ ︷︷ ︸
D

Y = λY←→ (UA−1UT )−1︸ ︷︷ ︸
D

Y = λY (138)

→ DY = λY (139)

in which D will be symmetric, provided A is symmetric. This is because if a matrix is
symmetric then so is its inverse. An example of this is in the calculation of the natural
frequencies ω of the mass spring system

KΦ = λMΦ↔
[
2 −1
−1 2

]
Φ = λ

[
1 0
0 4

]
Φ (140)

Let M = UTU. Then using Cholesky decomposition in Sec. 1.5.5,

U =

[
1 0
0 2

]
→ U−1 =

[
1 0
0 1/2

]
→ D = U−TKU−1 =

[
1 0
0 1/2

] [
2 −1
−1 2

] [
1 0
0 1/2

]
(141)
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=

[
2 −1/2
−1/2 1/2

]
= D. (142)

Then

0 = (D− λI)Y −→ 0 = det(D− λI) = (2− λ)(1/2− λ)− 1/4 = 3/4− 5λ/2 + λ2 (143)

→ λ =
5/2±

√
13/4

2
=

5±
√
13

2
, (144)

and the eigenvalues are computed thereafter.

1.10.2 Principal invariants/characteristic equation

Another example is one of the stress tensor σ and the principal stresses/eigenvalues in
relationship to it σ̄. The characteristic equation for a 3x3 is

−σ̄3 + I1σ̄
2 − I2σ̄ + I3 = 0. (145)

The I are called the principal invariants/stress invariants, calculated by

I1 = trσ, I2 = det

[
σ22 σ23

σ32 σ33

]
+ det

[
σ11 σ13

σ31 σ33

]
+ det

[
σ11 σ12

σ21 σ22

]
, I3 = detσ. (146)

An assymetric D will yield complex eigenvalues. Complex matrices will yield real eigen-
values provided F is Hermitian, meaning that

Fji = F̄ij, (147)

or that the transpose of F is equal its complex conjugate.

1.11 Lec 1k Eigensolution methods

1.11.1 Power method

If Ax = λx and the eigenvalues have a hierarchy of magnitude |λ1| < |λ2| < . . . < |λn|
with corresponding eigenvectors |ϕ|1 < |ϕ|2 < . . . < |ϕ|n. The eigenvectors corresponding
to distinct eigenvalues are linearly independent because

0 = a1ϕ1+a2ϕ2 =

{
λ1a1ϕ1 + λ1a2ϕ2

Ta1ϕ1 +Ta2ϕ2 = λ1a1ϕ1 + λ2a2ϕ2

→ (λ1−λ2)a2ϕ2 = 0 (148)

→ a2 = 0→ a1 = 0→ ϕ1,ϕ2 ̸= 0. (149)

In other words, the only solution to 0 = a1ϕ1,ϕ2 is the coefficients a1, a2 = 0, meaning
there is no other solution, such as the linear combination of the eigenvectors. This conveys
independence.
Since the eigenvectors are linearly independent then any vector

x1 = c1ϕ1 + c2ϕ2 + . . .+ cnϕn =
∑
i

ciϕi. (150)
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Then
x2 = Ax1 = A

∑
i

ciϕi =
∑
i

ciλiϕi (151)

serves as an approximation to the eigenproblem Aϕi = λϕ. Iterating further,

x3 = Ax2 = A(
∑
i

ciλiϕi) =
∑
i

ciλ
2
iϕi, (152)

x4 =
∑
i

ciλ
3
iϕi, . . . , (153)

xr+1 =
∑
i

ciλ
r
iϕi. (154)

If r is very large then λn >>
∑

m̸=n λm and so

xr+1 ≈ cnλ
n
rϕn (155)

and so the largest eigenpair n can be found because the process converges to ϕn associated
with λn. For example, given

σ =

33 16 18
16 −5 0
18 0 42

 (156)

we take initial guess

n1 =
{
0 0 1

}T
(157)

and iterate like

n2 = σn1 =
{
18 0 42

}T
= 42

{
0.4286 0 1

}T
, (158)

n3 = σn2 =
{
32.1429 6.8571 49.7143

}T
= 49.7143

{
0.6466 0.1379 1

}T
, (159)

. . . ,n12 = σn11 =
{
50.3525 12.8466 57.7043

}
= 57.7043

{
0.8726 0.2226 1

}T ≈ σ̄nnn

(160)

→ σ̄n ≈ 57.7043, nn ≈
{
0.8726 0.2226 1

}T
=

{
0.6485 0.1655 0.7431

}T
. (161)

1.11.2 Inverse power method

The above power method solves for the largest eigenpair. The inverse power method is
basically using the power method on the eigenproblem

A−1ϕ−1 =
1

λ
ϕ (162)

to reveal the largest eigenpair of that problem which in turn is the smallest eigenpair of
the original problem.

22



1.12 Lec 1l Vector spaces, subspaces I

1.12.1 Vector space rules

Real and complex vectors of size n live in Rn, Cn. Real matrices/tensors of size m×n live
in Rm×n. Vector spaces are collections of vectors with the same dimensions that follow
the following rules: if x,y, z ∈ V then

• x+ y = y+ x ∈ V ,

• x+ (y+ z) = (x+ y) + z ∈ V

• ∃0|0+ x = x+ 0 = x,

• ∃ − x|x+ (−x) = (−x) + x = 0,

• a(x+ y) = ax+ ay ∈ V ,

• (a+ b)x = ax+ bx ∈ V ,

• a(bx) = b(ax) ∈ V ,

• 1x = x.

A vector space that follows these rules is called closed.

1.12.2 Subspace rules

If W ∈ V then W is a subset of V . If W is closed under addition and multiplication then
it is a subspace of V . An example of a subset not being a subspace is{

a b
}T︸ ︷︷ ︸

W

∈ R2, a ≥ 0, b ≥ 0.︸ ︷︷ ︸
V

(163)

in the sense that
−k

{
a b

}
=

{
−ka −kb

}
/∈ V . (164)

That is, the subset is not closed under multiplication.

1.12.3 Span

The span of a space S is the set of all linear combinations of the vectors in that space.
For example

S =
{{

1 0
}T {

0 1
}}
−→ spanS = R2 (165)

in the sense that any vector in R2 can be written as a linear combination of the two
vectors in S. Another example is

S =



1
0
0
1



0
0
0
1


 −→ spanS = R4 of the form


a
0
0
b

 . (166)

It is a subspace in that it is closed under addition and multiplication.
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1.13 Lec 1m Vector spaces, subspaces II

Of course, the idea of spaces, subspaces, and spans extend to matrices. For example

S =

{[
1 0
0 0

] [
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]}
−→ spanS = R2×2 of the form

[
a b
c d

]
.

(167)
The statement S ∈ spanS is true in the sense that any element in S can be written as a

linear combination of the span of S. For example,

[
a 0
0 0

]
= a

{
1 0
0 1

}
+ 0

[
0 1
0 0

]
+ . . . .

1.13.1 Linear independence/dependence

If the only combination of v1,v2, . . . that results in the zero vector is 0v1+0v2+ . . . , then
vi are linearly independent with respect to one another. If there is some nontrivial linear
combination that results in 0 then the vectors are linearly dependent. For example,

2


1
2
2

+


−1
−4
−5

−

1
0
1

 = 0→



1
2
2



−1
−4
−5



1
0
1


 are linearly dependent.

(168)

1.13.2 Bases

B is a basis of V if spanB = V and elements of B are linearly independent. For instance

1
0
0

 ,


0
1
0

 ,


0
0
1


 is a basis for R3. (169)

Also 

1
2
1

 ,


2
3
1

 ,


−1
2
−3


 is a basis for R3. (170)

That is to say bases are not unique. Multiple linearly independent sets of vectors span
the same space.

1.13.3 Dimension

The dimension of a vector space V is the minimum number of vectors needed in a basis

Bof that V . For example, dim(R3) = 3 because



1
0
0

 ,


0
1
0

 ,


0
0
1


 is one of the

shortest bases of R3. No fewer number of vectors can be used to span all of R3.
If all polynomials of order n and below is Pn =

{
1, x, x2, . . . , xn

}
, then dim(Pn) = n+1.

The dimension of a Taylor series is then∞ because it does not end. Lastly, the dimension
of an m× n matrix is mn.
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1.14 Lec 1n Four subspaces of a matrix

1.14.1 Different types of matrices

To review, the different types of matrices are

• Symmetric: A=AT ,

• Skew: A=−AT ,

• Orthogonal: QT = Q−1,

• Hermitian: Q̄
T
= Q

• Skew Hermitian: −Q̄T
= Q

• Unitary: Q̄
−1

= Q

• Normal: Ā
T
A = AĀ

T

where the overbar indicates a complex conjugate. That means for real matrices, Hermitian
is the same as symmetric, and unitary is the same as orthogonal.

1.14.2 Four subspaces

The four subspaces of an m× n matrix A are the column space, the null space, the row
space, and the left nullspace.

1.14.3 Column space

Notice that Ax = b implies
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1︸︷︷︸
a1

am2︸︷︷︸
a2

. . . amn︸︷︷︸
an



x1

x2

. . .
xn

 =
{
a1 a2 . . . an

}
x1

x2

. . .
xn

 = b (171)

→ b = x1a1 + x2a2 + . . .+ xnan. (172)

The column space of A, denoted as C(A), is the set of all versions of b based on all
combinations of xi. Note that C(A) ∈ Rm. If a known solution vector b in Ax = b
satisfies Eq. 172, that is if the given b ∈ C(A), then the matrix equation has at least one
solution.
If A is invertible, then any b admits a solution because x = A−1b is always a solution.

However, if A is not invertible then b must be in the column space (must satisfy Eq.
172)in order for there to exist a solution to Ax = b. For example, given1 0 0

0 1 0
1 −1 0


x
y
z

 =


1
1
0

 , (173)
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the fact detA = 0 reveals A is not invertible. Therefore b must be in the column space
of A in order for there to exist a solution. It is, because it satisfies Eq. 172, in that

1
1
0

 =


1
0
1

+


0
1
−1

+ a


0
0
0

 = x1a1 + x2a2 + x3a3. (174)

However, given 1 0 0
0 1 0
1 −1 0


x
y
z



1
1
1

 , (175)

b is not in the column space of A and so there is no solution.

1.14.4 Null/Kernel space

The null space of A, denoted as N(A), is the set of x such that Ax = 0. The null space
is a vector space in that if both x1,x2 fulfill Axi = 0, then A(x1 + x2) = Ax1 +Ax2 =
0+ 0 = 0, cAx1 = c0 = 0. That is, it is closed under addition and multiplication.
IF A is invertible ↔ detA ̸= 0, then the null space will contain only the zero vector.

For example 1 0 0
0 1 0
0 0 1


x1

x2

x3

 =


0
0
0

→ x =


0
0
0

 = N(A). (176)

However, if the nullspace contains anything else then detA = 0↔ A is not invertible.
For example let us obtain the null space N(A) of

A =

1 −1 1
2 −1 0
0 −1 2

 −→rref

1 0 −1
0 1 −2
0 0 0

x =


0
0
0

 (177)

→ x1 = x3, x2 = 2x3, x3 = x3 → c


1
2
1

 ∈ N(A) (178)

→ N(A) =



0
0
0

 c


1
2
1


 . (179)

Null space extends not just to square matrices. For example if

A =

1 3 2 3
2 6 8 10
3 9 10 13

 −→rref

1 3 0 1
0 0 1 1
0 0 0 0

x =


0
0
0
0

 (180)

→ x1 = −3x2 − x4, x2 = x2, x3 = −x4, x4 = x4. (181)
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The free variables are x2, x4. To solve this we set one variable to 1 and the rest to 0.
That is

x2 = 1, x4 = 0→ x1 = −3x2, x2 = x2, x3 = 0, x4 = 0→ c


−3
1
0
0

 ∈ N(A), (182)

x2 = 0, x4 = 1→ x1 = −x4, x2 = 0, x3 = −x4, x4 = x4 → c


−1
0
−1
1

 ∈ N(A). (183)

The full null space is

N(A) =

c


0
0
0
0

 c


−1
0
−1
1

 c


−3
1
0
0


 , (184)

noting that 0 is always a member of the null space.

1.14.5 Row space

The row space is the column space of AT . It is denoted as C(AT ) and is the set of all b
such that

b = x1a
T
1 + x2a

T
2 + . . .+ xma

T
m. (185)

Simply transposing Eq. 171 and doing the same procedure of the column space, one finds
the row space.

1.14.6 Left nullspace

The left null space is the set of all x such that ATx = 0. Transposing A and following
the same procedure as the null space Eq. 177/Eq. 180, one obtains the left null space.

1.15 Lec 1o Single value decomposition

Eigenproblems require square A, but single value decomposition of SVD is for all rect-
angular system matrices. Instead of finding eigenvalues let us find so-called single values
σ such that

Av = σu↔ [A]m×n{v}n×1 = σ{u}m×1. (186)

u is in the column space of A, meaning the equation u = a1v1 + a2v2 + . . . is satisfied
for v, and v is in the row space of A, meaning the equation v = aT

1 x1 + aT
2 x2 + . . . is

satisfied for some other x. Converting Eq. 186 to a matrix problem,

AV = UΣ→


Av1 = u1σ1

Av2 = u2σ2

. . .

(187)
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. This represents a circle with radius vi ∈ V being transformed by A into an ellipse with

principal directions σii ∈ Σ =

σ1 0 . . .
0 σ2 . . .
. . . . . . . . .

.

Figure 1: Transformation from hypercircle v to hyperellipse u with principal directions
σ through A.

U and V are like eigenvectors, in that they are unitary/orthonormal with respect to
B= I, meaning

UT IU = I→ UTU = I→ UT = U−1. (188)

Therefore,

A = UΣVT =
{
u1 u2 . . .

}σ1 0 . . .
0 σ2 . . .
. . . . . . . . .


vT
1

vT
2

. . .

 . (189)

If rank rA < m and rA < n, then the null space contains more than just the zero vector.
The null space contains vectors v for which

Av = σu = 0u = 0. (190)

The quantity
AAT = (UΣVT )TUΣVT = VΣ2VT (191)

is positive semi definite because

xTATAx = (Ax)TAx = yTy = y · y ≥ 0. (192)

As a consequence, its eigenvalues are nonnegative (Eq. 108). As Σ is the matrix of
eigenvalues corresponding to AAT , therefore σj =

√
λj will be nonnegative and real.

To solve an SVD problem given A (A = UΣVT ),

• Compute ATA,

• Find eigenvectors λ such that 0 = det(ATA− λI).

• Compute single values σ =
√
λ

• Populate Σ =

σ1 0 . . .
0 σ2 . . .
. . . . . . . . .


• Calculate eigenvectors v such that (ATA− λI)v = 0.
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• Populate V =
{
v1 v2 . . .

}
.

• Solve for U = AΣTV.

• Then you have A = UΣVT .

Always order the eigenvalues from largest to smallest. Always normalize the eigenvectors
- they must form an orthonormal basis.

2 Mod2 ODEs

2.1 Lec 2a Physical prototypes and classification

2.1.1 Mass spring system

The mass spring system is introduced in the most basic way in Sec. 1.8.1. This model
excludes the possibility of a damper and a forcing term. Altogether the displacement
equation for a singular cart is

m
d2u

dt2
+ c

du

dt
+ ku = f(t), u(0) = 0,

du

dt
(0) = 0, (193)

meaning the cart’s initial position is zero and its initial velocity is zero. A system of carts
is characterized by

Mü+��Cu̇+Ku = f(t). (194)

2.1.2 Rigid body dynamics

If p is momentum then force F = ṗ. Likewise if angular momentum is H = r × p then
torqueM = Ḣ = r×ṗ. Angular momentum has unitsm×kg×m/s = kgm2/s. Therefore
torque has units kgm2/s2. If arclength is s and radius is r then angle s = θr. Taking the
derivative with respect to time, v = ωr. Angular velocity ω = v/r has unitsm/sm = 1/s.
Then angular momentum H ∼ kgm2/s is some product of ω ∼ 1/s and a quantity with
units kgm2 ∼ mr2 = I which we call moment of inertia. Therefore H = Iω, and either
M = Iω̇ or M = Iω2 to satisfy units. To be exact, torque is some combination of those
two terms. Particularly,

Mx = Ixxω̇x + (Izz − Iyy)ωyωz, (195)

My = Iyyω̇y + (Ixx − Iz)ωzωx, (196)

Mz = Izzω̇z + (Iyy − Ixx)ωxωy, (197)

with boundary conditions ωx(0) = 0, ωy(0) = 0, ωz(0) = 0.
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2.1.3 Boundary value problems

Newton’s third law requires that for a beam subjected to an external distributed force
p(x) on the top surface,

0 =
∑

Fz = −V + (V + dV ) + p(x)dx→ p(x) =
dV

dx
. (198)

Torque/bending moment in relationship to force is

M = V ẑ × xx̂ = V xn̂→ |V | = |dM
dx
| −→ p(x) =

d2M

d2x
. (199)

Moment for an elastic beam can also be expressed as

M = EIκ = EI
d2w

dx2
−→ p(x) =

d2

d2x
(EI

d2w

dx2
). (200)

If the bar is fixed at both ends then w(0) = w(L) = 0,M(L) = 0.

2.1.4 Classification and terminology

• Independent variables are ones with respect to which derivatives are taken. x in
du/dx

• Dependent variables are unknowns of the problem. u in du/dx

• Order is highest order derivative in the equation.

• Homogeneity of an equation is when all dependent variables being set to zero sat-
isfies the equation.

• Lienarity of an equation is when the dependent variables are linear. d2u/dx2 is
permissible but u2 is not.

• Initial value problem is one in which the independent variable is time and the initial
conditions of the dependent variables are given at the initial time step.

• Boundary value problem is one in which is the independent variable is spatial and
the boundary conditions of the dependent variables are given at certain points in
space.

2.2 Lec 2b Linear ODEs and power series

2.2.1 Homogeneous linear ODE with constant coefficients

Homogeneity implies there is no constant term. Then a linear homogeneous ODE with
constant coefficients is some

dny

dxn
+ c1

dn−1y

dxn−1
+ . . .+ cn−1

dy

dx
+ cny = 0. (201)
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Letting y = Ceλx, we get

0 =
dn

dxn
(Ceλx) + c1

dn−1

dxn−1
(Ceλx) + . . .+ cn−1

d

dx
(Ceλx) + cn(Ceλx) (202)

→ 0 = Cλneλx + c1Cλn−1eλx + . . .+ cn−1Cλeλx + cnCeλx (203)

→ 0 = λn + c1λ
n−1 + . . .+ cn−1λ+ cn, (204)

dividing across by Ceλx.

2.2.2 Cauchy Euler equation

The Cauchy Euler equation is some

xn d
ny

dxn
+ c1x

n−1 d
n−1y

dxn−1
+ . . .+ cn−1x

dy

dx
+ cny = 0. (205)

Again if y = Ceλx then

0 = xn dn

dxn
(Ceλx) + c1x

n−1 dn−1

dxn−1
(Ceλx) + . . .+ cn−1x

d

dx
(Ceλx) + cn(Ceλx) (206)

→ 0 = λnxn + c1λ
n−1xn−1 + . . .+ cn−1λx+ cnλx. (207)

2.2.3 Power series

A power series centered around x0 is an infinite sum of the form

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + . . . . (208)

If there is a limit to the infinite series then it is said to converge. If the absolute value of
the series converges then it is said to converge absolutely. There exists a so-called radius
of convergence R such that the power series converges absolutely for |x − x0| < R and
diverges for |x − x0| > R. So if the chosen point x0 is more than R away from x then
the series diverges. R = 0 indicates that the series only converges at x = x0. R = ∞
indicates that the series converges ∀x.

2.2.4 Ratio test

The the ratio between adjacent terms in a power series converges to

lim
n→∞

|an+1(x− x0)
n+1

an(x− x0)
| = (x− x0) lim

n→∞

an+1

an
= α, (209)

and this informs the convergence behavior of the series, where


α > 1, divergence,

α < 1, convergence,

α = 1, inconclusive.
The radius of convergence

R =

(
lim
n→∞

|an+1

an
|
)−1

(210)

31



An example is to find the R of

∞∑
n=1

1

2nn
(x+ 1)n. (211)

We identify x0 = −1, an = 1/2nn and compute

R =

(
lim
n→∞

2nn

2n+1(n+ 1)

)−1

=

(
1/2

)−1

= 2 −→ −3 < x < 1↔ convergence. (212)

If two power series f(x) =
∑∞

n=0 an(x − x0)
n, g(x) =

∑∞
n=0 bn(x − x0)

n converge within
the interval I = x0 −R < x < x0 +R then

• f ± g =
∑∞

n=0(an ± bn)(x− x0)
n convergees in I,

• df/dx =
∑∞

n=0 nan(x− x0)
n−1 converges in I,

•
∫ b

a
fdx = 1

n+1
an[(b− x0)

n+1 − (a− x0)
n+1] converges in I,

• fg =
∑

n=∞(a0bn + a1bn−1 + . . .+ anb0)(x− x0)
n converges in I.

Note that if f = g then all an = bn. Consequently, if f = 0 then all an = 0.

2.2.5 Taylor series

A taylor series expanded around x0 is

TSf |x0 =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n, (213)

i.e. a power series in which an = f (n)(x0)/n!. We say that TSf |x=0 = f(x) if the
conditions

• f(x0) is infinitely differentiable,

• ∃R > 0

are met, then

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n, (214)

and f(x) is said to be analytic at x0 in that it can be solved for in exact terms as a
function of an infinite series. The opposite of analytic is singular. If x0 = 0, then the
Taylor series is a simple Maclaurin series.
Trig functions, ex, and polynomials are analytic everywhere. However, consider f(x) =

(x+1)3/2 → f ′′(x) = (3/4)(x+1)−1/2. This is not analytic at x = −1 because that value
does not exist. Therefore, x = −1 is a singular point of f(x) in the sense that f(x) is
singular at x = −1. Also, consider xα, which is analytic everywhere except at x = 0, for
which the value does not exist.
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2.3 Lec 2c Linear ODEs analytic coefficients

A linear homogeneous second order ODE of the form

c0(x)y
′′ + c1(x)y

′ + c2(x)y = 0 (215)

has the normal form
y′′ +

c1
c0
y′ +

c2
c0
y = py′ + qy = 0. (216)

The classification of x0 depends on{
c0(x0) ̸= 0, x0 is ordinary,

c0(x0) = 0, x0 is singular (p, q →∞).
(217)

If x0 is a singular point then it can either be{
regular singular, (x− x0)p and (x− x0)

2q are analytic at x0,

irregular singular, otherwise.
(218)

Once the singular points are determined, it is determined that R is at least as great as
the distance between x0 and the singular point that is nearest to R. That is, the smallest
interval of convergence is I = (x0 − R, x0 + R). The way in which to find a solution to
Eq. 215 is the following procedure.

• Assume solution y =
∑∞

n−0 an(x− x0)
n,

• take necessary derivatives and substitute them back in,

• expand the infinite sum and group terms according to powers of (x− x0),

• solve for an in terms of a0, a1 by virtue of every set of terms grouped by a particular
xm needing to go to zero: ◦ = 0 in (◦)x0 + (◦)x1 + . . . = 0.

• Let the solution be y = a0y1 + a1y2, where y1, y2 are the sets of terms within the
expanded y that contain coefficients a0, a1 respectively.

2.3.1 Solution near an ordinary point

For example, suppose we wish to find the solution to

(1− x2)y′′ − 2xy′ + λy = 0. (219)

about the origin x0 = 0. We note c0 = 1−x2, c1 = −2x, c2 = λ, all of which are analytic
everywhere. x0 is ordinary because c0(0) = 1 ̸= 0. We note also that p = 2x/(1−x2), q =
λ/(1− x2). Therefore we can assume the solution

y =
∞∑
n=0

an(x− x0)
n =

∞∑
n=0

anx
n (220)
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→ y′ =
∞∑
n=1

nanx
n−1, y′′ =

∞∑
n=2

n(n− 1)anx
n−2. (221)

Notice that the indices change because of the fact that the derivative of the term a0x
0 is

just zero. Therefore, it is excluded. Substituting this in,

0 = (1− x2)
∞∑
n=2

n(n− 1)anx
n−2

︸ ︷︷ ︸−
︷ ︸︸ ︷
2x

∞∑
n=1

nanx
n−1+λ

∞∑
n=0

anx
n (222)

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n

︸ ︷︷ ︸−
︷ ︸︸ ︷
∞∑
n=1

2nanx
n+λ

∞∑
n=0

anx
n. (223)

Reindexing each term to get xn everywhere,

0 =
∞∑

(n+2)=2

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

2nanx
n + λ

∞∑
n=0

anx
n (224)

=
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

2nanx
n + λ

∞∑
n=0

anx
n. (225)

Expanding the sum, noting well where each index starts,

0 = x0[(2)(1)a2+λa0]+x1[(3)(2)a3−2a1+λa1]+. . .+xs[(s+2)(s+1)as+2−s(s−1)as−2sas+λas]
(226)

for s ≥ 2. This implies

2a2 + λa0 = 0 −→ a2 = −
λa0
2

, (227)

6a3 + (λ− 2)a1 = 0 −→ a3 =
2− λ

6
a1, (228)

(s+2)(s+1)as+2+[−s(s−1)−2s+λ]as = 0 −→ as+2 =
s(s− 1) + 2s− λ

(s+ 2)(s+ 1)
as =

s(s+ 1)− λ

(s+ 2)(s+ 1)
as.

(229)
Note that every even as will contain a0 because it is contained in a2, and every odd as
will contain a1 beacuse it is contained in a3. Then,

y =
∞∑
n=0

anx
n (230)

= a0 + a1x−
λa0
2

x2 +
(2− λ)a1

6
x3 + . . . (231)

= a0(1−
λ

2
x+ . . . ) + a1(x+

2− λ

6
x3 + . . . ) = a0y1 + a1y2 = y(x). (232)

Note that the two parts of the solution y1, y2 are linearly independent in that y1/y2 is not
a constant.
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If λ = n(n+1), where n is NOT the same as the indexe quantity, then the coefficients
become

a2 = −
n(n+ 1)

2
a0, (233)

a3 =
2− n(n+ 1)

6
a1, (234)

as+2 =
s(s+ 1)− n(n+ 1)

(s+ 2)(s+ 1)
as =

s2 + s− n2 − n

s2 + 2s+ 2
as =

s2 + sn+ s− ns− n2 − n

(s+ 2)(s+ 1)
as

=
(s− n)(s+ n+ 1)

(s+ 2)(s+ 1)
as = as+2. (235)

Lastly the singular points of the ODE occur where 0 = c0(x) = 1 − x2 → x = ±1.
R = 1 is then the distance from the origin to this singular point. Therefore the interval
I = (−1, 1).

2.3.2 Legendre polynomials

Legendre polynomials

Pn(x) =
M∑

m=0

(−1)m (2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m, M =

{
n/2, n even,

(n− 1)/2, n odd.
(236)

They are orthogonal over −1 < x < 1 so that∫ 1

−1

Pm(x)Pn(x)dx = 0, m ̸= n, (237)

and these are solutions to Sturm Liouville BVPs. Some of the first of these are

P0(x) = 1,

P1(x) = x,

P2(x) =
1
2
(3x2 − 1),

P3(x) =
1
2
(5x3 − 3x),

P4(x) =
1
8
(35x4 − 30x2 + 3),

P5(x) =
1
8
(63x5 − 70x3 + 15x).

(238)

Even/odd Legendre polynomials have the quality

P2m(−x) = P2m(x), P2m−1(−x) = −P2m−1(x) (239)

respectively. That is, they are literally even and odd functions.

2.4 Lec 2d Linear ODEs regular singular points

Let x0 = 0. That is, shift the coordinate system as necessary so that x0 = 0 if it is not
already. Recall from 217,218 that x being a regular singular point requires c0(x) = 0,
and that xp, x2q are analytic. Therefore both xp and x2q have power series expansions
that converge within some interval I.
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2.4.1 Frobenius method

Just like in Sec. 2.3, a linear homogeneous second order ODE of the form

c0(x)y
′′ + c1(x)y

′ + c2(x)y = 0 (240)

has the normal form
y′′ +

c1
c0
y′ +

c2
c0
y = y′′ + py′ + qy = 0 (241)

which implies
x2y′′ + x(xp)y′ + (x2q) = 0. (242)

The method of Frobenius, used to solve equations in the form of Eq. 242, is to assume a
solution

y =
∞∑
n=0

anx
n+r (243)

with derivatives

y′ =
∞∑
n=0

(n+ r)anx
n+r−1, y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2. (244)

Unlike in Sec. 2.3, the indices here do not change because there is no term that goes to
zero necessarily, unlike a0x

0.
The next step is to substitute the derivatives back into the original equation, and

combine like powers of x. Notice that the coefficient x2 on each of the terms eliminates
the possibility of terms such as xr−1; every exponent will be ≥ r.
Once like powers of x are combined, such as in Eq. 226, the coefficient associated with

xr being set to zero can be used to determine the value of r. The final solution to the
equation will always be some

y(x) = ay1(x) + by2(x), (245)

but the nature of y1, y2 change based on the solutions of r. Particularly,

y1 = |x|r1(a0 + a1x+ . . . ), Frobenius Case I,

y2 = |x|r2(b0 + b1x+ . . . ), r1, r2 are distinct and do not differ by an integer,

y1 = |x|r1(a0 + a1x+ . . . ), Frobenius Case II,

y2 = y1 ln |x|+ |x|r1(b1x+ b2x
2 + . . . ), r1 = r2,

y1 = |x|r1(a0 + a1x+ . . . ), Frobenius Case III,

y2 = κy1 ln |x|+ |x|r2(b0 + b1x+ . . . ), r1, r2 are distinct and differ by an integer.

(246)
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2.4.2 Solution near a regular singular point

For example suppose we want to find a general solution of the Bessel equation of order ν

x2y′′ + xy′ + (x2 − ν2)y = 0 (247)

about the origin x0 = 0. The normal form is

y′′ +
1

x
y′ + (1− ν2

x2
)y = 0. (248)

the term c0(x = 0) = 02 = 0 implies that x = 0 is a singular point, and the terms
xp = 1, x2q = x2 − ν2 being analytic (as they are polynomials) imply that x = 0 is a
regular singular point. Therefore the Frobenius method is used, in which the solution

y(x) =
∞∑
n=0

anx
n+r (249)

is assumed, which has derivatives

y′ =
∞∑
n=0

(n+ r)anx
n+r−1, y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2. (250)

Substituting them into Eq. 247,

0 =
∞∑
n=0

[
(n+ r)(n+ r − 1)anx

n+r + (n+ r)anx
n+r + anx

n+r+2︸ ︷︷ ︸−ν2anx
n+r

]
(251)

=
∞∑
n=0

[
(n+ r)(n+ r − 1)anx

n+r + (n+ r)anx
n+r − ν2anx

n+r

]
+

∞∑
n=2

an−2x
n+r

︸ ︷︷ ︸ (252)

Expanding,

0 =

(
r(r − 1)a0x

r + ra0x
r − ν2a0x

r

)
+

(
(r + 1)ra1x

r+1 + (r + 1)a1x
r+1 − ν2a1x

r+1

)
+

(
(r + 2)(r + 1)a2x

r+2 + (r + 2)a2x
r+2 − ν2a2x

r+2 + a0x
r+2

)
+ . . .

+

(
(r + s)(r + s− 1)asx

r+s + (r + s)asx
r+s − ν2asx

r+s + as−2x
r+s

)
+ . . . . (253)

Solving for r in the first term,

0 = (r(r − 1) + r − ν2)xra0 → r = ±ν. (254)
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Now that r is known it can be substituted into other terms. Substituting it in to the
coefficient for xr+1,

0 = ((±ν + 1)(±ν) +±ν + 1− ν2)xr+1a1 →

{
r1 = ν : (2ν + 1)a1 = 0→ a1 = 0,

r2 = −ν : (−2ν + 1)a1 = 0→ a1 = 0.

(255)
Both equations indicate a1 = 0. Further, notice that in the the coefficient of xr+s, as
depends on as−2. Particularly

(2νs+ s2)as = −as−2 → a3 = a5 = . . . = 0 (256)

because a1 = 0.
Because the odd terms cancel, the solution becomes some

y1 =
∞∑
n=0

anx
n+ν (257)

where all the an depend on a0. If we define it as

a0 =
a

2νΓ(ν + 1)
(258)

where Γ(n+ 1) = n! (Γ(α + 1) = αΓ(α)), then the solution takes the form of

y1(x) = aJν(x) (259)

where the Bessel function of the first kind is, for r1 = ν

Jν(x) = xν

∞∑
n=0

(−1)nx2n

22n+νn!Γ(n+ ν + 1)
. (260)

If r2 = −ν, the second linearly independent solution

y2(x) = bJ−ν(x) (261)

emerges. Then the general solution is

y(x) = aJν + bJ−ν . (262)

Note: the value of ν determines whether or not r1, r2 differ by an integer and thus whether
or not the problem is of Frobenius Case I or Frobenius Case III. For example, ν = 1/2
indicates ∆r12 = 1 ∈ Z, but ν = 1/4 indicates ∆r12 = 1/2 /∈ Z.
If ν = n with n ∈ Z, then we must get Frobenius Case III and

y(x) = aJn + bYn, (263)

where Yn is the Bessel function of the second kind. Approximations for the Bessel func-
tions are

Jn ≈
1

Γ(n+ 1)

(
x

n

)n

, Yn(x) ≈


2
π

[
ln x

x
+ γ

]
, n = 0,

−Γ(n)
π

(
2
x

)n

, n = 1, 2, . . .
(264)

where n = 1, 2, 3, . . . .
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2.5 Lec 2e Bessel functions

As in Eq. 247, the Bessel equation is

x2y′′ + xy′ + (x2 − ν2)y = 0. (265)

On a graph with axes (x, y) = (x,J (x)), Bessel function of the first kind of order zero,
J′, starts at 1 and oscillates around 0 as it slowly diminishes. Whereas, J1,J∈ start at
zero and do the same. Bessel function of the second kind Yn(x) is singular as x → 0,
meaning it tends towards −∞ as x→ 0 because there is no solution at that point. As x
increases, Yn approaches 0 and then oscillates around it until it diminishes.
Some bessel function properties are

• Bessel functions of successive orders are given by Jν−1+Jν+1 =
2ν
x
Jν , Yν−1+Yν+1 =

2ν
x
Yν . Particularly, Y2 =

2
x
Y1 − Y0 and the same for J .

• Derivatives are dJ0/dx = −J1, dJ1/dx = J0 − J1/x, and the same for Y .

• Bessel function of the second kind Yν(x) tends towards lnx if ν = 0 and towards
x−ν if ν ̸= 0.

The Hankel functions are

H(1)
ν (x) = Jν(x) + iYν(x), H(2)

ν (x) = Jν(x)− iYν(x), (266)

so that a general solution to the Bessel equation of order ν is

y(x) = aH(1)
ν + bH(2)

ν (267)

which is analogous to the harmonic functions in that 0 = y′′ + y has general solution
y = aeix + be−ix where e±x = cosx± i sinx.
The Bessel Equation of order ν is, as seen in Eq. 247,

x2y′′ + xy′ + (x2 − ν2)y = 0. (268)

The modified Bessel equation is

x2y′′ + xy′ − (x2 + ν2)y = 0 (269)

with general solution

y(x) = âJν(ix) + b̂Yν(ix) = aIν + bKν , (270)

where Iν , Kν are modified Bessel functions of the first and second kind. Properties of the
modified Bessel functions are

• Iν−1 − Iν+1 =
2ν
x
Iν ,−Kν+1 +Kν+1 =

2ν
x
Kν ,

• Derivatives are dI0/dx = I1, dK0/dx = −K1, dI1/dx = I0 − I1/x, dK1/dx =
−K0 −K1/x.

• Modified Bessel function of the second kind Kν(x) tends towards lnx if ν = 0 and
towards x−ν if ν ̸= 0.

The modified Bessel functions are not oscillatory like the original Bessel functions. The
analogy is the governing equation y′′ − y = 0 for which the general solution is y =
a coshx+ b sinhx and this does not oscillate.
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Figure 2: Bessel/modified bessel functions of the first, second kind of orders
0, 1, 2/0, 1, 2, 3.

2.6 Lec 2f Sturm Liouville eigenproblem

If p > 0, p′, q, w > 0 are real and continuous on [x1, x2], then λ in the ODE

d

dx
[p(x)y′] + [q(x) + λw(x)]y = 0, x1 < x < x2 (271)

↔ p′y′ + py′′ + qy + λwy = 0, x1 < x < x2 (272)

with boundary conditions

a1y(x1) + b1y
′(x1) = 0, a2y(x2) + b2y

′(x2) = 0 (273)

represents an eigenvalue with corresponding eigenfunction yn. So the eigenpair is λn, yn.
There are infinite real eigenvalues. Two eigenfunctions ym, yn are orthogonal with respect
to weighting function w so that

∫ x2

x1
ym(x)yn(x)w(x)dx = 0, m ̸= n.

The Sturm Liouville bonudary value eigenproblem is analogous to the matrix eigen-
problem Ax = λBx.
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2.6.1 Bessel equation

An example of a Sturm Liouville eigenproblems is the Bessel equation

x2y′′ + xy′ + (λ̄2x2 − ν2)y = 0 (274)

in that

y′ + xy′′ + (
−ν2

x
+ λ̄2x)y = 0. (275)

For this to match up with Eq. 271 (p′y′ + py′′ + qy+ λwy = 0, x1 < x < x2), it must be
that p = w = x, q = −ν2/x, λ = λ̄2.

2.6.2 Legendre equation

The Legendre equation is

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 (276)

which implies

[(1− x2)y]′ + (0 + n(n+ 1))y = 0→ p = 1− x2, w = 1, λ = n(n+ 1). (277)

2.7 Lec 2g IVP numerical solutions

Consider the first order ODE
dy

dx
= f(x, y). (278)

First of all there is the numerical integration method where one considers

dy = f(x, y)dx→
∫ yi+1

yi

dy =

∫ xi+1

xi

f(x, y)dx→ yi+1 − yi =

∫ xi+1

xi

f(x, y)dx. (279)

Then there are finite difference methods. Consider again

dy

dx
= f(x, y). (280)

Then Euler’s method

dy/dx ≈ ∆y/∆x ≈ yi+i − yi/xi+1 − xi = f(xi, yi). (281)

Let
xi+1 − xi = h. (282)

Then
yi+1 = yi + hf(xi, yi). (283)

h is called the step size. This is called Euler’s method. It is known as a forward method
because you are iterating forward. It is called explicit because the RHS only involves xi

and yi where LHS involves yi+1. So you are finding the unknown i + 1 term using the
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known i terms.
An alternative approach is the backward method. Let once again

dy/dx = f(x, y) (284)

but
▽y/▽x ≈ f(x, y). (285)

Then
yi − yi−1

xi − xi−1

=
yi − yi−1

h
≈ f(xi, yi). (286)

So
yi = yi−1 + hf(xi, yi). (287)

This is a backward method because you are iterating backwards. It is called implicit
because both the LHS and the RHS involve some i term. So there are unknowns on both
sides, theoretically. Some assumption is required. Let us again consider Euler’s forward
method. If

dy/dx = f(x, y) (288)

so that
yi+1 = yi + hf(xi, yi), (289)

we might ask, what is the error involved in this approach? We do not yet know exactly
but we can approximate the order of magnitude of the error in the Taylor series expansion
of y(x) at xi. That is,

yi+1 = yi +
h1

1!
hy′i +

h2

2!
y′′i +

h3

3!
y′′′i + . . . . (290)

Recall that dy
dx

= y′ = f(xi, yi). Then in approximating the infinite series into something
containing only known values we might say

yi+1 = yi + hf(xi, yi) +
h2

2!
y′′i + . . . = yi+1 = yi + hf(xi, yi) +O(h2) (291)

whereO is called the local truncation error and its order (h2) is just the order of magnitude
of the approximation error. That is error at the local level, or at this particular step in
the iteration. However if this approximation is used over many steps then then error will
accumulate. In this way it is then known that if local truncation error is O(h2) then total
truncation error is O(h). That applies to this particular example. Another example is:
if local error is O(h3) then total error is O(h2). This generally applies.
This method has low accuracy. There is also potential for instability numerically. That
is, the solve may not converge. How do we improve this accuracy? One way is to obtain
steps at the beginning and end of the interval and then average. That is, let us improve

yi+1 = yi + hf(xi, yi) (292)

by saying instead that

yi+1 = yi +
h

2

(
f(xi, yi) + f(xi+1, yi+1)

)
. (293)
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But, note that terms on the RHS are unknown. So let us use Euler method to estimate
the yi+1 term on that side. Let us create a value which serves as an approximation

yei+1 = yi + hf(xi, yi). (294)

Plugging Eq. 294 into the RHS of Eq. 293,

yi+1 = yi+
h

2

(
f(xi, yi)+f(xi+1, y

e
i+1)

)
= yi+

h

2

(
f(xi, yi)+f(xi+1, yi+hf(xi, yi))

)
. (295)

Now let us create a general model using as a characteristic example Eq. 295. First of all
let us recall that

xi + h = xi+1 (296)

by virtue of Eq. 282. Now let

yi+1 = yi + h

(
af(xi, yi) + bf(xi + αh, yi + βhf(xi, yi))

)
(297)

where α, β, a, b are constants. Eq. 297 is a model of 295 if

α = 1, β = 1, a = 1/2, b = 1/2. (298)

2.8 Lec 2h Higher order methods

Reminiscent of Lec 2.7, consider the first order ODE

f(x, y) =
dy

dx
(299)

and the forward Euler method

yi+1 = yi + hf(xi, yi). (300)

This essentially uses the slopes at xi and at yi (slopes because dy
dx

informs slope) to
estimate yi+1. Recall otherwise that for this example, truncation error O = O(h2) at the
local (per step) level and that O = O(h) at the total level.
Let us try to improve beyond the Euler method. Recall Eq. 20 with parameters α, β, a, b.
It is generally true for this model that

if a+ b = 1, αb = 1/2, βb = 1/2, (301)

then the resultant iteration will have O(h3) locally and O(h2) totally. We remember that
Eq. 295 obeys Eq. 297 if

α = 1, β = 1, a = 1/2, b = 1/2. (302)

Let us move on to the Runge Kutta (run guh kud duh; RK) method. Let us rewrite the
previous formula as what is called a second order Runge Kutta method

yi+1 = yi + h(c1k1 + c2k2) (303)
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since i = {1, 2} on ciki. Eq. 303 equals Eq. 295 only if

c1 = 1/2, c2 = 1/2, k1 = f(xi, yi), k2 = f(xi + h︸ ︷︷ ︸
xi+1

, yi + hf(xi, yi)). (304)

A step further, we see that k1 is contained in part of k2. So we can instead say

c1 = 1/2, c2 = 1/2, k1 = f(xi, yi), k2 = f(xi + h︸ ︷︷ ︸
xi+1

, yi + hk2). (305)

Note that ki can only be a function of kj for i > j. We can use this same Runge Kutta
procedure to develop higher order methods. A fourth order Runge Kutta method

yi+1 = y1 + h(c1k1 + c2k2 + c3k3 + c4k4) (306)

equals the example

yi+1 = yi+
h

2

(
f(xi, yi)+f(xi+1, y

e
i+1)

)
= yi+

h

2

(
f(xi, yi)+f(xi+1, yi+hf(xi, yi))

)
(307)

(which is Eq. 295 but repeated here for convenience) if

c1 = 1/6, c2 = 1/3, c3 = 1/3, c4 = 1/6; (308)

moreover that

k1 = f(xi, yi), k2 = f(xi +
1

2
h, yi +

1

2
hk1),

k3 = f(xi +
1

2
h, yi +

1

2
hk2), k4 = f(xi + h, yi + hk3). (309)

Now a fourth order Runge Kutta method admits a total O(h4) (so local O(h5)). So the
order of the method is the order of magnitude of the total truncation error. (A higher
magnitude order for truncation error is actually good. Higher order terms are later on in
the Taylor series expansion.)
So we know arbitrarily of our error but how do we better estimate it? Then, how do we
control it? First we can try solving the problem multiple times with different h but with
the same formula. This is ”OK” but not preferred; some times you would need a very
small h (Dargush). Instead you can use an adaptive algorithm that estimates the error
at each step. Let us consider the ”adaptive” Runge Kutta method. Here you combine a
fourth order RK with a fifth order RK using the same evaluation points but with different
coefficients. The psuedocode of this is

I . Take a step o f s i z e h .
I I . Evaluate y { i +1} and est imate the e r r o r e { i +1}.
I I I . I s e { i +1} < e { t o l e r an c e }?

A. I f yes , then accept y { i +1} and perhaps i n c r e a s e h ;
B. i f no , reduce h and repeat s tep .

The MATLAB implementation of this is
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ode45 .

Let us now consider the Runge Kutta Fehlberg method. Another type of fourth order
RK is

ŷi+1 = yi + h(c1k1 + 0 + c3k3 + c4k4 + c5k5); (310)

similarly, a fifth order RK can be

yi+1 = yi + h(c1k1 + 0 + c3k3 + c4k4 + c5k5 + c6k6), (311)

noticing for both cases that the i = 2 term is diminished. For these RK,

k1 = f(xi, yi), (312)

k2 = f(xi + a2h, yi + b1hk1), (313)

k3 = f(xi + a3h, yi + b2hk1 + b3hk2), (314)

k4 = f(xi + a4h, yi + b4hk1 + b5hk2 + b6hk3), (315)

k5 = f(xi + a5h, yi + b7hk1 + b8hk2 + b9hk3 + b10hk4), (316)

k6 = f(xi + a6h, yi + b11hk1 + b12hk2 + b13hk3 + b14hk4 + b15hk5). (317)

For the coefficients ai, bi, see Rao (2002). Then the error can be computed as

e = yi+1 − ŷi+1. (318)

We can compare this error to some tolerance that we have established and modify h
accordingly (increase with success, decrease with failure).
Let us consider a multi step method. Here we use information from several previous steps

to inform yi+1. We interpolate over the previous steps

(
xi, xi−1, xi−2, . . .

)
+

(
yi, yi−1, yi−2, . . .

)
.

Then we extrapolate to estimate yi+1 at xi+1. This process is guided by a Taylor series
expansion.
The Adams Bashford formulas are examples of this. The fourth order method (total
O(h4))

yi+1 = yi +
h

24

(
55fi − 59fi−1 + 37fi−2 − 9fi−3

)
(319)

where fi = f(xi, yi) is explicit. It only uses known values on RHS. On the other hand
the Adams Moulton formulas O(h4)

yi+1 = yi +
h

24

(
9fi+1 + 19fi−1 − 5fi−1 + fi−2

)
(320)

is implicit in that fi+1 is unknown. So that term is estimated or found simultaneously.
Lastly a predictor-corrector method uses an explicit formula to predict yi+1, then uses an

implicit formula to correct in order to improve the solution. The y
(1)
i+1 term in

y
(1)
i+1 = yi +

h

24

(
55fi − 59fi−1 + 37fi−2 − 9fi−3

)
(321)
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is used in the f
(j)
i+1 term in

y
(j+1)
i+1 = yi +

h

24

(
9f

(j)
i+1 + 19fi − 5fi−1 + fi−2

)
. (322)

This is called the Adams predictor-corrector. You can iterate over j until convergence is
achieved.

2.9 Lec 2i Simultaneous ODEs

Now consider a set of first order ODEs

dy1
dx

= f1(x, y1, y2, ..., yn) (323)

dy2
dx

= f2(x, y1, y2, ..., yn) . . . (324)

dyi
dx

= fi(x, y1, y2, ..., yn) . . . (325)

dyn
dx

= fn(x, y1, y2, ..., yn) (326)

with the corresponding set of initial conditions

y1(x0) = y1,0, y2(x0) = y2,0, ..., yn(x0) = yn,0. (327)

We can rewrite this in vector notation as

dy

dx
= f(x,y), y(x0) = y0, (328)

y =


y1(x)
y2(x)
. . .

yn(x)

 . (329)

We can use all previous methodologies to solve a system. The extension is straightforward.
For example the Euler forward method for the system is

yi+1 = yi + hf(xi,yi) (330)

and the Adams predictor-corrector is

y
(1)
i+1 = yi +

h

24

(
55fi − 59fi−1 + 37fi−2 − 9fi−3

)
(331)

where the y
(1)
i+1 term is plugged into f

(j)
i+1 = f(j)(xi+1,yi+1) in

y
(j+1)
i+1 = yi +

h

24

(
9f

(j)
i+1 + 19fi − 5fi−1 + fi−2

)
. (332)
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As far as the Runge Kutta Fehlberg method for the ODE set, we have

ŷi+1 = yi + h(c1k1 + 0 + c3k3 + c4k4 + c5k5); (333)

and
yi+1 = yi + h(c1k1 + 0 + c3k3 + c4k4 + c5k5 + c6k6), (334)

where
k1 = f(xi,yi), (335)

k2 = f(xi + a2h,yi + b1hk1), (336)

k3 = f(xi + a3h,yi + b2hk1 + b3hk2), (337)

k4 = f(xi + a4h,yi + b4hk1 + b5hk2 + b6hk3), (338)

k5 = f(xi + a5h,yi + b7hk1 + b8hk2 + b9hk3 + b10hk4), (339)

k6 = f(xi + a6h,yi + b11hk1 + b12hk2 + b13hk3 + b14hk4 + b15hk5). (340)

Which is the same formulation as earlier except f, {ki},yi are all vectors. Then the error
is the L2 norm of Eq. 318, or

e = ||yi+1 − ŷi+1||2. (341)

So far we have discussed first order ODEs. Let us now consider the higher, second order
ODE

m
d2u

dt2
+ c

du

dt
+ ku = P (t), u(0) = u0,

du

dt
(0) = v0. (342)

This models a spring mass system with spring constant k, mass m, displacement u,
damping constant c, external force P , and initial conditions on displacement and velocity
u0, v0. This is visualized in Fig. 3. Now let us redefine some parameters in

t→ x, u(t)→ y1(x),
du

dt
→ y2(x), (343)

which is called the state space approach. Then Eq. 342 becomes

m
dy2
dx

+ cy2 + ky1 = P (x). (344)

Rearranging,
dy2
dx

=
1

m

(
−cy2 − ky1 + P (x)

)
= −cy2

m
− ky1

m
+

P

m
. (345)

By virtue of Eq. 343 we already know that

dy1
dx

= y2; (346)

also that the initial conditions become

y1(0) = u0, y2(0) = v0. (347)
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The new representations that are Eqs. 346 and 345 can be integrated into the matrix
equation {

dy1
dx
dy2
dx

}
=

[
0 1

−k/m −c/m

]{
y1
y2

}
+

{
0

P/m

}
⇐⇒ dy

dx
= Ay+ b︸ ︷︷ ︸

f

. (348)

f = dy
dx

because of Eq. 328. It was our original consideration. Also we can generalize the
initial conditions as

y(0) = y0 ⇐⇒
{
y1(0)
y2(0)

}
=

{
u0

v0

}
=

{
y1,0
y2,0

}
. (349)

We wish to state the problem in terms of physical quantities that are meaningful. In
particular we want natural frequency ω and damping ratio ξ. Therefore let

ω2 = k/m, 2ξω = c/m. (350)

Then {
dy1
dx
dy2
dx

}
=

[
0 1
−ω2 −2ξω

]{
y1
y2

}
+

{
0

P/m

}
,

{
y1(0)
y2(0)

}
=

{
u0

v0

}
. (351)

Also, letting
P = 0 (352)

permits the system to freely vibrate. Now recalling from Eq. 348 that f = dy
dx

= Ay+ b,
we can use Euler’s forward method to say that

yi+1 = yi + hf = yi + hAyi + hb. (353)

We have just considered as an example a spring mass system. As another example let
us consider the pendulum in Fig. 3. Here the pendulum is swinging through a viscoous
fluid and so it experiences a resisting force proportional to its velocity cLθ̇ as well as the
usual tension force T and gravitational force mg.
The sum of the torques (moments) at origin O is equal to the time rate of change of the
angular momentums at that same point. That is,∑

M0z = Ḣ0z . (354)

Recall that generally speaking torque

τ = M = r × F = rF sinϕ (355)

where ϕ is the angle between the contributing force and the distance between the body
and some axis of interest. It is useful to make ϕ = 90o. So for example, since gravity acts
straight down, r will be the distance between the ball and the vertical axis so that r is a
horizontal space between two vertical lines and

Mmg = rF sinϕ = (L sin θ)(−mg) sinϕ︸︷︷︸
ϕ=90o

= −mgL sin θ. (356)
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Figure 3: Spring-mass system and pendulum.

Viscous force acts perpendicularly to the wire and the distance between the ball and the
origin O with respect to the perpendicular axis is L. So

Mviscous = −(clθ̇)L sinϕ = −cL2θ̇. (357)

These two equations comprise LHS. Then on the right hand side is the time derivative of
the angular momentum, where angular momentum H is linear momentum times radius.
Generally speaking

ρ = mv = m(Lθ̇) (358)

because the velocity of a point on the wire increases as you go further down it. Then

H0 = (mLθ̇)L→ Ḣ0 =
d

dt

[
(mLθ̇)L

]
(359)

which makes up RHS. Together,

−cL2θ̇ −mgL sin θ = mL2θ̈ (360)

implies
mL2θ̈ +mgL sin θ + cL2θ̇ = 0 (361)

implies

θ̈ +
c

m
θ̇ +

g

L
sin θ = 0. (362)

Eq. 362 can be simplified with the Taylor series

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . . ≈ θ (363)
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so that now,

θ̈ +
c

m
θ̇ +

g

L
θ = 0. (364)

Substituting physical quantities in from Eq. 350,

θ̈ + 2ξωθ̇ + ω2θ = 0. (365)

Using the state space approach, we invoke a process similar to Eq. 343, which is

x← t, θ ← y1, θ̇ ← y2. (366)

Then
dy1
dx

= y2 (367)

and
dy2
dx

= θ̈ = −2ξωθ̇ − ω2θ = −2ξωy2 − ω2y1. (368)

This information is sufficient to build the matrix equation{
dy1
dx
dy2
dx

}
=

[
0 1
−ω2 −2ξω

]{
y1
y2

}
+

{
0
0

}
= Ay+ b = f =

dy

dx
(b = 0). (369)

Not using the Taylor series approximation and thus leaving the matrix equation system
as

dy1
dx

= y2 (370)

and
dy2
dx

= −2ξωy2 − ω2 sin y1 (371)

admits a set of nonlinear ODEs. Even one nonlinear equation in a set redefines the whole
set as nonlinear.

2.10 Lec 2j State space dynamics and stability

To summarize Fig. 3, the spring mass system can be written as

mü+ cu̇+ ku = P → ü = − c

m
u̇− k

m
u+ P/m (372)

which implies {
u̇
v̇

}
=

[
0 1

−k/m −c/m

]{
u
v

}
+

{
0

P/m

}
(373)

provided u̇ = v → ü = v̇. Likewise the pendulum is written as

θ̈ +
c

m
θ̇ +

g

L
sin θ = 0 (374)

which implies {
θ̇

Ω̇

}
=

[
0 1

−c/m −g/L

]{
θ
Ω

}
(375)
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provided θ̇ = Ω → θ̈ = Ω̇. The general structure of these equations (especially seen in
the spring mass system) is

Mv̇+Cv+Ku = P(t). (376)

The conversion of this system to state space is

y =

{
y1

y2

}
=

{
u
v

}
. (377)

We understand
u̇ = v; (378)

also that, after rearranging Eq. 376,

v̇ = M−1

(
−Ku−Cv+P

)
= −M−1Ku−M−1Cv+M−1P. (379)

Then {
u̇
v̇

}
︸ ︷︷ ︸

f

=

[
0 1

−M−1K −M−1C

]
︸ ︷︷ ︸

A

{
u
v

}
︸ ︷︷ ︸

y

+

{
0

M−1P

}
︸ ︷︷ ︸

b

. (380)

Let us apply this to Euler integration. Generally,

yi+1 = yi + hfi = yi + hAyi + hbi. (381)

This implies

yi+1 =

(
I+ hA

)
yi + hbi. (382)

Starting at the first step:

y1 =

(
I+ hA

)
y0 + hb0. (383)

Then,

y2 =

(
I+ hA

)
(y1) + hb1

=

(
I+ hA

)
(

(
I+ hA

)
y0 + hb0) + hb1

implies

y2 =

(
I+ hA

)2

y0 +

(
I+ hA

)
hb0 + hb1. (384)

In general,

yn =

(
I+ hA

)n

y0 + gn(b0,b1, . . . ,bn). (385)

g is some function of bi. Matrix

Â =

(
I+ hA

)
(386)
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when expressed in
yn = Â

n
y0 + g (387)

is called the Jordan canonical form. The spectral decomposition

Â = PJP−1 (388)

admits the Jordan normal form J which is a matrix containing the eigenvalues of Â on
its diagonal and sometimes the superdiagonal (the parallel line of elements right above
the diagonal). Raised to the power n,

Â
n
=

(
PJP−1

)(
PJP−1

)(
PJP−1

)
. . . = PJnP−1. (389)

We do not want Jn to increase to infinity as n→∞. That is, we want Jn to be bounded.
This is true if the spectral radius of Â = ρ(Â) ≤ 1. Spectral radius is defined as the
maximum of the absolute values of its eigenvalues. That is,

ρ(Â) = max{|λ1|, |λ2|, . . . |λn|}. (390)

We consider an example of using the Jordan canonical form. Let

ẋ1 = −3x1 − 2x2, ẋ2 = 2x1 + x2; x1(0) = 1, x2(0) = 0. (391)

Then {
ẋ1

ẋ2

}
=

[
−3 −2
2 1

]
︸ ︷︷ ︸

A

{
x1

x2

}
. (392)

For a linear system
x′ = Ax, (393)

if {λ, r} is an eigenpair for A, then the solution of the system is

x = eλtr→ x′ = λeλtr (394)

because
Ax = Aeλtr = eλtAr = λeλtr = x′ (395)

implies the eigenproblem
eλtAr = eλtλr→ Ar = λr. (396)

So we need to find the eigenpairs of the matrix A. This requires

0 = det(A− λI) = det

[
−3− λ −2
2− λ 1

]
= (−3− λ)(1− λ)− (2)(−2) = 0. (397)

Solving for λ,

λ2 + 2λ+ 1 = 0→ (λ+ 1)(λ+ 1) = 0→ λ1, λ2 = −1. (398)
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The corresponding eigenvector r can be found in

Ar = λr→
[
−3 −2
2 1

]{
r1
r2

}
=

{
−r1
−r2

}
(399)

by considering algebraically

−3r1 − 2r2 = −r1 → −2r2 = 2r1 → r2 = −r1

→ r =

{
1
−1

}
→ normalizing if desired/necessary→ r =

{
1
√
2

−1
√
2

}
. (400)

Noonberg (2010) pg. 166-167 proves that if λ1 = λ2 for [A]2x2 then the general solution
of Ax = x′ can be written in the form

x = c1e
λtr+ c2e

λt(tr+ r∗), where (A− λI)r∗ = r. (401)

This is also called variation of parameters. In this case,[
−2 −2
2 2

]
︸ ︷︷ ︸

A−λI

{
1
−3/2

}
︸ ︷︷ ︸

r∗

=

{
1
−1

}
︸ ︷︷ ︸

r

. (402)

So we can write the general solution as

x = c1e
−t

{
1
−1

}
+ c2e

−t

{
t+ 1
−t− 3/2

}
= x(t). (403)

That means

x(0) = c1

{
1
−1

}
+ c2

{
1
−3/2

}
=

{
x1(0)
x2(0)

}
=

{
1
0

}
(404)

where {x1(0), x2(0)}T comes from Eq. 391. Recall that we want to bound Jn by causing
the spectral radius of Â - that is, its maximum eigenvalue - to be less than or equal to 1.
This is true if, using Eq. 386 and 390,

max{|λ1|, |λ2|} ≤ 1, (405)

where λi are recovered in letting

0 = det(Â− λI) = det(I+ hA− λI) = det

[
1− 3h− λ −2h

2h 1 + h− λ

]
= (1− 3h− λ)(1 + h− λ)− (2h)(−2h)

= −h2 − 2hλ+ 2h− λ2 + 2λ− 1 = 0→ λ1 = λ2 = 1− h. (406)

To satisfy the enforcement of Eq. 405,

|1− h| ≤ 1→ −2 ≤ h ≤ 2. (407)
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Now recall once again the spring mass system{
u̇
v̇

}
=

[
0 1

−k/m −c/m

]{
u
v

}
+

{
0

P/m

}
. (408)

Consider the undamped case. That is, c = 0. Remembering also that natural frequency
ω2 = k/m,

A =

[
0 1
−ω2 0

]
; (409)

eigenvalues are brought out of

0 = det

[
−λ 1
−ω2 −λ

]
= λ2 + ω2 = 0→ λ1, λ2 = ±iω. (410)

Eigenvalues of the Jordan canonical form are in

0 = det(I+ hA− λI) = det

[
1− λ h
−hω2 1− λ

]
= (1− λ)(1− λ)− (−hω2)(h)

= 1− 2λ+ λ2 + h2ω2 = 0→
{
λ1

λ2

}
=

{
i(hω − i) = 1 + hωi
−i(hω + i) = 1− hωi

}
. (411)

λ = 1 + ihω implies
|λ| =

√
12 + i2h2ω2 =

√
1 + h2ω2. (412)

h2ω2 is always positive, so λ ≥ 1 always, which means the rule can never be enforced,
making Jn unbounded and Â unstable always.
We consider a stiff ODE system as another example. Let

du

dt
= (β − 2)u+ (2β − 2)v, (413)

dv

dt
= (1− β)u+ (1− 2β)v, (414)

as well as
u(0) = 1, v(0) = 0. (415)

The exact solution for β > 2 is

u(t) = 2e−t − e−βt, (416)

v(t) = −e−t + e−βt. (417)

where λ1 = −1, λ2 = −β. For a large β, the terms containing β will decay very fast with
time. Now, for any explicit (Euler forward) method, one must resolve the faster scale.
Otherwise severe instability will be brought into the system. For this problem consider a
very general linear set of ODEs with constant coefficients

ẏ = Ay⇐⇒
{

du
dt
dv
dt

}
=

[
β − 2 2β − 2
1− β 1− 2β

]{
u
v

}
. (418)
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As played out in Eqs. 393-396, we can assume the solution

y = ϕeλt (419)

leading to
ẏ = λϕeλt (420)

and then, substituting into the original linear set,

λϕeλt = Aϕeλt (421)

which implies the standard eigenproblem

λϕ = Aϕ. (422)

For the previous problem,

A =

[
β − 2 2β − 2
1− β 1− 2β

]
(423)

and λ1 = −1, λ2 = −β. For a large β = 100,

% Input f i l e
c l e a r
c l c
beta = 100
A = [ ( beta −2) , (2∗ beta −2); (1−beta ) , (1−2∗beta ) ] ;
[ Lambda , Phi ] = e i g (A)

% Command window
beta =

100

Lambda =

0.8944 −0.7071
−0.4472 0 .7071

Phi =

−1 0
0 −100

The assumed solution
y = ϕeλt (424)
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for two eigenvalues requires a general solution in the form of

y = c1ϕ1e
λ1t + c2ϕ2e

λ2t. (425)

Now suppose we want to find c1, c2 which satisfies the initial conditions

y1(0) = 0, y2(0) = 0↔ u(0) = 0, v(0) = 0. (426)

To do this we have at our disposal Euler’s method or one of the Runge Kutta methods.
For a large β the second term λ2 = −β decays very fast and thus requires treatment to
avoid instability.
Evaluation of the eigenvalues of the Jordan canonical form of A - that is, Â, brings

0 = det(I+ hA︸ ︷︷ ︸
Â

−λI)→ λ̂1 = 1− h, λ̂2 = 1− βh. (427)

Then to satisfy
max{|λ1|, |λ2|} ≤ 1, (428)

we determine
|1− h| ≤ 1→ −2 ≤ h ≤ 2 (429)

and

|1− βh| ≤ 1→ −2 ≤ βh ≤ 2→ −2
β
≤ h ≤ 2

β
. (430)

Therefore one would need a very small h for a large β; as β grows, 2/β shrinks and still
h must be lesser than 2/β.
Finally let us consider Euler’s backward method for a linear system, which is a gener-

alization and reindex of Eq. 287. That is,

yi+1 = yi + hfi+1. (431)

This implies
yi+1 = yi + h(Ayi+1 + bi+1). (432)

Rearranging,

yi+1 − hAyi+1 =

(
I− hA

)
yi+1 = yi + hbi+1. (433)

We can isolate

yi+1 =

(
I− hA

)−1

(yi + hbi+1) (434)

and let the Jordan canonical form be differently defined for the backward problem as

Â =

(
I− hA

)−1

. (435)

Similarly to the forward problem, for stability we require that

ρ(Â) ≤ 1. (436)

Finding the eigenvalues of this expression even as it is inverted is not difficult. One
must only find the eigenvalues of the expression I− hA and then invert each eigenvalue
individually to receive those of (I− hA)−1.
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2.11 Lec 2k Qualitative theory of ODEs

One must look at nonlinear problems with a different perspective. There is no superposi-
tion with nonlinear ODEs. Analytical solutions are also difficult or impossible to obtain.
We can however use numerical methods. We do this with the goal of gathering informa-
tion that provides insight into the character of general solutions. Poincaré initiated the
qualitative theory of ODEs in the late 19th century. We can use qualitative theory for
nonlinear phenomena in solids and fluids, and for control of nonlinear systems. The key
issue as far as numerical methods go is stability.
The qualitative theory is a highly geometric approach as opposed to solving many equa-
tions. We consider the trajectory of a system for specified initial conditions in the phase
space (or, with two dependent variables, a phase plane). A set of trajectories provides a
phase portrait.
We can then characterize the nonlinear ODE according to the geometric pattern of the
phase portrait. We can attempt to investigate the trajectories as t→∞.
We begin with a special linear case. Consider the 2nd order linear homogeneous ODE
with constant coefficients

dx

dt
= Ax. (437)

We define the critical points as those in which

dx

dt
= 0 (438)

and thus
Ax = 0. (439)

At the critical (also called equilibrium) points, for detA ̸= 0 (i.e. if we have two linearly
independent equations; i.e. if A is nonsingular; i.e. if A is invertible), then the only
solution is at the origin x = 0. That is the trivial solution.
Now let us classify the solution. Let

x(t) = keλt. (440)

From here we form the characteristic equation and find roots (eigenvalues). The nature
of these eigenvalues determines the type of general solution.
If (I) both eigenvalues are real and of the same sign, then the general solution

x(t) = c1k1e
λ1t + c2k2e

λ2t, λ1 ̸= λ2 ∈ R. (441)

If
λ1 < λ2 < 0, (442)

then all trajectories approach the origin as t → ∞. That is, x approaches 0 because if
both λ1, λ2 are negative, then both terms eλ1t, eλ2t will go to zero. Suppose we define
x0 as the initial condition or the point in space in the phase plane. If x is on k1, then
c2 = 0 and, assuming still that λ1 is negative, the trajectory will approach the origin in
a straight line along k1. The converse is true if x is on k2: c1 = 0 and the trajectory will
approach 0 along k2.
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Suppose we rewrote
x(t) = c1k1e

λ1t + c2k2e
λ2t (443)

as
x(t) = eλ2t[c1k1e

(λ1−λ2)t + c2k2]. (444)

Now as t → ∞, the c1k1e
(λ1−λ2)t term becomes negligible compared to the c2k2 term

because λ1 and λ2 are competing. This means essentially that

lim
t→∞

x(t) = eλ2t[c2k2], (445)

or
lim
t→∞

x(t)e−λ2t = c2k2 (446)

provided c2 ̸= 0. As time goes to infinity, our solutions will go to the critical or equi-
librium point that is the origin. So we see that based on Eq. 446, trajectories near the
critical point align with k2, as in Fig. 4. Here the equilibrium solution x = 0 is stable
asymptotically. We also say that the critical point is an improper node.
Now if

λ1, λ2 > 0, (447)

then the same behavior occurs as in Fig. 4 except that the trajectories are in opposite
directions. So they bend outward to infinity from alignment with k2. The equilibrium
solution is unstable and the critical point is still an improper node.
Our first case (I) was that where the two eigenvalues was of the same sign, either

positive or negative. Now let us consider if (II) the eigenvalues are real but of opposite
sign. The general solution is still

x(t) = c1k1e
λ1t + c2k2e

λ2t, λ1 ̸= λ2 ∈ R. (448)

If
λ1 > 0 and λ2 < 0, (449)

then for the initial conditions along k1 or k2, the trajectories are still straight along, but
on k1 the trajectories point away from the origin (positive trajectory as t → ∞) while
on k2 the trajectories point toward the origin (negative trajectory as t → ∞). The
c1k1e

λ1t (λ1 positive) term begins to dominate as t→∞ while the c2k2e
λ2t (λ2 negative)

term tends to zero. So, all other points tend asymptotically towards k1. The equilibrium
solution is unstable because all lines tend away from the origin. Moreover the equilibrium
point is called a saddle point. This case is shown in Fig. 5.
Now let us consider the case (III) where the two eigenvalues are equal. If (IIIi) we have

two independent eigenvectors such that

λ1 = λ2 = λ, x(t) = c1k1e
λt + c2k2e

λt, (450)

then for λ < 0, all trajectories approach the origin along a straight line as t → ∞. The
equilibrium point in this case is called a proper node. The phase space is asymptotically
stable. For λ > 0 the trajectories approach infinity along the same straight lines. Now
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Figure 4: λ1 < λ2 < 0, limt→∞ x(t)e−λ2t = c2k2
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Figure 5: λ1 > 0, λ2 < 0
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Figure 6: λ1 = λ2 = λ < 0, one independent eigenvector

if (IIIii) we have only one independent eigenvector, then the solution is derived through
variation of parameters as in Eq. 401 and is written as

λ1 = λ2 = λ, x(t) = c1k1e
λt + c2(k1te

λt︸ ︷︷ ︸
dominates, t→∞

+k2e
λt). (451)

In this case one of the k1 terms dominate and so all trajectories will tend toward k1. Fig.
6 portrays the case of λ < 0 where the system is stable and trajectories tend toward the
origin. Conversely though if λ > 0, the trajectories would tend toward infinitely far from
the origin and so the system would be classified as unstable.
Now let us consider the case (IV) where the eigenvalues are complex with a real part.

That is,
λ = α± iβ. (452)

If the eigenvalues are complex then they will always be complex conjugate pairs. In this
case, in the phase space there exists a spiral pattern where the general solution has some
eαteiβt term. The critical point is the spiral point or the center of the spiral. If α < 0, the
trajectories spiral inward towards the critical point and the system is stable; if α > 0,
the trajectories spiral outward towards it and the system is unstable.
In the special case (V) of α = 0, so that the eigenvalues are strictly complex with no real
part, i.e.

λ = ±iβ, (453)
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then the spiral will neither tend inward nor outward. Actually, the trajectories do not
comprise a spiral but a set of closed loops. The system is then stable because the trajec-
tories do not tend to infinity. The equilibrium point is called a center.
We have considered all possible classifications of the critical points, which are: improper
node, proper node, saddle point, spiral point, or center.
We have let the critical point be the origin but this does not have to be the case. Let
us generalize and call the critical point x∗. As we have seen, the stability of the critical
point has to do with how trajectories behave around x∗. If you begin at t = 0 within
some circle of radius δ centered at x∗, then the trajectory must remain within some circle
of radius ϵ for all t. If we can identify some circle then the solution is stable. If we cannot
identify any circle - that is, if the trajectories tend toward infinity - then the solution is
unstable.
If in addition to satisfying stability,

lim
t→∞

x = x∗, (454)

then the critical point is called asymptotically stable.
Let us reconsider the damped spring mass system in this context. The same as in Eq.
342 and Eq. 350, it is

m
d2u

dt2
+ c

du

dt
+ ku = 0 (455)

where
ω2 = k/m, 2ξω = c/m, (456)

so that
ü+ 2ξωu̇+ ω2u = 0. (457)

At the global level, the sign and magnitude of 2ξω and ω2 affects the stability. One can
draw a stability diagram with axes c/m = 2ξω and k/m = ω2 a line drawn where the
solution crosses from stability to instability. Static stability in this case is associated with
a negative stiffness k < 0; dynamic instability is associated with a negative damping c < 0.
The sensitivity of system behavior to parameter changes is noteworthy. In this case, for
example, small changes in ξ influentially pushes the system from stable to asymptotically
stable to unstable.

2.12 Lec 2l Autonomous systems

Suppose
dx

dt
= F (x, y), x(t0) = x0, (458)

dy

dt
= G(x, y), y(t0) = y0, (459)

where F and G are arbitrary functions. Of course we can summarize this to say that

dx

dt
= f(x), x(t0) = x0. (460)
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This is an autonomous system, which means the independent variable t does not appear
anywhere in explicit form in the equation. That is, F and G do not have a direct
contribution from the variable t. Note that for constant A, ẋ = Ax is autonomous.
Autonomous systems have restrictions. This simplifies the analysis. That is because
there is only one trajectory which passes through a point in phase space. In this case the
critical points are exactly the x where

f(x) = 0. (461)

There exist some nonlinear systems that are called an ”almost linear system” (ALS).
Suppose

dx

dt
= f(x). (462)

Let us find trajectories near the critical point x∗ = 0. Although this is assumed to be
the origin it does not have to be. If it is not the origin then one can shift the coordinates
by introducing the translation u = x− x∗.
Now, if (I) it is true that we can rewrite Eq. 462 as

dx

dt
= Ax+ g, (463)

and if (II) x∗ is an isolated critical point of dx
dt

= Ax+ g, and if (III) detA ̸= 0 (so that

x = 0 is the only critical point of ẋ = Ax), and if (IV) ||g||
||x|| → 0 as x → 0, then the

system is ”almost linear.” In (II), an isolated critical point means that one can draw a
circle around x = 0 with no other critical points in that circle. Also, the nonlinear terms
that are g should become smaller and smaller as we approach the critical point. That is
basically (IV).
For ALS’s, one can say something about the trajectories near the critical point. The
behavior of the ALS near the critical point is the same as that of corresponding linear
system, except for (I) centers, where the eigenvalues are imaginary, and (2) nodes, where
the eigenvalues are equal. For (I), a center in the linear system can become a spiral in
the ALS. The stability also is compromised. For (II), the node in the linear system to a
spiral point in the ALS. However, the stability does not change.
A perfect nonlinear example is the damped pendulum that is Eq. 364, or

θ̈ +
c

m
θ̇ +

g

L
sin θ = 0. (464)

We maintain the claim that is Eq. 354, or∑
M0z = Ḣ0z . (465)

We can convert this to a first order system by letting

x← θ, y ← θ̇, (466)

making
ẋ = y, (467)
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ẏ +
c

m
y +

g

L
sinx = 0 −→ ẏ = − c

m
y − g

L
sinx. (468)

The critical points are
0 = ẋ = y, (469)

0 = ẏ = − c

m
y − g

L
sinx. (470)

Therefore
y = 0, sinx = 0 → x = ±nπ, n = 0, 1, 2, . . . . (471)

The physical meaning of x = ±nπ is related to the pendulum diagram. if x = 0, the
pendulum hangs straight down; if x = π, the pendulum shoots straight up; if x = 2π, the
pendulum has traversed all the way to its original position and hangs straight down; etc.
These are the equilibrium positions. However, this does not necessarily imply stability.
For instance, if x = π and the mass is directly above the support (really any n odd), then
this is not a stable position. But, if x = 0 and the mass is directly below the support
(really any n even), then this is a stable position.
Given a nonlinear system we attempt to convert it to an ALS. For the pendulum, let

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . . (472)

Still
ẋ = y (473)

but now, substituting Eq. 472 into Eq. 468,

ẏ = − c

m
y − g

L
(x− x3

3!
+

x5

5!
− x7

7!
+ . . . ). (474)

The conditions of ALS require some equation in the form of

A

{
x
y

}
+ g = Ax+ g = ẋ =

{
ẋ
ẏ

}
. (475)

In Eq. 474 we can partition the part of the equation dependent only on x and y from the
nonlinear part. That is,

ẋ =
{
0 1

}{
x
y

}
+ 0, (476)

ẏ = − g

L
x− c

m
y +

g

L
(
x3

3!
− x5

5!
+ . . . ) (477)

→ ẏ =
{
− g

L
− c

m

}{x
y

}
+

g

L
(
x3

3!
− x5

5!
+ . . . ). (478)

Joined together as a system,{
ẋ
ẏ

}
︸︷︷︸

ẋ

=

[
0 1
− g

L
− c

m

]
︸ ︷︷ ︸

A

{
x
y

}
︸︷︷︸

x

+

{
0

g
L
(x

3

3!
− x5

5!
+ . . . )

}
︸ ︷︷ ︸

g

. (479)

To confirm condition (IV), which is ||g||
||x|| → 0 as x→ 0, we graph y against gy to see that

y ≫ gy near 0. Therefore the condition is satisfied.
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Figure 7: Checking (IV) of ALS: ||g||
||x|| → 0 as x→ 0
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Shifting the origin by 2π does not change the behavior of the solution. However, let us
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shift the origin by pi on x. We let

u = x− π ← u+ π = x, v = y − 0← v + 0 = y. (480)

Then
u̇ = v, v̇ = − c

m
v − g

L
sin(u+ π) = − c

m
v +

g

L
sin(u). (481)

This fosters a different behavior. Whereas the origin at 0, 2π for ξ < 1 exhibits a stable
spiral, the origin at π for ξ < 1 exhibits an unstable saddle. Then the complete phase
portrait of the pendulum is a continuous smooth transition between adjacent saddles and
spirals.

2.13 Lec 2m Nonlinear ODEs

For many autonomous linear systems a single critical point x∗ = 0 is asymptotically
stable. That is, the trajectory through any point tends eventually to x∗ as t → ∞.
About this we say that the basin of attraction is the entire phase space. The basin of
attraction is essentially the set of points which are attracted to the critical point (”the
attractor”).
For other, more general nonlinear systems though, there can be other attractors besides
just the critical points. At the next level of complexity there is not just one solution but
there are periodic solutions at every period T . That is,

x(t+ T ) = x(t). (482)

An example of such a system is the nonlinear second order Van der Pol oscillator

ü+ µ(u2 − 1)u̇+ u = 0 (483)

where µ is some constant. In an analogy to the pendulum, the µ(u2 − 1) term can be
thought of as a damp proportional to the velocity u̇. The u2 term implies nonlinearity.
If in this system µ = 0 then there is no damp and the equation reduces to

ü+ u = 0 (484)

where the solution
u(t) = c1e

it + c2e
−it (485)

has strictly complex roots. In this case therefore the solution trajectory is a circle about
the origin. That is to say x = 0 is the only critical point.
Now if µ > ̸= 0 then there exists nonlinearity. If (I) µ > 0 then there is damping with
coefficient µ(u2− 1). If (Ii) u > 1, then (u2− 1) is positive and so the entire coefficient is
positive. A positive damp will diminish the system by way of an inward spiral. However
if (Iii) u < 1 then the coefficient is negative and the solution trajectory will grow through
an outward spiral.
Converting to phase space form, we let

ẋ = y, ẏ = −µ(x2 − 1)y − x. (486)
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Let us examine the linear portion, which is done by approximating the nonlinear portion
x2 to zero, i.e. x2 ≈ 0, and let us do so near the critical point. This is

ẋ = y, ẏ = µy − x, (487)

or {
ẋ
ẏ

}
=

[
0 1
−1 µ

]{
x
y

}
= Ax. (488)

The eigenvalues of A are λ = µ±
√

µ2−4

2
. Because the sign of the eigenvalues affects the

state space trajectory it is then valuable to partition the system behavior into the cases
(I) µ2 ≥ 4 and µ2 < 4.
Another nonlinear example, one more complicated, is the Lorenz model. It is based on
the Rayleigh Bérnard problem where a fluid layer is heated from below such that the
temperature at the lower layer Tl is greater than that of the upper layer Tu. So Tl > Tu,
but if these two are approximately close, then there is simple heat transfer from the hotter
end to the colder end. However, if there is a large difference such that Tl ≫ Tu, then
there is a stability issue. If there is a critical temperature difference ∆Tcr and if

Tl − Tu > ∆Tcr, (489)

then fluid motion begins due to buoyancy. Heating the bottom fluid, it attempts to rise.
The colder fluid on the top begins to sink. This transfer of position occurs cyclically
because as the hotter fluid goes up, it is no longer being heated, becomes cooler, and
then goes back down.
The system must satisfy mass balance, which is

∂u

∂x
+

∂v

∂y
= 0, (490)

the balance of momentum, which is the set of Navier-Stokes equations, or Unfinished

3 Mod3 Fourier analysis and integral transforms

3.1 Lec 3a Fourier series

In Sec 2 we explored power series and Frobenius series. Now we look at trigonometric
series to represent periodic functions. A periodic function is defined by

f(t+ T ) = f(t+ T + T ) = . . . = f(t+ nT ) = f(t) (491)

with period T for all t. The smallest period is the fundamental period. In this example
that is T . That is to say 2T is not the fundamental period. Periodic functions include

f(t) = C (492)

where C is a constant, and where f has no fundamental period;

g(t) = cosωt = cos(ωt+ 2π) = cos(ωt+ 4π) = . . . = cos(ωt+ 2nπ) (493)
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where n = 1, 2, . . . and where g has fundamental period

T =
2π

ω
(494)

as

g = cos

(
ωt

)
= cos

(
ω (t+

2π

ω︸ ︷︷ ︸
t+T

)

)
= cos(ωt+ 2π). (495)

These first two examples are continuous functions, but even functions with discontinuous
slopes or completely discontinuous functions can be periodic still. However it is easier to
work with smooth functions.
Suppose the function f(t) has period 2π. Let us write this particular periodic function

f as a sum of periodic functions, such that

f(t) =
a0
2
+
∑
n

(an cosnt+ bn sinnt) =
a0
2
+ an cos t+ bn sin t+ an cos 2t+ bn sin 2t+ . . . ).

(496)
The fundamental period of each term on the right hand side of Eq. 496 is

T =
2π

n
(497)

because

an cosnt = an cosn(t+
2π

n
) = an cos(nt+ 2π) (498)

and the same is true for bn sinωt. The goal is to find the coefficients an = a1, a2, . . . ,
bn = b1, b2, . . . . First of all, integrating Eq. 496 through a single period with bounds
−π, π, ∫ π

−π

f(t)dt =

∫ π

−π

a0
2
dt+

∫ π

−π

(∑
n

(an cosnt+ bn sinnt)

)
dt. (499)

Now, assuming the series converges uniformly, the summation and integration in Eq.
499 can be interchanged so that∫ π

−π

f(t)dt =

∫ π

−π

a0
2
dt+

∑
n

∫ π

−π

(an cosnt+ bn sinnt)dt

=
a0
2
(π + π) +

∑
n

∫ π

−π

(an cosnt+ bn sinnt)dt

= a0π +
∑
n

(an
1

n
sinnt

∣∣∣∣π
−π

−bn
1

n
cosnt

∣∣∣∣π
−π

)

= a0π =

∫ π

−π

f(t)dt =⇒ a0 =
1

π

∫ π

−π

f(t)dt. (500)

Here because of the nature of the trigonometric functions, there exists just as much in
the positive regime as in the negative regime, so the entire second term cancels.
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a0 is the first term in the series. To obtain the remaining terms, multiply Eq. 499 by
cosmt so that

∫ π

−π

f(t) cosmtdt =

∫ π

−π

a0
2
cosmtdt+

∫ π

−π

(∑
n

(an cosnt+ bn sinnt)

)
cosmtdt. (501)

Again assuming uniform convergence,∫ π

−π

f(t) cosmtdt =

∫ π

−π

a0
2
cosmtdt+

∑
n

∫ π

−π

(an cosnt cosmt+bn sinnt cosmt)dt (502)

Trigonometric identities state

cosnt cosmt =
1

2
(cos(n+m)t+ cos(n−m)t)

sinnt cosmt =
1

2
(sin(n+m)t+ sin(n−m)t). (503)

Substituting Eq. 503 into the right hand side of Eq. 502,∫ π

−π

f(t) cosmtdt =

∫ π

−π

a0
2
cosmtdt

+
∑
n

(∫ π

−π

an
2

cos((n+m)t)dt︸ ︷︷ ︸
I.

+

∫ π

−π

an
2

cos((n−m)t)dt︸ ︷︷ ︸
II.

+

∫ π

−π

bn
2
sin((n+m)t)dt︸ ︷︷ ︸

III.

+

∫ π

−π

bn
2
sin((n−m)t)dt︸ ︷︷ ︸

IV.

)
. (504)

Considering Eq. 504: if n ̸= m so that n+m = ξ, n−m = η,∫ π

−π

f(t) cosmtdt =

∫ π

−π

a0
2
cosmtdt

+
∑
n

(∫ π

−π

an
2

cos(ξt)dt︸ ︷︷ ︸
I.

+

∫ π

−π

an
2

cos(ηt)dt︸ ︷︷ ︸
II.

+

∫ π

−π

bn
2
sin(ξt)dt︸ ︷︷ ︸
III.

+

∫ π

−π

bn
2
sin(ηt)dt︸ ︷︷ ︸
IV.

)
= 0 + 0 + 0 + 0 + 0 (505)

again because the curves oscillate evenly between the positive and negative number space.
Now, if n = m, ∫ π

−π

f(t) cosmtdt =

∫ π

−π

a0
2
cosmtdt
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+
∑
m

(∫ π

−π

am
2

cos(2mt)dt︸ ︷︷ ︸
I.

+

∫ π

−π

am
2

cos(0t)dt︸ ︷︷ ︸
II.

+

∫ π

−π

bm
2

sin(2mt)dt︸ ︷︷ ︸
III.

+

∫ π

−π

bm
2

sin(0t)dt︸ ︷︷ ︸
IV.

)
= 0 + 0 + amπ + 0 + 0 (506)

since in II, cos 0 = 1, so
∫ π

−π
dt = 2π. Therefore,∫ π

−π

f(t) cosmtdt = amπ

=⇒ am =
1

π

∫ π

−π

f(t) cosmtdt. (507)

To find bn, the same procedure that developed Eq. 501 could be done for sinmt. That
is, multiply 499 by sinmt. Then,

bm =
1

π

∫ π

−π

f(t) sinmtdt. (508)

Eqs. 507 and 508 are so called Euler formulas. These are all the coefficients in Eq. 496
(f(t) = a0

2
+

∑
n(an cosnt + bn sinnt)), which is called the Fourier series corresponding

to f . am, bm are called the Fourier coefficients of f .
Now, recall that f has period 2π. However, we want to generalize the Fourier series

for any T . So, instead of integrating from −π to π and multiplying by

cosmt = cosm
π

π
t, sinmt = sinm

π

π
t,

we integrate from −p to p and multiply by

cosm
π

p
t, sinm

π

p
t.

Then, The Fourier series representation of any f with period 2p is

f(t) = f(t+ nT ) =
a0
2

+
∑
n

(an cos
nπt

p
+ bn sin

nπt

p
), (509)

where

an =
1

p

∫ p

−p

f(t) cos
nπt

p
dt, (510)

bn =
1

p

∫ p

−p

f(t) sin
nπt

p
dt, (511)

T = 2p. (512)
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3.2 Lec 3b Orthogonality

An important part of the proof in Lec 3.1 was that trigonometric functions sin and cos
were symmetric over the period −π to π. This is called the property of orthogonality.
Formally, in continuous form, if a set of functions ϕi = ϕi(x) has the property∫ b

a

ϕmϕndx

{
= 0, m ̸= n

̸= 0, m = n,
(513)

then we say these functions form an orthogonal set. Moreover, if∫ b

a

ϕ2
mdx = 1, (514)

then this set is orthonormal. Then we can generalize and say∫ b

a

ϕmϕndx = δmn. (515)

It is easy to convert any orthogonal set into an orthonormal one by normalizing each ϕi.
In discrete form, an orthogonal set

ϕT
mϕn

{
= 0, m ̸= n

̸= 0, m = n.
(516)

An orthonormal set
ϕT

mϕn = 1. (517)

This means
ϕm · ϕn = δmn. (518)

Take for example the Cartesian coordinate system ei, which is orthonormal. We know

eT1 e1 =
[
1 0 0

] 10
0

 = 1 + 0 + 0 = 1; eT3 e2 =
[
0 0 1

] 01
0

 = 0. (519)

A set of vectors is orthogonal with respect to the matrix A if

ϕT
mAϕn

{
= 0, m ̸= n

̸= 0, m = n.
(520)

Now, recall that to find Fourier coefficients an or bn of f with period T = (−p, p), we
integrate Eq. 509, which is

f(t) = f(t+ nT ) =
a0
2

+
∑
n

(an cos
nπt

p
+ bn sin

nπt

p
),

over (−p, p) and multiply by cos(mπt/p) to find am or sin(mπt/p) to find bm. We then
discussed that the trigonometric functions are symmetrical (orthogonal) over that period
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because they oscillate back and forth between the positive and negative regimes. However,
we discussed that if n = m, then the trigonometric identities Eq. 503 transform one of
the

∫ p

−p
cos(n−m)dt terms into 1

2

∫ p

−p
1dt = p. Altogether,∫ p

−p

cos

(
mπt

p

)
cos

(
nπt

p

)
dt =

{
0, m ̸= n

p, m = n.
(521)

In a completely analogous way, we also find this to be true of sin(∗), in that∫ p

−p

sin

(
mπt

p

)
sin

(
nπt

p

)
dt =

{
0, m ̸= n

p, m = n.
(522)

However, for the product sin(∗) cos(∗),∫ p

−p

sin

(
mπt

p

)
cos

(
nπt

p

)
dt = 0. (523)

Again this is because of the trigonometric identity Eq. 503 (sinnt cosmt = 1
2
(sin(n +

m)t+ sin(n−m)t)). Then integration is possible. Again, these ideas helped us form the
Euler formulas for the coefficients of the Fourier series of f , i.e., Eqs. 509-511.

3.3 Lec 3c Dirichlet conditions

For a function f to satisfy the Dirichlet (DEER-ish-lay) conditions,

• f must be bounded;

• f must be periodic;

• f cannot have infinite local minima and maxima at one period; and

• f cannot be discontinuous at infinite points within one period.

If f satisfies the Dirichlet conditions, then

• The Fourier series of f converges to f wherever f is continuous; and

• Wherever f is discontinuous, its Fourier series converges to the average of its right
and left hand limits.

This is all true for Fourier series representation of f with period T = 2p (Eqs. 509-511),

f(t) = f(t+ nT ) =
a0
2

+
∑
n

(an cos
nπt

p
+ bn sin

nπt

p
), (524)

where

an =
1

p

∫ p

−p

f(t) cos
nπt

p
dt,
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bn =
1

p

∫ p

−p

f(t) sin
nπt

p
dt.

As an example, consider a function with period T = 2π

f(x) =

{
−k, −π < x < 0,

k, 0 < x < π.
(525)

Notice that the function is discontinuous at x = nπ. However, the function is only
discontinuous at a finite number of points within a single period. So, the function satisfies
the Dirichlet conditions. Of course, this is also a periodic function. To solve, we split f
into its two intervals, making

an =
1

π

∫ π

−π

f(x) cos
nπx

π
dx

=
1

π

(∫ 0

−π

−k cos(nx)dx+

∫ π

0

k cos(nx)dx

)
=
−k
nπ

sin(nx)

∣∣∣∣0
−π

+
k

nπ
sin(nx)

∣∣∣∣π
0

= 0 + 0 = 0 (526)

and

bn =
1

π

(∫ 0

−π

−k sin(nx)dx+

∫ π

0

k sin(nx)dx

)
=

k

nπ
cos(nx)

∣∣∣∣0
−π

− k

nπ
cos(nx)

∣∣∣∣π
0

=
k

nπ
(cos 0− cos(−nπ)− cos(nπ)︸ ︷︷ ︸+cos(0)) =

2k

nπ
(1− cosnπ︸ ︷︷ ︸

cosnπ=cos−nπ

) = bn. (527)

For bn, if n is even so that (1 − cos 0π) = (1 − cos 2π) = . . . = 0, then bn = 0. But, if n
is odd so that (1− cos π) = (1− cos 3π) = . . . = 2, then bn = 2(2k/nπ). Altogether,

bn =

{
4k/nπ, n odd,

0, n even.
(528)

Then, from 524, the Fourier series

f(x) =
4k

π

∑
n odd

sinnx

n
. (529)

Because of the Dirichlet theorem, we know that at points of discontinuity, the Fourier
series converges to the average between the left and right limits, which is zero, as those
limits are k and −k. This is shown in Fig. 8.
As another example, which currently needs further explanation, consider

f(x) =

{
x, −2 < x ≤ 0,

x, 0 < x ≤ 2,
T = 4. (530)
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Figure 8: f(x) = 4k
π

∑
n odd

sinnx
n

.

This is continuous everywhere, and is periodic, so, certainly it satisfies the Dirichlet
conditions. Then

an =
1

2

∫ 0

−2

−x cos nπx
2

dx+
1

2

∫ 2

0

x cos
nπx

2
dx. (531)

Using integration by parts∫
udv = uv −

∫
vdu; u = x, dv = cos

nπ

2
xdx,

we obtain

an =
4

n2π
(cosnπ − 1) =

{
− 8

n2π2 , n odd,

0, n even.
(532)

Using the analogous integration by parts technique on bn, but for sin(∗), we find

bn = 0 ∀ n. (533)

Then

f(x) =
∑
n odd

(− 8

n2π2
cos

nπx

2
). (534)

Notice that in Eq. 534 there are only cos terms. However, in the result derived from the
first example Eq. 529, there are only sin terms. This is predictable based on inspection:
The function cosωt is itself even, as it is symmetrical along the y axis, and the function
sinωt is odd, as it is symmetrical along the line y = x. This extrapolates to more complex
functions: if f is even, then the cos terms will prevail; if f is odd, then the sin terms will
prevail. This is obvious thinking about it geometrically. If you are taking the integral
along the interval (−p, p), and the function is even, that is, symmetric along the y axis,
then the area under the curve of the left half is exactly that of the right half because they
are mirror images. That is,∫ p

−p

g(x)dx = 2

∫ p

0

g(x)dx, g even. (535)
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On the other hand, taking the same integral but of an odd function, the area under the
curve of the left half will be the exact inverse (negative) of that of the right half, because
of the axis along which the two halves are symmetrical. That is,∫ p

−p

h(x)dx = 0, h odd. (536)

Product rules for even g and odd h are

g1g2 is even; h1h2 is even; g1h2 is odd. (537)

We can apply Eqs. 535- 537 to the Fourier series representation of f , Eqs. 509-511. If
f is even,

f(t) =
a0
2

+
∑
n

(an cos
nπt

p
+ bn sin

nπt

p
),

an =
1

p

∫ p

−p

f(t)︸︷︷︸
even

cos
nπt

p︸ ︷︷ ︸
even

dt =
2

p

∫ p

0

f(t) cos
nπt

p
dt,

bn =
1

p

∫ p

−p

f(t)︸︷︷︸
even

sin
nπt

p︸ ︷︷ ︸
odd

dt = 0

=⇒ f(t) =
a0
2

+
∑
n

an cos
nπt

p
, an =

2

p

∫ p

0

f(t) cos
nπt

p
dt, f even; (538)

if f is odd,

an =
1

p

∫ p

−p

f(t)︸︷︷︸
odd

cos
nπt

p︸ ︷︷ ︸
even

dt = 0,

bn =
1

p

∫ p

−p

f(t)︸︷︷︸
odd

sin
nπt

p︸ ︷︷ ︸
odd

dt =
2

p

∫ p

0

f(t)︸︷︷︸
odd

sin
nπt

p︸ ︷︷ ︸
odd

dt

=⇒ f(t) =
∑
n

bn sin
nπt

p
, bn =

2

p

∫ p

0

f(t) sin
nπt

p
dt, f odd. (539)

These are called the Fourier cosine and Fourier sine functions.
Now, suppose f is not periodic but is instead defined only over one interval. If this is

the case, we can apply either a Fourier sine or Fourier cosine extension to this function
(depending on if it is even or odd; if neither, then either extension works). Here we only
evaluate the interval in which the function exists. These extensions are called half range
expansions.
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3.4 Lec 3d Fourier integrals

The standard form of the Fourier series of f with period T = 2p, once again (Eqs.
509-511),

f(t) = f(t+ nT ) =
a0
2

+
∑
n

(an cos
nπt

p
+ bn sin

nπt

p
),

where

an =
1

p

∫ p

−p

f(t) cos
nπt

p
dt,

bn =
1

p

∫ p

−p

f(t) sin
nπt

p
dt.

Let us convert the standard form of this series into a complex exponential form. Specif-
ically, let

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (540)

Applying Eq. 540 to Eq. 509, with θ = 2πt/p,

f(t) = cne
inπt/p (541)

where

cn =
1

2p

∫ p

−p

f(t)e−inπt/pdt =
1

2p

∫ p

−p

f(t)e−iωntdt. (542)

The correspondence between the real and complex coefficients are

c0 =
a0
2
, cn =

an − ibn
2

, c−n =
an + ibn

2
. (543)

Here n in cn is an index that travels negatively as well as positively. It is not practical
but it is a good way to generalize the Fourier series. The derivation is in Greenberg.
Eq. 542 is a representation of f in the time domain. On the other hand, Eq. 543 can

be made into a plot of Re(cn) vs. ωn, where

ωn =
nπ

p
. (544)

Then cn represents the spectrum of f . Explanation needs work
Now, suppose f is not periodic. Then we do not have a frequency domain representation

that involves only discrete frequencies. This is because we cannot obtain a Fourier series
representation in the first place. Therefore, we must generalize this function f and
allow the frequency representation to assume continuous values. Generalizing Eqs. 541
(f(t) = cne

inπt/p) and Eq. 542 (cn = 1
2p

∫ p

−p
f(t)e−iωnt), with frequency ω = nπ/p, we let

f(t) =

∫ ∞

−∞
C(ω)eiωtdω, (545)
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where complex coefficients

C(ω) = 1

2π

∫ ∞

−∞
f(t)e−iωtdt. (546)

This is called the Fourier integral representation. The Fourier integral is basically a
natural extension of the idea of a complex esponential Fourier series into functions f that
are not periodic. In physical problems, time t corresponds to circular frequency ω. On
the other hand, space x corresponds to wave number k. Basically, the analog of t is x
and the analog of ω is k.
In general, if the Dirichlet conditions are satisfied and if the integral

∫∞
−∞ f(t)dt exists

in the first place, then the Fourier integral that is Eq. 545 with C given in Eq. 546
actually gives the value of f wherever the function is continuous. Also, the Fourier
integral converges to the average of the left and right hand limits of f where the function
is discontinuous. And this is completly analoguos to the Dirichlet theorem itself In Lec
3.3.
Now, many functions satisfy the Dirichlet conditions. However, the condition that∫∞

−∞ f(t)dt must exist is more exclusive. Basically, for this to be true, the function must
decay as t→ ±∞. If the function does not decay sufficiently fast, then the integral is not
bounded, and so the area under the curve does not exist, and so a Fourier representation
is not possible.
However, while these conditions are sufficient, they are not necessary. There do exist

some functions that possess a Fourier representation despite not being periodic. For
example, consider

f(t) =

{
0, t < 0

e−αt, t > 0
for α > 0. (547)

The Dirichlet conditions are satisfied. However, this function is not periodic. Still,
using Eq. 546, we can write the Fourier integral representation of f

C(ω) = 1

2π

∫ ∞

0

e−αte−iωtdt =
1

2π

∫ ∞

0

e−(α+iω)tdt

=
1

−2π(a+ iω)
lim
T→∞

[e−(α+iω)t]

∣∣∣∣T
0

=
1

−2π(a+ iω)
( lim
T→∞

[e−(α+iω)T ]− lim
T→∞

[e0])

=
1

2π(a+ iω)
(1− lim

T→∞
[e−αte−iωT ]) =

1

2π(a+ iω)
= C(ω). (548)

With C, we can now use Eq. 545 to obtain

f(t) =
1

2π

∫ ∞

−∞

1

2π(a+ iω)
dω. (549)

Lastly, recall the Fourier-cosine and Fourier-sine integral representations in the real
form Eqs. 538 and 539,
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f(t) =
∑
n

bn sin
nπt

p
, bn =

2

p

∫ p

0

f(t) sin
nπt

p
dt, f odd.

f(t) =
a0
2

+
∑
n

an cos
nπt

p
, an =

2

p

∫ p

0

f(t) cos
nπt

p
dt, f even.

The representation is completely analogous in the frequency domain. If ω = nπ/p and

f(t) =

∫ ∞

0

[A(ω) cosωt+ B(ω) sinωt]dω, (550)

where

A(ω) = 1

π

∫ ∞

−∞
f(t) cosωtdt, B(ω) = 1

π

∫ ∞

−∞
f(t) sinωtdt, (551)

then the corresponding Fourier cosine integral for f even is

f(t) =

∫ ∞

0

A(ω) cosωtdω, A(ω) = 2

π

∫ ∞

0

f(t) cosωtdt; (552)

the corresponding Fourier sine integral for f odd is

f(t) =

∫ ∞

0

B(ω) sinωtdω, B(ω) = 2

π

∫ ∞

0

f(t) sinωtdt. (553)

3.5 Lec 3e Fourier transforms

The purpose of Fourier analysis in the complex representation (Eq. 541-542) is to judge
f in the domain of frequency and in the domain of time. We have essentially imposed
transformations between these two domains, so that

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωtdω = F−1(F (ω)), (554)

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt = F(f(t)). (555)

Script F is called the Fourier transform. The Fourier transform of the time domain
takes you to the frequency domain. The inverse Fourier transform takes you from the
frequency domain back to the time domain.
Some useful examples are

f(t) =

{
0, t < 0

e−αt, t > 0
=⇒ F (ω) = F(f(t)) = 1

α + iω
, (556)

f(t) =

{
eαt, t ≤ 0

e−αt, t > 0
=⇒ F (ω) = F(f(t)) = 2α

α + iω
. (557)

These are from tables in Erdelyi (1954) and Greenberg (1998).
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Besides for tabulating various F, F has useful mathematical properties. Assuming

F (ω) = F(f(t)), f(t) = F−1(F (ω)), (558)

linearity holds, which means

F(a1f1 + a2f2) = a1F(f1(t)) + a2F(f2(t)). (559)

Symmetry holds, which means

F(F (t)) = −2πf(ω). (560)

Here, while normally F transforms f(t) into F = F (ω), it is also possible for a function
to be given in terms of its frequency ω such that f = f(ω) and then to impose on it F
to obtain F (t). Eq. 560 describes that reverse relationship. As an extension of linearity,
time scaling holds:

F(F (αt)) =
1

α
F (

ω

α
); (561)

time shifting holds:
F(f(t− t0)) = e−iωtF (ω); (562)

and frequency shifting holds:

F−1(F (ω − ω0)) = eiω0tf(t). (563)

Next, suppose we wish to impose Fourier transform F on f . This is possible if

• f is continuous everywhere;

• f ′ is piece wise continuous everywhere; and

•
∫∞
−∞ f(t)dt,

∫∞
−∞ f ′(t)dt exist.

Then the Fourier transform of the time derivative (Eq. 555)

F(f ′(t)) =

∫ ∞

−∞
f ′(t)e−iωtdt; (564)

integrating by parts with u = e−iωt, dv = f ′(t)dt,
∫
udv = uv −

∫
vdu, we obtain

F(f ′(t)) = iωF (ω). (565)

If this is repeated for higher order derivatives,

F(f (n)(t)) = (iω)nF (ω). (566)

This rule is significant becuse it allows us to convert differential equations with constant
coefficients in the time domain to algebraic equations in the frequency domain. The
reverse operation from the frequency domain to the time domain is

F−1(F ′(ω)) = −itf(t), (567)
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F−1(F (n)(ω)) = −(it)nf(t). (568)

From here we introduce the convolution operation. Given functions f(t) and g(t), then

convolution(f, g) = (f ∗ g)(t) :=
∫ t−a

a

f(τ)g(t− τ)dτ. (569)

In the special case of a = 0, which is called unilateral convolution,

(f ∗ g)(t) :=
∫ t

0

Ψ(τ )︷︸︸︷
f(τ) g(t− τ)︸ ︷︷ ︸

fundamental solution

dτ. (570)

For a = −∞, which is called bilateral convolution,

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ. (571)

Time convolution is related to the product of Fourier transforms. Given F (ω) and
G(ω), the product

F (ω)G(ω) = F(
∫ ∞

−∞
f(τ)g(t− τ)dτ) (572)

which is the exact form of a bilateral convolution in Eq. 571

3.6 Lec 3f Generalized functions

3.7 Lec 3g Laplace transforms

3.8 Lec 3h Integral transform summary

3.9 Lec 3i Boundary value problems

4 Mod4 PDEs

4.1 Lec 4a PDE introduction

An ODE has one independent variable (time or space) and n dependent variables. An
example is

EI
d4w

dx4
= p(x). (573)

On the other hand, a PDE has m independent variables (time and space) as well as any
number n of dependent variables. An example is

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= p(x, t) (574)

where w = w(x, t) if p = p(x, t). Consider Fig. 9, which is (1) a beam with base (depth)
b, height h, and length L and then (2) a plate with lengths Lx and Ly and height h.
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Figure 9: Beam/plate schemes

We assume that for the beam, L≫ h and L≫ b. For the plate, Lx ≫ h and Ly ≫ h.
The PDEs which chracterize the solutions are

Beam: EI
∂4w

∂x4
+ ρI

∂2w

∂t2
= p(x, t), (575)

Plate: D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+ρh

∂2w

∂t2
= p(x, y, t), (576)

where

D =
Eh3

12(1− ν2)
, (577)

E is elastic modulus, ν is Poisson’s ratio, I is the cross sectional bending moment, ρ is
the material density(?), and A is cross sectional area(?).
Associated with these problems are of course initial and boundary conditions. These are

2nd order PDEs with independent variables x, y, t, etc. and dependent variable u(x, y).
Their form is often

A11(x, y)
∂2u

∂x2
+ 2A12(x, y)

∂2u

∂x∂y
+ A22(x, y)

∂2u

∂y2
+ g(x, y, u,

∂u

∂x
,
∂u

∂y
) = 0. (578)

To determine homogeneity, g is decomposed into

g = g1(x, y) + g2(. . . ). (579)

If g1 = 0, the equation is homogeneous. If g1 ̸= 0, the equation is nonhomogeneous. The
linearity of the function also depends on g. If g is linear in u, ∂u/∂x, ∂u/∂y, then the
equation is linear. If g is not linear in these ways, then the equation is not linear.
Eq. 578 can be generalized to

Aij
∂2u

∂xi∂xj

+ g = 0 (580)
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where i, j ⇒ 1, 2 and x1 ⇐ x, x2 ⇐ y.
Now, second order tensor

Aij ⇐⇒ [A] =

[
A11 A12

A21 A22

]
(581)

has determinant
detA = A11A22 − A12A21 = A11A22 − A2

12 (582)

because A is always symmetric.
If detA > 0, Eq. 580 is an elliptic PDE. An elliptic PDE is typically a steady state

process not dependent on time. Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (583)

follows from A11 = 1, A12 = 0, A22 = 1, meaning A = I ⇒ detA = 1 > 0. In index
notation,

u,ii = 0. (584)

In another notation,
∇2u = 0. (585)

Laplace’s equation has a few applications. Without time, Laplace’s equation is the steady
state heat conduction equation, where u is temperature.
If detA = 0, Eq. 580 is a parabolic PDE. A parabolic PDE is typically a diffusive

system that is dependent on time, so that in 1D, x1 ⇐ x, x2 ⇐ t. Then the 1D heat
equation

∂u

∂t
= κ

∂2u

∂x2
(586)

follows from g = −∂u/∂t, A11 = κ,A12 = A22 = 0. Therefore, detA = 0. κ is the
thermal diffusivity coefficient.
In 2D, x1 ⇐ x, x2 ⇐ y, x3 ⇐ t, and the 2D heat equation

∂u

∂t
= κ

∂2u

∂x2
+ κ

∂2u

∂y2
. (587)

This means

[A] =

κ 0 0
0 κ 0
0 0 0

 , (588)

detA = 0.
Now, if detA < 0, Eq. 580 is called a hyperbolic PDE. Its solutions are like waves,

and they usually involve space and time. The wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(589)

follows from A11 = c2, A12 = 0, A22 = −1. Then, detA = −1 < 0.
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4.2 Lec 4b Hyperbolic PDEs

Recall the 2nd order PDE Eq. 580, which is

Aij
∂2u

∂xi∂xj

+ g = 0. (590)

Let us consider the different forms of PDEs in the order of hyperbolic, parabolic, and
then elliptic. So, first are hyperbolic PDEs. An example of a hyperbolic PDE is the
vibration of a string. We assume the string is homogeneous, elastic and has no resistance
to bending. Tension in the string is sufficiently large so that the weight of the mass is
negligible in comparison. Small horizontal movement is neglected.
We examine a section ∆x of the string in its deformed configuration, which is the red

line. (The reference configuration is the blue line.) The tension is always tangent to the
string. Since horizontal movement is neglected, the tensile forces in the x direction on
both sides shall be equal. That is,

T1 cosα = T2 cos β = Tx, (591)

where Ti are the forces on the left and right side, and α and β are the corresponding
angles between the tensile force and the normal axis.
Now, assuming vertical motion, we can thus apply Newton’s second law, which is

F =
d

dt
(mv). (592)

We can also define force as

F = ρA∆x
∂2u

∂t2
(593)

because ρA = mA/V = m/L is mass per unit length, and ∆x is the length of interest,
giving only mass. In addition, ∂2u/∂t2 is acceleration. Together, we get force. Another
representation of force is

−T1 sinα + T2 sin β = F (594)

because of the sum of the tensile forces in the vertical direction. The signage of both
terms depends on the drawing. Then, substituting,

−T1 sinα + T2 sin β = ρA∆x
∂2u

∂t2
(595)

implies
−T1 sinα + T2 sin β

Tx

=
ρA

Tx

∆x
∂2u

∂t2
(596)

implies
−T1 sinα

T1 cosα
+

T2 sin β

T2 cos β
=

ρA

Tx

∆x
∂2u

∂t2
(597)

implies

tan β − tanα =
ρA

Tx

∆x
∂2u

∂t2
. (598)
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Tangents inform slope, as in the unit circle. We let

tan β =
∂u

∂x
|x+∆x, tanα =

∂u

∂x
|x. (599)

Then
∂u

∂x
|x+∆x −

∂u

∂x
|x =

ρA

Tx

∆x
∂2u

∂t2
(600)

implies (
∂u

∂x
|x+∆x −

∂u

∂x
|x
)

1

∆x
=

ρA

Tx

∂2u

∂t2
. (601)

Now, the left hand side takes the form of the definition of a spatial derivative. Therefore,

∂

∂x

(
∂u

∂x

)
=

ρA

Tx

∂2u

∂t2
(602)

which implies
∂2u

∂x2
=

ρA

Tx

∂2u

∂t2
. (603)

Tensile force Tx = σxA because σx := force/area = Tx/A. Substituting,

∂2u

∂x2
=

ρA

σxA

∂2u

∂t2
=

ρ

σx

∂2u

∂t2
=

1

c2
∂2u

∂t2
(604)

implies the prototypical 1D wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (605)

where c2 = σx/ρ is the wave speed.
We want to trace the vertical vibration of the string after we pluck it. We impose the

boundary conditions that the horizontal displacement does not change at either, which
are

u(0, t) = 0, u(l, t) = 0, t ≥ 0. (606)

Also, we want to start the string as stationary, expressed in initial conditions as

u(x, 0) = f1(x), u̇(x, 0) = f2(x), 0 ≥ x ≥ l. (607)

To solve the PDE Eq. 605 we must find the solution to each derivative term separately
and then plug it back into the governing equation. To do this the solution strategy is the
method of separation of variables. Let the solution be some

u(x, t) = F (x)G(t). (608)

Then, derivatives

∂2u

∂x2
= G

d2F

dx2
= GF ′′,

∂2u

∂t2
= F

d2G

dt2
= FG̈. (609)
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Substituting Eq. 609 into Eq. 605,

FG̈ = c2GF ′′ (610)

implies
G̈

c2G
=

F ′′

F
= κ (611)

which is represented as
g(t) = f(x) = constant. (612)

Then,
G̈ = κc2G, F ′′ = κF (613)

implies
G̈− κc2G = 0, F ′′ − κF = 0. (614)

Eqs. 614 are a pair of second order linear homogeneous ODEs. κ is still unknown though.
First, recall the boundary conditions Eq. 606, as well as the general form of the solution
Eq. 608. Substituting,

u(0, t) = F (0)G(t) = 0, u(l, t) = F (l)G(t) = 0 (615)

means
F (0) = F (l) = 0. (616)

Now we look to find κ. Consider Eq. 614, particularly F ′′ − κF = 0.
If κ = 0,

F ′′ = 0 =⇒ F (x) = C1x+ C2. (617)

Then
0 = F (0) = C2 =⇒ F (x) = C1x. (618)

Then
0 = F (l) = C1l =⇒ C1 = 0 =⇒ F (x) = 0 (619)

is the uninteresting trivial solution. Therefore we let κ ̸= 0.
If κ = k2 > 0, from Eq. 614 we receive

F ′′ = k2F =⇒ F (x) = C1e
kx + C2e

−kx. (620)

Then
0 = F (0) = C1 + C2, (621)

0 = F (l) = C1e
kl + C2e

−kl, (622)

again admitting only the uninteresting trivial solution

F (x) = 0. (623)

Now, if κ = −k2 < 0, then from Eq. 614 and from Euler’s formula we receive

F ′′ = k2F =⇒ F (x) = C1 cos kx+ C2 sin kx. (624)
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Then
0 = F (0) = C1 =⇒ F (x) = C2 sin kx, (625)

0 = F (l) = C2 sin kl. (626)

Eq. 626 means that either C2 = 0 or that sin kl = 0. The first result is the trivial
solution, but the second result is more interesting. So, we are content with κ = −k2. If
kl = nπ,

kn =
nπ

l
, κn = −n2π2

l2
. (627)

Now, Eq. 614 (F ′′ − κF = 0) happens to be able to be turned into a Sturm Liouville
eigenproblem, as in Sec. 2.6. This means that κn are characteristic eigenvalues and

Fn(x) = sin
nπx

l
(628)

are characteristic eigenfunctions. In general, the eigenvalues are associated with natural
frequencies and the eigenfunctions are associated with mode shapes.
Thus far the spatial part F has been considered in Eq. 614. Now let us consider the

temporal part G. Fully,
G̈− c2κG = 0. (629)

Substituting in κn,

G̈n + c2
n2π2

l2
G = ω2

nG = 0, (630)

where ωn = cnπ/l is the circular frequency of the string. The form of Eq. 630 along with
Euler’s formula admit the general form of the solution

Gn(t) = C∗
1 cosωnt+ C∗

2 sinωnt. (631)

Note that this function is not goverened by a Sturm Liouville eigenproblem in contrast
to F because it is an initial value problem, not a boundary value problem.
Altogether, the form of the overall solution to the combined initial/boundary value

problem is

un(x, t) = Fn(x)Gn(t) =

(
sin

nπx

l

)(
C∗

1n cosωnt+ C∗
2n sinωnt

)
, (632)

where
u(x, t) =

∑
n

un(x, t). (633)

4.3 Lec 4c String initial boundary value problem solutions

Recall the orthogonality property Eq. 522 in Sec. 3.2, which is∫ l

0

sin

(
mπx

l

)
sin

(
nπx

l

)
dx =

{
0, m ̸= n

l/2, m = n
=

l

2
δmn. (634)
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Also, we assume the separable solution

u(x, t) =
∑
n

(
sin

nπx

l

)(
C∗

1n cosωnt+ C∗
2n sinωnt

)
, (635)

as in Eqs. 632-633. Recall that eigenfunctions Fn(x) are mode shapes and that eigenvalues
ωn are natural frequencies. However, C∗

in are not known. To find them, we turn to the
intial conditions 607, which are u(x, 0) = f1(x), u̇(x, 0) = f2(x). Substituting in the
assumed separable solution to the position IC,

u(x, 0) =
∑
n

C1n sin
nπx

l
= f1(x), (636)

which is a Fourier sine series, as in Eq. 539. By virtue of a Fourier sine function, this
means that the coefficients

C1n =
2

l

∫ l

0

f1(x) sin
nπx

l
dx. (637)

In terms of the velocity IC,

∂u

∂t
(x, 0) =

∑
n

C2nωn sin
nπx

l
dx = f2(x), (638)

where

C2n =
2

ωnl

∫ l

0

f2(x) sin
nπx

l
dx. (639)

Provided ICs f1, f2, it is possible to approximate Cin numerically.
An example of initial conditions and boundary conditions stated explicitly to solve for

the PDE are

u(x, 0) =

{
2u0x/l, 0 < x < l/2

2u0(l − x)/l l/2 < x < l
= f1(x), u̇(x, 0) = 0 = f2(x), (640)

u(0, t) = u(l, t) = 0. (641)

The spatial boundary conditions (BCs) and temporal initial conditions (ICs) are visual-
ized in Fig. 10.
Two functions on each half of the string define separate BCs. Dividing Eq. 637 and

Eq. 639 into the two intervals,

C1n =
2

l

(∫ l/2

0

2u0

l
x sin

nπx

l
dx+

∫ l

l/2

2u0

l
(l − x) sin

nπx

l
dx

)
(642)

and
C2n = 0 (f2 = 0). (643)
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Figure 10: Example string IBVP.

Integrating,

C1n =
2v0
n2π2

sin
nπ

2
=

{
8(−1)(n−1)/2v0/n

2π2, n = 1, 3, 5, . . .

0, n = 0, 2, 4, . . . .
(644)

Substituting this result into Eq. 632,

u(x, t) =
∑

n=1,3,5,...

(−1)(n−1)/2 8v0
n2π2

cos
nπct

l
sin

nπx

l
(645)

=
∑

n=1,3,5,...

2An sin
nπx

l
cos

nπct

l
, (646)

where An = 4(−1)(n−1)/2v0/n
2π2. To simplify further, consider the trig identity

sinα cos β =
1

2
[sin(α + β) + sin(α− β)], α =

nπx

l
, β =

nπct

l
. (647)

Substituting,

u(x, t) =
∑

n=1,3,5,...

An

[
sin(

nπx

l
+

nπct

l
) + sin(

nπx

l
− nπct

l
)

]
(648)

=
∑

n=1,3,5,...

An

[
sin

nπ

l
(x+ ct) + sin

nπ

l
(x− ct)

]
= u(x, t). (649)

Eq. 649 has two terms. The first is a tent propagating to the left. The second is a tent
propagating to the right. Note that c is a constant.

4.4 Lec 4d d’Alembert solutions

Once again, consider the 1d wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (650)

or
u,tt = c2u,xx. (651)
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Now, let us introduce new variables

η = x+ ct, ξ = x− ct. (652)

The chain rule admits the first derivative with respect to x

u,x =
∂u

∂x
=

∂u

∂η

∂η

∂x
+

∂u

∂ξ

∂ξ

∂x
=

∂u

∂η
(1) +

∂u

∂ξ
(1) = u,η + u,ξ. (653)

Similarly, Second derivative

u,xx =
∂(∂u/∂η)

∂x
+

∂(∂u/∂ξ)

∂x

=
∂(∂u/∂η)

∂η

∂η

∂x
+

∂(∂u/∂η)

∂ξ

∂ξ

∂x
+

∂(∂u/∂ξ)

∂η

∂η

∂x
+

∂(∂u/∂ξ)

∂ξ

∂ξ

∂x

= u,ηη + u,ηξ + u,ξη + u,ξξ = u,ηη + 2u,ηξ + u,ξξ = u,xx =
∂2u

∂x2
. (654)

On the other hand, first and second derivatives with respect to t are

u,t =
∂u

∂t
= u,ηη,t + u,ξξ,t = u,η − u,ξ (655)

and
u,tt = (u,η),ηη,t + (u,η),ξξ,t + (u,ξ),ηη,t + (u,ξ),ξξ,t

= uηη − 2u,ηξ + uξξ = u,tt. (656)

Substituting Eq. 654 and Eq. 656 into the 1d wave equation,

uηη − 2u,ηξ + uξξ = c2(u,ηη + 2u,ηξ + u,ξξ). (657)

From this representation we conclude that

(2c2 + 2)u,ηξ = 0⇒ u,ηξ = 0 (658)

if c is a real constant, and it is.
Now, let us represent the partial derivative of u with respect to η as some function

h(η) = u,η. (659)

Integrating this function with respect to η,

u = u(η, ξ) =

∫
u,ηdη =

∫
h(η)dη +Ψ(ξ) = Φ(η) + Ψ(ξ). (660)

Here, Φ is the antiderivative of h and Ψ is some scalar function which may have some
ξ dependence since the integral is being taken without respect to ξ. It is essentially an
integration constant, like how

∫
f ′(x)dx = f(x) + C. Substituting in the definitions of ξ

and η,
u = u(x, t) = Φ(x+ ct) + Ψ(x− ct). (661)
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This is the d’Alembert solution. Functions Φ and Ψ are to be determined specifically by
the ICs of the problem. Suppose we have the special case of ICs

u̇(x, 0) = 0, u(x, 0) = f(x). (662)

Physically, this means that the string is released from rest and that the reference config-
uration has the exact same shape as the curve f(x). Using Eq. 661 and the chain rule,
the partial derivative of u with respect to t

u,t(x, t) = cΦ,η − cΨ,ξ. (663)

Initially, the velocity IC is

0 = u,t(x, 0) = cΦ,η − cΨ,ξ =⇒ 0 = Φ,η −Ψ,ξ

=⇒ Φ,η = Ψ,ξ =⇒ Φ = Ψ+K. (664)

The displacement IC is

f(x) = u(x, 0) = Φ + Ψ = (Ψ +K) + Ψ = 2Ψ +K = f(x) (665)

which implies

Ψ =
1

2
[f(x)−K], Φ =

1

2
[f(x) +K]. (666)

Substituting this result into Eq. 661,

u(x, t) =
1

2
[f(x+ ct) +��K + f(x− ct)−��K] =

1

2
[f(x+ ct) + f(x− ct)]. (667)

4.5 Lec 4e Heat diffusion introduction

A few assumptions of heat diffusion follow from experimentation:

• I: Heat flows from hot to cold;

• II: Rate of heat flow is proportional to (1) the magnitude of the cross sectional area
through which it flows and (2) the temperature gradient in the direction normal to
that cross sectional area;

• III: The quantity of heat gained or lost is proportional to (1) the mass of the body
and (2) the change in temperature.

Henceforth, u is temperature. A conceptual interpretation of the energy balance equation
is

rate of heat stored︸ ︷︷ ︸
1

= rate of heat produced︸ ︷︷ ︸
2

+rate of heat flowing in︸ ︷︷ ︸
3

. (668)

For 1, the rate of heat stored ∆Q is defined according to assumption III, which is basically

∆Q = cv∆m∆u. (669)
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Mass change
∆m = ρ∆V = ρ∆x∆y∆z, (670)

meaning
∆Q = ρcv∆x∆y∆z∆u. (671)

The time rate of change of heat change

∆Q

∆t
= ρcv∆x∆y∆z

∆u

∆t
. (672)

cv is called the specific heat, and it is a rating of the relationship between heat gain and
temperature gain.
For 2, the rate of heat produced within the body is some

Φ(x, y, z, t)∆x∆y∆z, (673)

where Φ is the heat rate per unit volume and ∆V = ∆x∆y∆z is the volume of the body.
For 3, the rate of heat flowing into the surface invokes assumption II. In the direction

x:

heat flow through surfaces in x = k∆y∆z
∂u

∂x
|x+∆x − k∆y∆z

∂u

∂x
|x

= k∆y∆z

(
∂u

∂x
|x+∆x −

∂u

∂x
|x
)
, (674)

where k is a rating of flow magnitude and is called the thermal conductivity. In the
direction y,

heat flow through surfaces in y = k∆x∆z

(
∂u

∂y
|y+∆y −

∂u

∂y
|y
)
. (675)

In the direction z,

heat flow through surfaces in z = k∆x∆y

(
∂u

∂z
|z+∆z −

∂u

∂z
|z
)
. (676)

Therefore, the total energy balance equation

ρcv∆x∆y∆z
∆u

∆t
= Φ(x, y, z, t)∆x∆y∆z

+k∆y∆z

(
∂u

∂x
|x+∆x −

∂u

∂x
|x
)
+k∆x∆z

(
∂u

∂y
|y+∆y −

∂u

∂y
|y
)
+k∆x∆y

(
∂u

∂z
|z+∆z −

∂u

∂z
|z
)
.

(677)
This implies

ρcv
∆u

∆t
= Φ(x, y, z, t) +

k

∆x

(
∂u

∂x
|x+∆x −

∂u

∂x
|x
)

+
k

∆y

(
∂u

∂y
|y+∆y −

∂u

∂y
|y
)
+

k

∆z

(
∂u

∂z
|z+∆z −

∂u

∂z
|z
)
. (678)
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Now, just like in Eq. 601, certain expressions take on the form of the definition of the
derivative. Substituting appropriately,

ρcv
∂u

∂t
= Φ(x, y, z, t) + k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (679)

Isolating the time evolution of temperature,

∂u

∂t
= κ∇2u+ Φ(x, y, z, t), (680)

where κ = k/ρcv is called the thermal diffusivity.
Now, recall the 2nd order PDE Eq. 580, which is

Aij
∂2u

∂xi∂xj

+ g = 0. (681)

The different forms of PDEs are hyperbolic (detA < 0), parabolic (detA = 0), and
elliptic (detA > 0). So far we have discussed at length hyperbolic PDEs. Now we
consider the parabolic PDEs that is the heat equation. We know it is parabolic because
if x1 ⇐ x, x2 ⇐ y, x3 ⇐ z, x4 ⇐ t, and if g = −∂u/∂t+ Φ, then

Aij
∂2u

∂xi∂xj

=
∂u

∂t
(682)

implies

[A] =


κ 0 0 0
0 κ 0 0
0 0 κ 0
0 0 0 0

 , detA = κ3(0) + 0 + 0 + . . .+ 0 = 0. (683)

Suppose we simplify the model in that Φ = 0. Then,

∂u

∂t
= u̇ = ∇2u (684)

is a homogeneous PDE in three directions. Focusing on one direction only, the 1d heat
equation is

∂u

∂t
= κ

∂2u

∂x2
,

which was articulated first in Eq. 586.
The strictest simplification actually changes the nature of the PDE from parabolic to

elliptic. That simplification is one of steady heat flow, or

∇2u = 0 (u̇ = 0), (685)

meaning

Aij
∂2u

∂xi∂xj

+�g = 0 (686)
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implies
[A] = I⇐⇒ δij ⇒ detA = 1 > 0. (687)

This leads to

δij
∂2u

∂xi∂xj

=
∂2u

∂xi∂xi

⇐⇒ ∇2u = 0. (688)

Now, let us consider heat flow in a long, slender bar of length l positioned in the
direction x. We assume the cross section is constant, that the bar has uniform material
properties, and that it is perfectly insulated in the lateral directions, meaning there is only
heat flow in the x direction and not in the other directions. Based on these assumptions,
we can reduce the heat equation to 1d, which is, again,

∂u

∂t
= κ

∂2u

∂x2
,

which is Eq. 586. In conjunction with the PDE several boundary conditions can be
imposed. The homogeneous zero temp I/BCs are

u(0, t) = u(l, t) = 0, t > 0, (689)

u(x, 0) = f(t), 0 < x < l. (690)

Other common BCs at x = 0 are

−κ∂u
∂x

(0, t) = q̂, u(0, t) = û, (691)

or

−κ∂u
∂x

(0, t) = h[u(0, t)− ûamb], (692)

where h is some heat convection/transfer coefficient and ûamb is the ambient temperature
of the surrounding fluid, provided that the bar is surrounded by a fluid environment.
The way to solve this is just like that in the string, which is the separation of variables.

We assume the decomposition

u(x, t) = F (x)G(t). (693)

Then the procedure is completely analogous to Sec. 4.2, starting at Eq. 608.

4.6 Lec 4f Heat diffusion in rod

Let us continue the derivation of the solution to the 1d heat equation Eq. 586, or

∂u

∂t
= κ

∂2u

∂x2
.

which characterizes a rod. Throughout, notice the analogies to the string. Suppose the
I/BCs

u(0, t) = u(l, t) = 0, u(x, 0) = f(x) (694)
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hold for this system. Assuming the decomposition

u(x, t) = F (x)G(t), (695)

this can be substituted into Eq. 586 to receive

FĠ = κF ′′G (696)

which implies
Ġ

κG
=

Ḟ

F
= β = constant, (697)

where β is not yet known. Then,

F ′′ − βF = 0, (698)

Ġ− βκG = 0 (699)

are the two separated ODEs that can be solved separately and then integrated back into
the governing equation. Starting with the spatial part F , the only nontrivial solution
follows from β = −µ2, so that

F ′′ = βF = −µ2F =⇒ F (x) = C1 cosµx+ C2 sinµx. (700)

If BCs are
F (0) = F (l) = 0, (701)

then
0 = F (0) = C1 =⇒ F (x) = C2 sinµx, (702)

0 = F (l) = C2 sinµl =⇒ sinµl = 0 =⇒ µl = nπ. =⇒ µ =
nπ

l
. (703)

Generalizing,

Fn = C2 sin
nπx

l
. (704)

For the temporal part G, assume the same β = −µ2, so that

Ġn + µ2
nκGn = 0. (705)

This means
Gn(t) = C3e

−µ2
nκt = C3e

−n2π2κt/l2 . (706)

Reintegrating the two parts back into the governing equation,

un(x, t) = Fn(x)Gn(t) = bn sin
nπx

l
e−n2π2κt/l2 , (707)

and
u(x, t) =

∑
n

un(x, t). (708)

Then, if ICs are
u(x, 0) = f(x), (709)
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then
u(x, 0) =

∑
n

bn sin
nπx

l
, (710)

which is a Fourier sine series Eq. 539. By virtue of this definition, coefficients

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx. (711)

An example is the transient heat flow in a bar.

4.7 Lec 4g Vibrating membrane

4.8 Lec 4h Transform approaches
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