
REVIEW
published: 10 April 2015

doi: 10.3389/fphy.2015.00023

Frontiers in Physics | www.frontiersin.org 1 April 2015 | Volume 3 | Article 23

Edited by:

Ewald Moser,

Medical University of Vienna, Austria

Reviewed by:

Adam Thomas Eggebrecht,

Washington University School of

Medicine, USA

Michael Stuart Patterson,

Juravinski Cancer Centre, Canada

*Correspondence:

Jonathan F. Lovell,

Department of Biomedical

Engineering, University at Buffalo,

State University of New York, 201

Bonner Hall, Buffalo, NY 14260, USA

jflovell@buffalo.edu

Specialty section:

This article was submitted to

Biomedical Physics, a section of the

journal Frontiers in Physics

Received: 26 November 2014

Accepted: 26 March 2015

Published: 10 April 2015

Citation:

Huang H, Song W, Rieffel J and Lovell

JF (2015) Emerging applications of

porphyrins in photomedicine.

Front. Phys. 3:23.

doi: 10.3389/fphy.2015.00023

Emerging applications of porphyrins
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Biomedical applications of porphyrins and related molecules have been extensively

pursued in the context of photodynamic therapy. Recent advances in nanoscale

engineering have opened the door for new ways that porphyrins stand to potentially

benefit human health. Metalloporphyrins are inherently suitable for many types of medical

imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica

nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new

classes of porphyrin nanostructures are being developed, such as smart materials that

are activated by specific biochemicals encountered at disease sites. Techniques have

been developed that improve treatments by combining biomaterials with photosensitizers

and functional moieties such as peptides, DNA and antibodies. Compared to simpler

structures, these more complex and functional designs can potentially decrease side

effects and lead to safer and more efficient phototherapies. This review examines

recent research on porphyrin-derived materials in multimodal imaging, drug delivery,

bio-sensing, phototherapy and probe design, demonstrating their bright future for

biomedical applications.

Keywords: porphyrins, photodynamic therapy, drug delivery, multimodal imaging, photodynamic molecular

beacons, oxygen sensing, metal chelation, porphysomes

Introduction

The red color of heme in blood has served as a marker for injury for hundreds of millions of years,
establishing a fundamental role for porphyrins in medical diagnosis [1]. Heme also serves as the
principal imaging contrast agent for functional magnetic resonance imaging (fMRI). The change
from diamagnetic oxyhemoglobin to paramagnetic deoxyhemoglobin can be imaged for interpre-
tation of neural activity based on blood oxygenation [2, 3]. In the past decade, theranostic medical
techniques combining imaging and therapy have seen a rapid expansion [4]. Porphyrins and related
compounds, with their inherent theranostic optical activity, hold potential for these techniques [5].

Five classes of tetrapyrrole structures are shown in Figure 1A [6]. Porphyrin macrocycles con-
tain of four pyrrole subunits linked together via methine bridges. Reduction of one or two double
bonds yields chlorins and bacteriochlorins, respectively. Phthalocyanine and naphthalocyanine
contain one or two additional outer cyclohexadiene rings attached to the pyrrole groups, respec-
tively. Typical absorbance spectra of these five tetrapyrroles are shown in Figure 1B. The porphyrin
spectrum contains one intense Soret band andmultiple Q-bands. For evenmodest light penetration
into biological tissues, excitation of porphyrin Q-bands is required since light with near infrared
(NIR) wavelengths can penetrate tissue deeper than shorter wavelength light. However, the absorp-
tion of porphyrins at long wavelengths is limited. The other classes of tetrapyrroles provide much
higher absorption coefficients in the NIR.
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FIGURE 1 | (A) Structure and (B) Absorption of typical porphyrins, chlorins,

bacteriochlorins, phthalocyanine and naphthalocyanines. Arrows show

Q-band absorption (Adapted with permission from Berg et al. [6]).

Porphyrins can be simply solubilized in water or surfactants,
administered intravenously and a target area can be irradiated
as is performed in traditional photodynamic therapy (PDT) [7].
However, many types of drug carriers and nanoscale designs can
be used together with porphyrins for a variety of applications in
imaging and therapy. Porphyrins themselves can actively form a
building block in carrier systems. Also, with rational design, por-
phyrin biomaterials can function like stimuli-responsive smart
drugs. These materials fit a broad range of diagnostic and ther-
apeutic applications as shown in Figure 2, and will be discussed
throughout this review.

Numerous porphyrin-based photosensitizers have received
clinical approval or have entered clinical trials, and these have
been reviewed extensively in the literature [7, 23–27]. Unde-
sired sunlight photosensitivity, poor light absorption in deep
tissues, and off-target damage to other bystander tissues have
led to sustained efforts in the development of improved pho-
tosensitizers. Porphyrins were first approved clinically for can-
cer treatment with Photofrin in 1993 for treatment of bladder
cancer [7]. Subsequently, chlorins have been increasingly used
as photosensitizers due to their enhanced Q-band absorption.
Numerous therapeutic commercial formulations have become
available for a range of clinical applications, as shown in Table 1

[28–33]. This steady stream of new PDT compounds illustrates
the inherent biocompatibility of porphyrins and their efficacy as
photosensitizers.

The fundamental goal in PDT is to oxidize cellular
biomolecules via singlet oxygen, thereby inducing cell damage
and death [34]. The principal cytotoxic agent, singlet oxygen
(1O2), is generated by energy transfer from photosensitizers to
molecular oxygen (O2) [35]. The method for the production of
1O2 in tissues requires oxygen, light of an appropriate wave-
length, and a photosensitizer. The excitation of the sensitizer is
achieved via an absorbed photon transition between the ground
state S0 and a singlet excited state Sn. The lowest excited singlet
state of the sensitizer S1 is from relaxation of the Sn state. The
sensitizer triplet state (T1) occurs following intersystem crossing.
The triplet state lifetime is longer than that of the S1 state and it
is the excited triplet that can damage the cell by one of two ways;
type I or type II mechanisms [36].

In type I mechanisms, the photosensitizer may directly react
with a biological substrate via radical formation. The free radicals
or radical ions are usually produced by interaction of the triplet
sensitizer with a reducing substrate. Scenarios which will produce
radicals include the insertion of oxygen or electron transfer to
oxygen, electron or hydrogen abstraction from other substrates,
initiation of free radical autoxidation, and back electron transfer
relations [37]. In type II processes, the triplet state photosen-
sitizer interacts with ground state molecular oxygen (3O2) first
to produce highly reactive 1O2, which proceeds to attack cellu-
lar targets. This specificity allows examination of the potential
roles of 1O2 in cellular systems. Type II processes are generally
considered most relevant to current PDT practice.

Applications of Metalloporphyrins

Due to its unique structure comprised of delocalized π-electrons
within a tetrapyrollic skeleton, porphyrins and related molecules
not only are intensely colorful, but can also chelate a vast num-
ber of metal ions. Extensive inorganic coordination chemistry
research involving porphyrins has shown that dozens of elements
from the periodic table can be chelated into the center of the
macrocycle (e.g., Li, Be, Na, Mg, Al, K, Ti, Mn, Cu, Co, Fe,
Pt, Tm, Yb, and Lu) [1]. Investigations into metalloporphyrins
for diverse catalytic functions have been explored extensively
[38–40]. Different metalloporphyrins are capable of providing
imaging contrast for near infrared (NIR) fluorescence, magnetic
resonance imaging (MRI), X-ray computed tomography (CT),
and emerging modalities like photoacoustic imaging. Because of
their potential applications in these diagnostic techniques, the
study of metalloporphyrins remains active. Different metal selec-
tion allows for control of the photochemical and electrochemical
properties.

Among metalloporphyrin derivatives, palladium and
platinum-chelated porphyrins are attractive photosensitizers for
their high singlet oxygen yields and their capacity for oxygen
sensing [41, 42]. Due to the sensitivity of their phosphorescence
to molecular oxygen, Pd(II)- and Pt(II)- porphyrins have become
important probes for in vitro [43, 44] and in vivo oxygen detec-
tion [45–47]. Moreover, their long-lived NIR phosphorescence
lifetimes can help reduce background from shorter lifetime
auto-fluorescence effects from surrounding tissue. In 1995,
Vinogradov et al. found several Pd-chelated porphyrins which
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FIGURE 2 | Examples of porphyrin-based biomaterials (inner circle)

and applications (outer circle). (A) Liposomal phthalocyanine delivery

[8]; (B) Glycoporphyrin dendrimers [9]; (C) Photodynamic molecular

beacons [10]; (D) Porphyrin-phospholipid porphysome. [11]; (E)

PpIX-modified mesoporous silica nanoparticle [12]; (F) Pd-porphyrin

cross-linked hydrogel [13]; (G) In vivo MRI image of Mn-porphyrin

nanoparticles [14]; (H) microPET/CT image of orthotopic PC3 tumor

model after injection with 64Cu-porphysomes [15]; (I) Fluorescence

tracking of macrophages after injection of porphyrin-modified

nanoparticles [16]; (J) Human esophageal cancer treated with PDT [17];

(K) Thermal images of tumor-bearing mice with Pc-loaded nanoparticles

exposed to a NIR laser [18]; (L) 8 h (a1) and 24 h (a2) radioimaging of

melanoma-bearing mice after injection with 188Re-T3,4CPP [1]; (M)

Acoustic images of a tumor-bearing mouse after injection with

porphyrin-shell microbubbles [19]; (N) Image-guided surgery with a

porphyrin-PEG cross-linked hydrogel [20]; (O) Phosphorescence images

of an implanted Pd-porphyrin hydrogel in mice breathing different

oxygen levels [13]; (P) Photoirradiation of bacteria under various

photosensitizer conditions [21]; (Q) Photoimmunotherapy concept [22].

All figures used with permission from the indicated references.

showed high sensitivity to oxygen concentration changes [48].
Subsequently, numerous formulations of phosphorescent probes
have been developed involving copolymers [49], nanoparticles
[50–52], dendrimers [53–55], and hydrogels [13, 56].

Besides oxygen sensing, Pd(II)- and Pt(II)-porphyrins are
effective PDT agents. Cheng et al. embedded Pd-meso-tetra
(4-carboxylphenyl) porphyrin onto the nano-channel surface
of mesoporous silica nanoparticles through amido bonds [57].
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TABLE 1 | Selected clinical photosensitizers.

Name Q-band absorption (nm) Applications Clinical status

Photofrin (porfimer sodium) 630 Endobronchial lesions; esophageal cancers; bladder cancer;

gastric and cervical cancers

FDA approved

Protoporphyrin IX 635 Actinic keratosis; basal-cell cancer; head and neck tumors;

bladder cancers and Bowen’s diseases

FDA approved with ALA induced

by Levulan, Hexvix, Cysview, and

Metvixia

Foscan (temoporfin) 652 Head and neck cancer; prostate and pancreatic tumors;

cutaneous lesions

Approved in Europe

Purlytin (SnET2) 660 Cutaneous metastatic breast cancer; basal-cell carcinoma;

Kaposi’s sarcoma and prostate cancer

Clinical trials (Phase II)

HPPH 665 Basal cell carcinoma; early esophageal cancers and non-small cell

lung cancers

Clinical trials (Phase II)

Silicon phthalocyanine Pc 4 670 Skin cancers; actinic keratosis; Bowen’s disease and T-cell

non-Hodgkin lymphoma

Clinical trials (Phase I)

Visudyne (verteporfin) 690 Age-related macular degeneration; choroidal neovascular disease;

pathologic myopia and histoplasmosis

FDA approved

Motexafin lutetium 732 Recurrent breast cancer; cervical, prostate and brain cancers Clinical trials (Phase II)

After incubation with MDA-MB-231 cells, there was significant
damage shown in cell morphology following a brief irradiation.
Later, similarly structured mesoporous silica nanoparticles were
obtained by further surface modification with PEG and RGD
molecules [58]. Both the PEG- and RGD- modified nanoparticles
showed good efficiency in cellular uptake, bright luminescence,
and good PDT efficacy following incubation with cancer cells.

Another unique metal for porphyrin chelation is copper,
which has a high chelation affinity for the macrocycle, even
in mild aqueous reaction conditions. As shown in Figure 3,
Shi et al. reported 64Cu porphyrin radiolabeling in a mul-
tifunctional chelator complex [59]. This complex served as
an optical imaging probe, a PDT agent, and a PET imag-
ing probe. A pharmacokinetic-modifying linker was used to
enhance the water solubility of the porphyrin-peptide-folate
(PPF) probe. Folate is a well-established metabolite that can
be used to effectively improve cancer targeting specificity [60].
Mice were first injected with 64Cu-labeled PPF and analysis
showed the stability of the 64Cu labeled metalloporphyrin com-
plex. Micro CT and micro PET imaging were then performed
4 and 24 h post-injection and the tumor was easily identified
with PET.

Zhang et al. recently reported medical imaging applications of
naphthalocyanines and spectrally-shifted metallonaphthalocya-
nines. Dyes were encapsulated with pluronic F127 by drop wise
addition of the naphthalocyanines (Nc) into a 10% Pluronic F127
solution to form a micelle structure of nanoformulated naph-
thalocyanine, termed nanonaps [61]. After removal of excess sur-
factant, a dye to surfactant molar ratio of greater than 3 was
determined. Nanonaps exhibited stability in the harsh conditions
of the stomach and intestine and the particles were fully excreted
in feces. Nanonaps exhibited strong photoacoustic signal genera-
tion capabilities. In vivo, the photoacoustic signal could penetrate
about 2.4 cm deep though tissue and the movement of nanon-
aps could clearly be visualized in the intestine. Nanonaps could
also be labeled with 64Cu for complementary whole-body PET
imaging.

FIGURE 3 | Pyro-pharmacokinetic modifying linker (peptide

sequence)-folate (PPF) structure design (Adapted with permission

from Shi et al. [59]).

Magnetic metals have also successfully been chelated in por-
phyrins, offering MRI contrast enhancing capabilities. Mn(III)
can be used for medical imaging, but can be toxic when used in
high concentrations. However, porphyrins can stably chelate the
metal to inhibit unwanted toxicity from large doses [62]. Cheng
et al. reported complementary chemical strategies to overcome
the limitations of Mn-porphyrin and enhance biocompatibility,
pharmacokinetics, and high-field T1 MRI properties [63]. The
first strategy was based on Mn meso-tetra (4-sulfonatophenyl)
porphyrin, which is capable of providing contrast at high mag-
netic field strengths, unlike common Gd contrast agents. They
found that by varying the size of these Mn-porphyrins they
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could tune the speed of clearance from the body. Two similar
derivatives of the Mn meso-tetra (4-sulfonatophenyl) porphyrin
were tested following intravenous injection in mice. They found
that the smaller and polar type of Mn-porphyrin accumulated
in the kidneys and bladder within 10min, validated by whole
body MRI. The signal disappeared after 24 h post-injection and
clearance was confirmed by urine analysis. The renal clear-
ance profile of the larger Mn-porphyrin was significantly slower,
demonstrating the ability to tune pharmacokinetics to fit different
applications.

Photodynamic Molecular Beacons

It is possible to build additional layers of control onto PDT pho-
tosensitizers, based on activation following recognition of specific
biomolecules or biological conditions. These so-called activat-
able photosensitizers are a new class of photosensitizers which
add a layer of complexity over standard photosensitizers, but also
offer opportunity for target-tissue specific imaging and therapy
[64]. With appropriate design, a photosensitizer that moves to
an excited state following photon absorption can be quenched
at several different stages prior to generation of singlet oxy-
gen (Figure 4). This photosensitizer deactivation itself can be
modulated by various biomolecules such as proteases or nucleic
acids, resulting in photosensitizers that are, ideally, only active in
target tissues where those targets are present.

Nucleic-acid Activatable Photosensitizers
Molecular beacons have become archetypalmolecular probes and
are powerful tools for detecting nucleic acids with single base pre-
cision [65]. Traditional molecular beacons are nucleic acid-based
sensors consisting of a single stranded oligonucleotide probe with
a loop and stem structure. At each terminus is a dye or quencher
that are inactive when proximal. When the target is present, the
probe loop opens up to form a two-stranded duplex, resulting
in separation of the fluorophore and quencher and an increased
signal.

FIGURE 4 | Possible pathways for rational deactivation of an excited

state photosensitizer. Simplified singlet oxygen generating diagram with

energy levels shown in black and the typical pathway of singlet oxygen

generation in red (Adapted with permission from Lovell et al. [64]).

The quencher is responsible for energy capture and transfer
from the excited fluorophore [66]. A commonly used quencher is
4-(4-dimethylaminophenylazo) benzoic acid (dabcyl). Dabcyl is
a hydrophobic molecule and also a universal quencher for many
fluorophores [67]. However, quenching efficiency decreases for
dyes emitting longer wavelengths, although alternative quenchers
such as gold nanoparticles can be used in certain cases [68]. FRET
efficiency can be used to predict the response of photodynamic
molecular beacons [69]. Enzymes, nucleic acids, chemical envi-
ronments and even other photosensitizers are able to activate
photodynamic molecular beacons [64, 70, 71].

Nucleic-acid based activatable photosensitizers follow the
same design principles as classic molecular beacons except that a
photosensitizer is used in lieu of a fluorophore. This principle was
first shown in 2008 by Chen et al., who reported a photodynamic
molecular beacon (PMB) with tumor specific mRNA-triggered
control of singlet oxygen production [72]. The photosensitizer
remained silenced in the absence of the nucleic acid target. How-
ever, photodynamic activity was restored in the presence of a
complementary mRNA sequence.

Lovell et al. enhanced singlet oxygen quenching in the bea-
con off state by using a so-called linear superquencher consisting
of multiple quenching moieties [73]. The construct, with three
quenchers, achieved more than 300 fold quenching in the off
state. In the presence of targeted DNA in the system, the bea-
con opened and singlet oxygen production was restored. Due
to the hydrophobic structure, this same beacon could partition
into lipid-based nanoparticles [74]. Unexpected aggregation was
observed in the presence of the target nucleic acid, indicating that
photodynamic molecular beacon opening can induce physical
perturbations in nanoparticle systems.

Nesterova et al. designed a phthalocyanine (Pc) dimeriza-
tion based molecular beacon system using phthalocyanines [75].
As shown in Figure 5, the design involved a non-fluorescent
H-dimer in the molecular beacon off state. The presence of
a complementary DNA sequence caused the formation of a
duplex, thereby disrupting the quenching mechanism and restor-
ing fluorescence. This experiment was done with respect to the
oligonucleotide chain length. They found that longer oligonu-
cleotide sequences could better restore fluorescence emission.
The H-dimer based molecular beacon (Pc2) produced 98%
quenching efficiency with a signal to background ratio of 59.

Enzyme Activatable Photosensitizers
Enzyme activated photosensitizers are typically quenched until
specific enzymatic activity liberates the photosensitizer from a
particular quenching environment. In some cases the photosen-
sitizer is tethered via a peptide linker to a quencher, or sometimes
the photosensitizer is grafted with peptide linkages onto a poly-
meric backbone [76, 77]. Whereas most enzymes used for activa-
tion have been proteases, other enzymes such as lipases can also
be used with appropriately designed photosensitizers [78].

In 2004, Chen et al. reported a photosensitizing beacon design
made with a disease-specific linker, a photosensitizer, and a sin-
glet oxygen quencher/scavenger (Figure 6) [79]. In their design,
the photosensitizer and singlet oxygen quencher were linked
to two ends of a peptide sequence. This design allowed the
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FIGURE 5 | Schematic representation of a dimer based photodynamic molecular beacon is shown on the left and the structure of Pc1 and Pc2 are

shown on the right (Adapted with permission from Nesterova et al. [75]).

FIGURE 6 | (A) Principle of singlet oxygen scavenging and activation (B)

structure of a caspase-3 activatable pyro-peptide-carotenoid photodynamic

beacon (Adapted with permission from Chen et al. [79]).

photosensitization to remain quenched in the absence of the
specific target molecule [79]. They chose a well-established pep-
tide sequence, cleavable by caspase-3, as the substrate [80].
Pyropheophorbide α (pyro) was used as a photosensitizer. The
quencher carotenoid was selected to quench and scavenge sin-
glet oxygen [81]. The quencher efficiently decreased singlet oxy-
gen production. The pyro-peptide-carotenoid (PPC) was cleaved
when caspase-3 was introduced, resulting in increased singlet
oxygen signal. This approach has also been extended to photo-
dynamic beacons that both induce and sense apoptosis [82].

Chen et al. later modified their beacon design using a zip-
per molecular beacon (ZMB) held together by electrostatic forces
of positive and negative peptide residues [83]. They found that
enhanced quenching efficiency in the ZMB was the result of both
improved fluorescence resonance energy transfer (FRET) effect,
and the ground state complex quenching caused by annealing of
the dye and quencher through the electrostatic attraction of the
zipper arms. A central protease cleavage site allowed for enzyme
activation, and the ZMBproduced a high signal/background ratio
after activation. The ZMB also had the ability to increase the
resolution of activated probes and increase the contrast between
intact and activated beacons during a cellular uptake experiment.

Nano- and Micro-structured Porphyrin
Agents

The rise of nanomedical engineering has generated interest and
improved methodology in designing effective nanoparticulate
agents [84]. Porphyrin and its derivatives have been tested in
many biological applications along with liposomal delivery, con-
jugation with biocompatible polymers, or other nanoparticles.
These nanomaterials can be functionalized with specific ligands
that deliver porphyrins to target areas. Tunable size allows them
to effectively reach tumor cells easily through enhanced uptake or
direct penetration through cell membranes. Thesematerials work
as multifunctional platforms with diagnostic and therapeutic
abilities in vitro and in vivo [85].

Porphyrin Dendrimers
Dendrimers have highly branched three-dimensional architec-
ture with properties that can be precisely controlled and hold
promise as nanocarriers [86, 87]. In 1993, dendrimer porphyrins
were reported by Jin et al. [88]. The structure of dendrimers
shows three critical architecture domains: a multivalent surface,
interior shells, and a core. The high density of functional groups
on the dendrimer surface makes them a versatile nano-scaffold.
The interior core can exhibit host-guest interaction, which mim-
ics micelle structure when host and guest are hydrophobic and
hydrophilic molecules respectively [86]. Porphyrin photosensi-
tizers, which are usually hydrophobic, can be attached to the
branches or encapsulated in the core [89]. In this way, por-
phyrins can be made to mimic natural heme-containing pro-
teins. Interestingly, organic reactive groups around porphyrins
can be exchanged during the synthesis process, with enough
attached in the periphery of dendrimer to create light-harvesting
materials [90].

Porphyrin-Containing Liposomes
Liposomes have been widely used as porphyrin delivery agents
[91]. These spherical nanoparticles possess a hollow core that
isolates an interior aqueous environment from an exterior one.
Liposomes can encapsulate both hydrophobic and hydrophilic
materials. Besides disease specific targeting ligands, liposome sur-
faces have been modified with many organic and inorganic com-
pounds to better accomplish the goal of reduced toxicity and

Frontiers in Physics | www.frontiersin.org 6 April 2015 | Volume 3 | Article 23

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Huang et al. Emerging applications of porphyrins in photomedicine

increased therapeutic index [92]. Enhancing the biocompatibility
or biodegradability of liposomes can be accomplished by a vari-
ety of techniques. Modifying lipid composition, surface charge,
in vivo or shelf stability, and permeability are just some routes
by which this has been achieved [93]. Then, based on the desired
properties for each application, the appropriate formulation can
be determined. Liposomes injected intravenously are generally
taken into the mononuclear phagocytic system. Short blood cir-
culation time generally will decrease delivery efficiency. To over-
come this phenomenon, surface modifications like coating with
polyethylene glycol (PEG) can help control the clearance time
[94]. PEGylated liposomes can be designed for conjugation with
antibodies for the combination of long-circulation and targeted
delivery [95].

Porphyrin-Phospholipid Compounds
In 2005, porphyrins were incorporated into polymersome
nanovesicles [96]. Later, in 2011 it was determined that by cova-
lently conjugating a porphyrin on a phospholipid side chain,
the porphyrin-phospholipid could self-assemble into nanovesi-
cles termed porphysomes, forming a pure porphyrin-bilayer [11].
Porphysomes can be used for diverse biophotonic applications
including photothermal therapy and photoacoustic imaging.
Porphyrin-phospholipid micelles are also promising theranostic
agents [97]. In recent years there has been a push to improve and
exploremore clinically relevant applications of porphysome tech-
nology [98]. Diagnosis and treatment for specific types of cancer
has especially driven innovation [99–103].

Because metalloporphyrins possess multifunctional imaging
abilities, metallo-porphysomes have been successfully developed
for different diagnostic techniques. In 2012, Tam et al. success-
fully formed stable surface enhanced Raman scattering (SERS)
probes by embedding gold nanoparticles into Mn-pyro-lipid
porphysomes [104], showing the potential of porphysomes as
metal-nanoparticle carriers. Recently, MacDonald et al. used a
similar method to generate Mn-pyro-lipid porphysomes for use
as MRI contrast agents [105]. The porphyrin lipid was chelated
with Mn(II) as shown in Figure 7. The MRI signal from Mn-
pyro-lipid porphysomes was comparable to Gd-DTPA, a clinical
MRI contrast agent.

Recently, 64Cu porphysomes have been demonstrated for
use as in vivo PET imaging agents. In 2012, Liu et al. chose

FIGURE 7 | Schematic showing the post chelation process of Mn ion

into the pyro-lipid. (Adapted with permission from MacDonald et al. [105]).

prostate cancer as a platform to test the PET diagnostic abil-
ity of 64Cu-porphysomes [106] after labeling them as shown
in Figure 8A. 24 h post injection, 64Cu porphysomes accumu-
lated within prostate tumors and showed a bright PET signal
(Figure 8B). They used similarly structured 64Cu-porphysomes
for further prostate tumor treatment research [15]. After intra-
venous injection in vivo, the results demonstrated high uptake
efficiency and high specificity to PC3 tumors (Figure 8C). Results
of 64Cu chelated porphysomes point toward potential clinical
translation possibilities.

As opposed to modifications on the porphyrin macrocycle,
there are several other modifications that can induce enhanced
liposome release. Methods that have already been developed
include pH triggering [107, 108], biodegradability [109, 110], and
thermal sensitivity [111]. These techniques can also be applied to
modified porphysomes. In 2012, specific enzyme-biodegradable
porphysomes were made by Lovell et al. [112]. By performing
side-chain modifications, two similarly structured porphysomes
showed significant biodegradable differences. Sn-1 regioisomeric
porphysomes remained intact in the liver and spleen, while sn-2
regioisomers showed dramatic degradation. This result illustrates
the possibility for controlled porphysome degradation, and the
potential for release of contents in specific organs.

More recently, folic acid modified porphysomes were
developed by Jin et al. This nanosystem embedded quenched
photosensitizers in intact porphysomes and triggered disrup-
tion in target cancer cells for PDT under light irradiation [113].
According to the results, a notable difference was observed
between cellular uptake efficiency of the nanoparticle with and
without the folate acid ligand. After laser treatment, the tumor
tissue with folic acid targeted porphysomes was totally destroyed
with no reappearance within 14 days.

Porphyrin liposomes can also be used for light-triggered
drug delivery applications [114]. Devinyl hexyloxyethy-
pyropheophorbide (HPPH)-conjugated phospholipids were
incorporated into nanovesicles that could be permeabilized
by NIR-light. Various cargos could be released from the lipo-
somes during NIR irradiation. During liposome formulation,
doxorubicin was successfully loaded and released from these
nanovesicles, which were shown to re-seal with an intact mem-
brane when no longer exposed to NIR light. These nanovesicles
with controlled drug release properties successfully cured
nude mice with KB tumors and exhibited no appearance of
regrowth within 90 days. Light-triggered permeabilization of
microparticles has also been demonstrated [115].

Recently, a porphyrin-phospholipid-coated upconversion
nanoparticle (UCNP) was developed by Rieffel et al. The UCNP
(core-shell of NaYbF4:Tm-NaYF4) was surface modified with
PEG- and porphyrin-phospholipid, and also was incubated with
64Cu, showing high stability in aqueous system. This nanoparti-
cle probe was shown to enhance signal or contrast in six different
imaging techniques including UC imaging, fluorescence, photo
acoustic imaging, PET, CT and Cerenkov imaging. The phantom
and in vivo data both provide high quality images with this UCNP
probe [116].

In addition to the nano-sized spherical porphysomes men-
tioned above, micro-sized and other structured porphyrin-lipid
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FIGURE 8 | (A) Schematic figure showing the process of chelating 64Cu ion

into porphysomes; (B) MicroPET/CT images of coronal single slices through

orthotopic PC3 tumor at 24 h after intravenous injection 64Cu-porphysomes;

(C) 3D MicroPET/CT images (blue arrow, distal femur metastases, white

arrow, proximal tibia metastases) (Adapted with permission from Liu et al.

[15, 106]).

FIGURE 9 | Schematic of the self-assembling process resulting in

porphysome nanodics (Adapted with permission from Ng et al. [117]).

complexes have been developed. One example is the nanodisc
formed by ApoA-1 and porphyrin-lipid [117], as shown in
Figure 9.

After forming intact nanodiscs, fluorescence and singlet-
oxygen generation were fully quenched. Following enzymatic
degradation, the fluorescence and singlet oxygen generation
recovered due to disruption of the structure. Another example
is porphyrin shell “porshe” microbubbles (Figure 10) [19]. These
micromaterials were generated by mixing porphyrin-lipid, phos-
pholipid, polyoxyethylene-40 stearate, phosphate-buffered saline

FIGURE 10 | (A) Schematic of the structure of microbubble (B) Photo of

microbubbles solutions in room temperature (Adapted with permission from

Huynh [19]).

(PBS), and fluorinated gasses together through a mechanical
agitation method. Porshe microbubbles were stabilized around
2.7µm, creating a large-volume empty cavity. These microbub-
bles are stiffer than commercial microbubble agents and exhib-
ited photoacoustic and ultrasound signals both in vitro and
in vivo. Besides photoacoustic and ultrasound imaging abilities,
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microbubbles also have potential applications working as drug or
gene delivery carriers.

Mesoporous Silica-Porphyrin Nanoparticles
Mesoporous silica nanoparticles are appealing for biomedical
applications due to their uniform porosity, ease of functional-
ization, and biocompatibility [118–120]. Due to their monodis-
persity, high surface area, and tunable pore size and diameter
[120, 121], they are being researched as nanocarriers for fluo-
rescence [122], MRI [123–125], drug delivery [126], and PDT
[12, 127, 128] applications. The PDT efficiency of porphyrins is
increased by overcoming limitations such as biotoxicity, low sol-
ubility in water, and non-specific toxicity following formulation
with mesoporous silica nanoparticles.

Research into porphyrin photosensitizers conjugated with
mesoporous silica nanoparticles has expanded tremendously in
recent years. Many strategies have been employed, one of which
is self-assembly of silica-porphyrin conjugates directly [129–133].
These silica-porphyrin molecules can be bonded to other chem-
ical linkers, stimulating the formation of mesoporous nanopar-
ticles. The role of porphyrin in mesoporous silica nanoparticles
is to impart imaging capability, act as a photosensitizer, and
to chelate metals. In 2010, gold nanorods were encapsulated in
the core of porphyrin conjugated mesoporous silica nanopar-
ticles [130]. Besides singlet oxygen generation, these nanoscale
materials showed high-contrast two-photon images after being
used to treat a MDA-MB-231 human breast adenocarcinoma cell
line. In a subsequent study, silicon phthalocyanine molecules
were conjugated with mesoporous silica nanoparticles (Pc4SNP)
and used for PDT. After light irradiation, A375 and B16F10
melanoma cells incubated with Pc4SNP for 24 h showed dramat-
ically decreased viability. These nanoparticles were found to be
partially internalized into mitochondria and lysosomes [134].

Porphyrins can also be embedded into mesoporous silica
nanoparticles. In 2009, a zinc phthalocyanine-loaded meso-
porous silica shell was developed by Qian et al. This porphyrin-
mesoporous silica nanoparticle was active in the NIR, and was
shown to kill more than 80% of murine bladder cancer cells
by PDT [135]. In 2012, another method of using zinc phthalo-
cyanine loaded into silica-shell nanoparticles was shown by Tu
et al. [136]. Cell penetration efficiency was increased by co-
coating with PEG and polyethyleneimine. Moreover, these sil-
ica nanoparticles loaded with zinc phthalocyanine showed bright
NIR signals and were implemented as an effective anti-tumor
treatment. A new conjugation method was attained through
allylisocyanate [133]. The internalization of these nanoparti-
cles in MCF-7 breast cancer cells was observed by confocal
microscope imaging, and an efficient PDT response from these
porphyrin-silica nanoparticles was demonstrated following laser
irradiation.

Porphyrin-conjugated mesoporous silica nanoparticles were
recently considered as dual-function drug carriers for deliv-
ery to a specific target area. After being conjugated with por-
phyrin and loaded with anticancer drugs, enhanced anticancer
therapy was achieved. In 2011, Wang et al. introduced a dual-
mode therapeutic multifunctional nanocarrier to deliver dox-
orubicin to cancer cells [137]. In this study, hollow cubic core

and mesoporous shell nanoparticles were made by surface etch-
ing of the shell molecules. Isothiocyanate and hematoporphyrin
were incorporated into the nanoparticle walls through covalent
bonds, acting as fluorescence probes. Doxorubicin molecules
were encapsulated into the pores of the nanoparticle. After being
incubated with MCF-7 cells, the doxorubicin-nanocage system
demonstrated much lower cell viability compared to doxorubicin
and nanocages alone. These results indicate this dual-functional
nanoparticle can provide enhanced anticancer therapeutic ability
and complementary imaging capacity.

Porphyrin Hydrogels
Hydrogels are three-dimensional networks of hydrophilic poly-
mers capable of containing a large amount of water. Hydro-
gels have a range of biomedical and pharmaceutical applications,
such as in tissue engineering [138–140], drug delivery [141, 142],
PDT [143], and photodynamic antimicrobial chemotherapy [144,
145].

Photodynamic antimicrobial chemotherapy (PACT) is a form
of PDT that uses light sensitizing drugs to kill microorganisms.
Because of the flexibility of hydrogels during the formation pro-
cess, they can be molded to different shapes appropriate for
different clinical conditions, usually around a surgical wound.
After surgery for example, the oxygen concentrations around
the wound and subcutaneous conditions could be monitored
through clinical imaging techniques. The porphyrin photosen-
sitizers can also generate singlet oxygen causing damage to
microorganisms, attaining the PACT goal.

Porphyrins and phthalocyanines have been explored as agents
to attenuate microbial growth for decades [146]. In 2009, Don-
nelly et al. used a cross-linked poly (vinyl alcohol) hydro-
gel loaded with two photosensitizers, methylene blue and
meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, for
antibacterial infection treatment [144]. In the same year, a por-
phyrin surface modified hydrogel was developed by Parsons
et al. for the prevention of intraocular lens-associated infectious
endophthalmitis [147]. Cationic tetrakis (4-N-methylpyridyl)
porphyrin interacted electrostatically with anionic HEMA (2-
(hydroxyethyl) methacrylate) andmethacrylic acid and a promis-
ing antimicrobial reduction in adherence of S. epidermidis was
shown.

Due to the high biocompatibility and stability of hydrogels,
they can stay in a subcutaneous position around wounds for a
long period without any side effects. The native imaging abilities
of porphyrins provide a non-invasive way to monitor implanted
hydrogel within tissues. Lovell et al. cross-linked meso-tetrakis
(4-carboxyphenyl) porphine with diamine-functionalized PEGs
[20]. After implantation in vivo, the hydrogel showed a detectable
fluorescent signal in the subcutaneous position for 2 months and
there were no side effects during or after removing the hydrogel.
In 2014, a thermosensitive porphyrin-incorporated polycapro-
lactone (PCL)-PEG hydrogel was developed [148]. This POR-
PCL-PEG hydrogel maintained a liquid sol state at room tem-
perature, but after subcutaneous injection, the body temperature
stimulated the liquid formation of a sol gel, which transformed
to a solid hydrogel within 1 day. Within 9 days, the hydrogel
degraded and most of it remained close to the injected position.
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A very small amount migrated to other organs but no dam-
age signs were apparent in these organs, demonstrating excellent
biocompatibility.

Other Emerging Porphyrin Applications

Photothermal therapy (PTT) is another type of anti-cancer
treatment being explored. Being similar to PDT with respect
to light delivery to biological tissues, a photosensitizer can be
used to enhance heating and to ablate tumors. To achieve a
higher therapeutic efficiency, researchers have also combined
PDT and PTT agents. In 2011, Jang et al. combined Al (III)
phthalocyanine chloride tetrasulfonic acid (AlPcS4) with gold
nanorods. By excitation with a 810 nm laser, the temperature
around the tumor tissue increased to 65◦C [149]. Phthalo-
cyanines and metallo-naphthalocyanines have successfully been
delivered in vivo through polymerization or combination with
common nano-carriers [18, 150, 151]. After injection into mice,
all of the subjects showed large temperature increases with laser
stimulation, and demonstrated high levels of anti-tumor efficacy.
In 2013, Jin et al. used porphysomes as PTT agents. After expo-
sure to the laser for only 85 s, the temperature around tumors
reachedmore than 60◦C. Also, compared to the commercial PDT
agent Photofrin, these PTT agents showed high therapeutic abil-
ity under both acute hypoxic and hyperoxic conditions, while
Photofrin could only cure the tumors under hyperoxic conditions
[101].

Two-photon imaging uses photons with half the energy of
the corresponding one-photon transition and due to their intrin-
sic imaging ability, many porphyrin agents have been explored
as two-photon probes [152]. Porphyrin dimers present unique
imaging properties [153–155], as do electrostatic assemblies com-
prised of porphyrin and polymers [156]. In 2010, Poon et al.
synthesized an amphiphilic ruthenium (II)-polypyridl porphyrin
complex. Besides the higher cell uptake efficiency after incu-
bation with human nasopharyngeal carcinoma HK-1 cells, this
Ru-porphyrin complex also demonstrated high red fluorescence
intensity after excitation with a 800 nm laser [157]. In the same
year, Sakadzic et al. used Pd-porphyrins encapsulated in poly
(arylglycine) dendrimers as a two-photon-enhanced phospho-
rescent probe for detecting oxygen levels. The probes showed a
strong phosphorescence signal in microvasculature up to 250µm
deep below the cortical surface, overcoming the low two-photon
signals seen when using other oxygen phosphorescence probes
[45]. Porphyrin nanoparticles have also been used for two-
photon applications [158].

Targeted PDT involving porphyrins has been explored
extensively and continues to attract interest. Conjugation of pho-
tosensitizers to antibodies has been explored for decades for pho-
toimmunotherapy (PIT) [159]. As opposed to traditional passive
targeting methods, photosensitizers can actively target diseased
tissues through covalent binding with antibodies or antibody
fragments. The antibodies chosen to decorate delivery vehicles
have the ability to bind with cancer-tissue associated antigens.
MAbs usually play the role of blocking specific receptor signaling
pathways in cells, or as vectors to deliver porphyrins into tar-
get cancer cells [160]. Various types of antibodies have been used

including intact IgG, and single chain fragments (scFV) success-
fully bind with porphyrin-based photosensitizers. This formula-
tion of photodynamic agents has progressed well in treatment of
diseases such as ovarian cancer [160], human colon carcinoma
[161], L-M fibroblasts [162], and human breast carcinoma [162].
In 1983, Mew et al. combined hematoporphyrin with anti-M-1 to
treat DBA/2J myosarcoma M-1 in mice. Their conjugates killed
95% of tumor cells in vitro and restrained tumor growth after
injection into mice [163]. Later, Goff et al. used chlorin deriva-
tive, CMA, conjugated with anti-ovarian carcinoma monoclonal
antibody OC125. After incubation with cells for 1 h and irradia-
tion with a 654 nm laser, the PIT agent shown obvious selectivity
to ovarian cells compared to other non-ovarian cells [164]. Fur-
thermore, in 2005, Hudson et al. utilized two porphyrin isoth-
iocyanates (one is neutral and one is positive charged) for facile
conjugation with internalizing MAb FSP 77 and 17.1A, and non-
internalizingMAb 35A7. Based on their results, all the conjugates
demonstrated increased efficiency compared to free photosensi-
tizers with the internalizing conjugates performing better than
non-internalizing variants. Also, comparing to the two photosen-
sitizers, the cationic agent shown shorter serum half-life and a
high loading ratio [165]. In 2011, conjugation of trastuzumab or
panitumumab (which are against human epidermal growth fac-
tor HER1 and HER2) with the phthalocyanine-based dye IR700
was performed. Each mAb combined with approximately three
dyes. Trastuzumab-IR700 fluorescence signals were detected on
the cell surface and internally after incubation with 3T3-HER2
cells for 1 and 6 h, respectively, and induced cellular death after
laser irradiation. The same result was observed after incubat-
ing Panitumumab-IR700 with HER1-positive A431 cells. Also,
in vitro data showed phototoxicity of mAb-IR700 conjugations
only to the target cells. After injection into mice, both mAb-
IR700 conjugations demonstrated target-specific accumulation;
and with treatment 1 day post-injection, both conjugations led
to significant tumor shrinkage [166]. During the treatment of
A431 cancer with Panitumumab-IR700, Mitsunaga et al. found
repeated exposure to light of the target tissue area will lead to
enhanced therapeutic efficiency [167]. Recently Kobayashi et al.
have been applying this approach to various mouse models of
cancer including MDAMB468-luc cells and disseminated peri-
toneal ovarian cancer have successfully been treated with this
approach [168–170].With advances in antibody production tech-
niques coupled with development of porphyrin-based photosen-
sitizer synthesis, clinical translation of PIT is possible.

Besides PIT, vascular targeted PDT is another approach
for anti-cancer therapy [171]. This is accomplished through
attacking vascular tissue around tumor sites to generate local-
ized necrosis. The common method for anti-vascular ther-
apy is based on damaging blood vessels, inhibiting forma-
tion of de novo neovascularization, and stopping blood flow
[172]. In 2004, Brandis et al. developed a hydrophilic bateri-
ochlorophyll derivative compound of Pd-bacteriopheophorbide
(Tookad), which has been used in clinical trials as an anti-
vascular agent. Differing from other anti-vascular agents, their
molecules showed low aqueous aggregation and high affinity to
serum proteins, which could extend the circulation time of these
agents and bring them to the vasculature of important target
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organs [173]. In 2014, Reddy et al. used Photofrin combined
with iron oxide crystals and polyethylene glycol to form a mul-
tifunctional platform that could shrink orthotopic gliomas in
rats [174].

Conclusion

As clinical agents for PDT, porphyrins occupy a central niche in
photomedicine. A variety of metalloporphyrin derivatives have
been synthesized as probes for diagnostic techniques, such as flu-
orescence imaging, MRI, PET, and CT. Photodynamic molecular
beacons are promising constructs to enhance localized activa-
tion of porphyrins for PDT and imaging. Modified liposomes,
dendrimers and other nanoparticles serve as carriers to deliver

porphyrins to the target tissues. Recent porphyrin constructs
have begun to be used inmultifunctional nano- ormicro-carriers,
which hold potential to deliver drugs to target tissues with higher
efficiency. Porphyrins and related macrocycles provide a large
range of possibilities to address almost any diagnostic and ther-
apeutic challenge. More work is still needed to advance recently
emerging porphyrin constructs to the clinical stage to fulfill their
potential.
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