
596 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

Green Energy Scheduling for Demand Side
Management in the Smart Grid

Kun Wang , Senior Member, IEEE, Huining Li, Student Member, IEEE, Sabita Maharjan, Member, IEEE,
Yan Zhang, Senior Member, IEEE, and Song Guo, Senior Member, IEEE

Abstract—Demand side management (DSM) is an essential
property of smart grid systems. Along with increasing expec-
tations related to power quality from customers, and as new
types of loads emerge, such as electric vehicles, local (renewable)
energy generation, and stationary and mobile energy storage,
it is critical to develop new methods for DSM. In this paper,
we first construct a more efficient and reliable communication
infrastructure in smart grid based on cognitive radio technology,
which is an essential component for enabling DSM. Then, we
propose a distributed energy storage planning approach based
on game algorithm in DSM, which helps users select the appro-
priate size of storage units for balancing the cost in the planning
period and during its use. Since planning problems may lead
to consumer discomfort, we propose a cost function consisting
of the billing, generation costs, and discomfort costs to bal-
ance users’ preferences with the payment. Furthermore, a game
theory-based distributed energy management scheme is devel-
oped in DSM without leaking user privacy, which is used as
inner optimization in our proposed distributed energy storage
planning approach. In this energy management scheme, Nash
equilibrium is obtained with minimum information exchange
using proximal decomposition algorithm. Simulation results show
superior performance of our proposed DSM mechanism in
reducing the peak-to-average ratio, total cost, user’s daily pay-
ment, and energy consumption in smart grid communication
networks.

Index Terms—Demand side management, green, energy
scheduling, energy management, game theory, smart gird.
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I. INTRODUCTION

A. Smart Grid Communication Infrastructure

SMART grid is a significant enhancement of the 20th
century power grid, which uses two-way flows of elec-

tricity and information to create an automated and distributed
advanced energy delivery network [1]–[3]. A reliable and
effective communication infrastructure is essential to enable
bi-directional information flow between energy generators (tra-
ditional energy generation and distributed renewable energy
sources) [4] and users’ side (commercial, industrial, and resi-
dential users) in the smart grid, aiming at controlling smart
appliances at users’ homes for reducing energy consump-
tion [5], [6]. The smart grid communication infrastructure
needs to cover an entire large geographical region connect-
ing a huge set of nodes. The communication infrastructure
can be considered as a multilayer structure including home
area network (HAN), neighborhood area network (NAN), and
wide area network (WAN), data centers, and automated inte-
gration of substation systems [7], [8]. HAN communicates
with various intelligent appliances so as to facilitate effi-
cient energy management and demand response. NAN acts
as linking multiple HANs with local access nodes. WAN
establishes communication between the NAN and the util-
ity companies for information transmission. The smart grid
communication infrastructure is a heterogeneous network with
various complementary communication technologies, which
require smart appliances to manage communication within
every subarea or between different subareas. The smart grid
appliance equipped with cognitive radio technology could
support context awareness.

B. Demand Side Management

Smart grid communication infrastructure is a heterogeneous
network with various complementary communication tech-
nologies [9], which is an essential component for enabling
Demand Side Management (DSM). DSM acts as the control
unit to counterpoise the process of energy demand and sup-
ply between users and energy suppliers in the smart grid. This
counterpoise is implemented via combining energy manage-
ment with reliable communication, which is meant to establish
real-time and efficient connection between users and energy
suppliers. Wireless communication technology is often used in
DSM due to its wide coverage and low costs, but it has some
inevitable shortages in the aspects of communication reliabil-
ity and bandwidth. Thus, cognitive radio technology is used in
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our proposal for energy data transmission because it can sig-
nificantly promote communication performance via allocating
spectrum in a dynamic and adaptive manner [10].

With the emergence of new types of loads such as plug-
in hybrid electric vehicles (PHEVs), which can significantly
increase the average household load and drastically exacer-
bate the already high peak-to-average ratio (PAR) [11]. It is
clear that novel solutions are necessary to design efficient
DSM techniques while also smoothly incorporating these types
of loads. In order to reduce energy consumption, changing
users’ consumption patterns is not the only solution. With
the development of new appliances with controllable load,
microgeneration, and energy storage, customers can change
their role from static consumers into active participants [12].
Customers can shift the high-power household appliances to
off-peak hours to reduce the PAR. Moreover, energy genera-
tion and storage units can provide customers more flexibility
when scheduling their energy consumption. Distributed energy
generation units alleviate the pressure to energy source at peak
time and controllable energy generation units provide more
possibility in energy scheduling. Customers can store energy
ahead of time, and consume it during the peak hours so as to
further reduce PAR of their power consumption from the grid.

As a powerful mathematical tool, game theory shows its
great potential in designing efficient DSM schemes. The need
for distributed operation of smart grid nodes, the heteroge-
neous nature of the smart grid and the need for low-complexity
distributed algorithms which can efficiently represent compet-
itive or collaborative scenarios naturally impel game theory
to become a prominent approach [13], [14]. Game theoretic
methods have been applied to design efficient DSM schemes in
many studies. Some studies mainly focus on DSM in the smart
grid system [15], [16], while others are concerned more on
renewable energy source on the supply side, e.g., solar energy,
wind energy, and hydro energy [17]. In several studies, the
scheduling of distributed energy generation and storage units
are the main focus [18], [19]. In works such as [20], appli-
ances are usually treated as an aggregated load, which may not
reflect the essence of shiftable appliances. In this paper, we
consider a system model with local power generation and stor-
age, and jointly consider the load scheduling including electric
appliances, energy generation and energy storage units. Some
studies (e.g., [21]) proposed a repeated game framework since
the desired total energy consumption at each time slot can
be assumed to be the same for every day. However, as the
preference of the users regarding the operation of their appli-
ances may change from day to day, the repeated game model
may not suit our model. Thus, we propose a optimization
scheme based on a cooperative game framework so that users
can adjust their desired energy consumption each day for the
next day.

Simply shifting all the appliances operating at a peak
time to off-peak times may cause consumer-discomfort. For
instance, the difference between the desired load and the actual
load, and the waiting time of each appliance, are consid-
ered in [21] and [22], respectively, to measure the discomfort
cost. We introduce discomfort cost as a quadratic function of
the distance between the desired and the scheduled load, to

describe user discomfort caused by load shifting [23]. The
discomfort cost is minimized jointly with the billing, genera-
tion costs and discomfort costs to balance the desire of users
with the payment.

In this paper, we investigate efficient DSM techniques to
reduce the PAR of energy consumption from the grid, which,
in the long run, can contribute in reducing fuel waste and
greenhouse gas emission. Load control and management plays
an important role in DSM. We analyze users’ energy consump-
tion situation, electricity price, weather conditions and many
other aspects to determine optimal load control strategy in
order to flatten the load curve. DSM at residential houses are
designed to reduce consumption via offering energy-efficient
device and persuading customers for energy-aware consump-
tion. The consumers are encouraged to change their electricity
loads in real-time based on a certain signal like electricity
pricing information, in order to acquire short-term energy con-
sumption reduction. DSM helps satisfying users’ demands
with less energy equipment by load shift and time of use
(TOU). If we deploy more energy equipments other than DSM
in practical to satisfy users’ demands in peak hours, the capac-
ity of these equipments will be wasted in off-peak hours.
Hence, DSM promotes the equipments utilization. Efficient
DSM could support smart functionalities in many fields, where
locally generated energy can be consumed by local loads when
available, so as to avoid long-distance power transmission and
reduce fuel waste. A planning approach for user-side energy
storage units and a green home energy management scheme
with local power generation and storage, and user comfort
considerations, are proposed. The major contributions of our
work can be listed as follows:

• We construct a more efficient, reliable, and economical
communication infrastructure for energy scheduling in the
smart grid based on cognitive radio technology, where
household appliances, energy generation, and storage
units for users are planed one day in advance.

• In our proposal, consumers own the storage devices
and select appropriate storage size to keep a balance
between installation cost and savings. Additionally, the
discomfort cost is introduced as a part of cumulative
cost function to measure the influence caused by shifting
appliances on the user, where the cumulative cost function
is minimization goal in the energy scheduling problem.
This helps users to adjust power mode and meanwhile do
not have too much impact on user’s expected life mode.

• We propose a game theory based distributed energy
management scheme, where the proximal decomposi-
tion algorithm is developed for converging to the Nash
equilibrium with minimum information exchange. This,
not only protects users privacy to a certain extent, but
also reduces the communication overhead significantly.
Moreover, our proposed energy management scheme is
used as inner optimization to calculate fitness function
for each individual in genetic algorithm based distributed
energy storage planning.

The rest of this paper is organized as follows. In Section III,
we introduce the system model. We propose genetic algorithm
for energy storage units in Section IV. Section V presents
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game theoretical approach for energy management. Simulation
results are provided in Section VI and finally the paper is
concluded in Section VII.

II. RELATED WORK

A. Demand Side Management

DSM is a significant part of the smart grid, and effi-
cient DSM techniques for the smart grid, constitute a widely
researched area. Pedrasa et al. [12] presented a three-step man-
agement methodology for the control energy streams in (a
group of) houses, where the steps include local prediction,
global planning and local scheduling. Mohsenian-Rad and
Leon-Garcia [22] designed a residential energy consumption
scheduling framework for a real-time pricing environment. The
framework attempts to achieve a desired trade-off between
minimizing the electricity payment and minimizing the wait-
ing time for the operation of each appliance, and finally leads
to the reduction of both the users’ payment and PAR of the
grid. Logenthiran et al. [24] proposed a DSM strategy based
on load shifting technique, and a heuristic-based evolution-
ary algorithm was developed for minimizing the peak load
demandings. Hamid et al. [25] proposed a fuzzy multi crite-
rion decision-making system for DSM of industrial consumers.
Et-Tolba et al. [26] presented an architecture model for home
energy management system. Liu et al. [27] introduced a
multi-objective optimization problem for household energy
management with consideration of both energy cost and incon-
venience to the consumers. Veldman and Verzijlbergh [28]
focused on impacts of electric vehicles (EVs) to distribution
grids and assessed the financial impact of various EV charging
strategies on distribution grids. Taneja [29] was interested in
the effect of renewable generation on demand-side manage-
ment where he constructed a model of distributed generation
resource and assessed the role of substantial renewable gen-
eration resources in DSM. Ghazzai and Kadri [30] solved a
unified optimization problem in DSM to implement collab-
oration among mobile operators for maximizing their profits
while reducing the emission of carbon dioxide by networks.
Diamantoulakis et al. [31] used the Stackelberg game to model
the selfish interaction between the operators and the customers
for efficient DSM, where the customers energy consumption
behaviors are captured based on customers’ acceptance prices.
Zazo et al. [32] developed a realistic model to calculate a
robust price in the smart grid for reducing users’ monetary
expenses and offering production cost estimation according
to real demand variations, where convergent distributed algo-
rithm is introduced in this scenario. Wang et al. [33] set up
a Nash bargaining DSM framework to solve power distribu-
tion problem, achieving a balanced interest between energy
supplier and demand side user. Ye et al. [34] investigated a
real-time information based DSM system, where a central-
ized scheme and a game theoretical approach are proposed
to reduce energy generation cost and PAR in smart grid.
Gupta et al. [35] proposed a novel DSM strategy based
on particle swarm optimization (PSO) algorithm for reduc-
ing peak demand and utility cost. Li et al. [36] set up a
bidirectional infrastructure to deal with the DSM issue in a

distributed manner for enhancing search efficiency, where a
Newton approach is used for better Nash equilibrium and
dual fast gradient method is employed for relieving users’
discomfort.

B. GAME Theory and Genetic Algorithm

Game theory is effective to analyze the competitive or
collaborative behavior of these users and seek an equi-
librium where all users are individually satisfied [37].
Here, we introduce some related models and approaches.
Mohsenian-Rad et al. [38] presented a distributed demand-
side energy management system, allowing each user adjusts
response strategy according to the current total load and tar-
iffs in the power grid. Atzeni et al. [18] proposed a DSM
method focused on energy generation and storage units, where
users optimize their load through adjusting their genera-
tion and storage scheduling. The problem was formulated as
both a noncooperative game and a cooperative game [19].
Soliman and Leon-Garcia [15] presented an extension by
considering storage units, which provides a generalized treat-
ment of storage with a novel and more generalized cost
function. Belhaiza and Baroudi [20] proposed a noncooper-
ative game theoretic model to manage and optimize demand
reponse in smart grid. Atzeni et al. [39] proposed a novel bid-
ding strategy formulated as a generalized Nash equilibrium
problem including global constraints that couple the users’
strategies. A Time-of-use (TOU) pricing scheme was proposed
using game-theoretic approach in [40]. Rasoul et al. [41]
proposed a optimization method based on a game theory
and non-cooperative game to reduce load and consumption
in peak hours for DSM in smart grid equipped with PHEVs.
Forouzandehmehr et al. [42] modeled the power system using
differential equations and proposed a two-level differential
game framework. Bu and Yu [43] modeled and analyzed the
interactions between the retailer and electricity customers as
a four-stage Stackelberg game. Maharjan et al. [44] intro-
duced a heuristic approach to optimize the demand response
performance in a large population of consumers that includes
both residential and industrial consumers. Several studies
has also investigated consumer discomfort. For example,
Song et al. [21] introduced a repeated game framework and
a critical peak pricing scheme in order to reduce peak-
time billing and discomfort cost. Deng et al. [23] investi-
gated the residential energy consumption scheduling problem
and formulated a coupled-constraint game. GA is based on
the natural selection mechanism, which means each species
hunts for beneficial adaptations in a changeable environ-
ment. GA has been effectively applied in many optimization
issues in power system. Aminifar et al. [45] developed an
immunity GA to optimally place the phasor measurement
units (PMU) in power grid, employing the local and prior
knowledge related to the considered issue is the core idea.
Mousavian and Feizollahi [46] built a novel investment deci-
sion model to optimize the placement of PMU for full
observability of the electrical power system, where a problem-
specific GA is proposed to decide the optimal investment
strategy. Gerbex et al. [47] proposed a GA based method to
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locate multi-type FACTS devices in power network, where
the locations of the devices, the types and the values are opti-
mized. Hu et al. [48] proposed a multiobjective GA to extend
optimization issues for DSM, which takes the objectives from
two confliciting groups into account and offers compromise
solutions. Awais et al. [49] proposed a novel GA based DSM
algorithm in the smart grid, where residential load, commer-
cial load and industrial load are taken into consideration.
The load scheduling issue for different types of appliances
is transformed into a cost minimization problem in the smart
grid.

However, there is no study on the planning problem of user-
side energy storage units. We focus on load shifting and the
schedule of electric devices, including household appliances,
energy generation and energy storage units. A discomfort cost
is added to the cost function to measure the discomfort of
users due to shifting appliances. We present a energy storage
planning scheme based on GA. Also, a game theoretic energy
management approach is proposed.

III. SYSTEM MODEL

We consider a cognitive radio based smart grid commu-
nication system with multiple consumers. The communication
infrastructure is equipped with a three-layer hierarchical struc-
ture, consisting of HAN, NAN, and WAN. Cognitive radio
technology is used to guarantee a more efficient, reliable, and
economical communication infrastructure in the smart grid.
Cognitive radio communications in the license-free bands are
adopted for coordination of heterogeneous wireless technolo-
gies in the HAN. Meanwhile, cognitive radio communications
in the licensed band are adopted to access unused spectrum in
the NAN and WAN. In HAN, a cognitive gateway behaves as
a central node to connect between multiple smart appliances in
the smart grid for bi-directional communication. In the forward
direction, it can collect load information from smart appli-
ances, and then it delivers them to a destination out of the
HAN. At the same time, the cognitive gateway can distribute
information to smart appliances in the backward direction. In
NAN, load information from users is often transferred to the
central unit, where the cognitive gateway in NAN is regarded
as the cognitive radio access point to make single-hop links
with the cognitive gateway acting as data aggregators in HAN.
In WAN, the cognitive gateway in NAN acts as a cognitive
node to communicate with the control center connected to cog-
nitive radio base stations. Each consumer is equipped with a
smart meter (SM) which can schedule energy consumption,
and a central unit is deployed at the utility company. SMs are
connected to and exchange information with the central unit.
The system model is shown in Fig. 1. The list of symbols is
shown in Table I.

We divide one day into H time slots. For example, we
can assume H = 24, which means each time slot is 1 hour.
Let N denote the set of users, and the number of users
is n. We denote An as the set of appliances belonging to
user n ∈ N and An as the number of appliances owned by
user n. For each user n ∈ N and each appliance a ∈ An,
en,a = [e1

n,a, . . . , eh
n,a, . . . , eH

n,a] are the energy consumption

Fig. 1. System model of the smart gird.

vectors of appliance a, where eh
n,a represents the energy con-

sumed by appliance a during time slot h. For each user n,
gn = [g1

n, . . . , gh
n, . . . , gH

n ] and sn = [s1
n, . . . , sh

n, . . . , sH
n ] is the

vector of energy generation and energy storage, respectively,
where gh

n is the amount of energy generated at time slot h and
sh

n is the amount of energy stored at time slot h. Here, the
value of sh

n can be either positive or negative where a positive
sh

n means the storage device is charged during time slot h and
a negative sh

n means the storage device is discharged during
time slot h.

Therefore, the total load of user n during time slot h is
defined as

lhn =
∑

a∈An

eh
n,a + sh

n − gh
n. (1)

Appliances can be classified into two categories: shiftable
appliances and non-shiftable appliances. Non-shiftable appli-
ances cannot be scheduled while shiftable appliances can be
organized and shifted. The desired total daily energy consump-
tion of appliance a is denoted by En,a. Moreover, tstart,n,a and
tend,n,a are the starting and ending time of the interval that
appliance a can be scheduled in. We do not try to cut down
the daily energy consumption but concentrate on better orga-
nizing the shiftable appliances so as to reduce the cost. Hence,
to any appliance a ∈ An, the following conditions hold:

tend,n,a∑

h=tstart,n,a

eh
n,a = En,a, (2)

and

eh
n,a = 0, ∀h ∈ [1, tstart,n,a) ∪ (

tend,n,a,H
]
. (3)

Appliances are also restricted by maximum and minimum
operating power denoted by emax,n,a and emin,n,a. They express
the maximum and minimum amount of energy appliance
a ∈ An can consume during a single time slot if operating
such that

emin,n,a ≤ eh
n,a ≤ emax,n,a. (4)

Storage units provide users with more flexibility when
scheduling energy consumption. Users can store energy ahead
of time, and consume it during peak hours. Upper and lower
limits of the amount of stored energy should be set to char-
acterize a storage device. Let Smax,n and Smin,n denote the
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TABLE I
LIST OF SYMBOLS

maximum and minimum power level of the storage device
belonging to user n respectively. Then we have

Smin,n ≤
h∑

t=0

st
n ≤ Smax,n, ∀h ∈ {0, . . . ,H}, (5)

where s0
n is the initial power level of the storage device. The

charging and discharging profile of user n is denoted by sh
in,n

and sh
out,n respectively, while sh

n = sh
in,n − sh

out,n. A maximum
charging rate is denoted by smax

in,n which indicates the maximum
amount of energy the storage device of user n is able to store
during one time slot. Also, we denote a maximum discharging
rate by smax

out,n which indicates the maximum amount of energy,
the storage device of user n is able to discharge during one
time slot. Hence, we have

0 ≤ sh
in,n ≤ smax

in,n and 0 ≤ sh
out,n ≤ smax

out,n, ∀h ∈ {1, . . . ,H}.
(6)

Energy generators are equipped at users’ home. The gen-
erated energy can either flow to appliances to support their
energy consumption, or be stored in the storage device. The
generators fall into two categories: nondispatchable generators
and dispatchable generators. Nondispatchable generators, such
as solar panels and wind turbines, have fixed costs and users
cannot take any strategies on the amount of energy it produces.
Due to the uncertainty of these energy resources, we use the
discrete time Markov chain (DTMC) to model the renewable
energy [41].

Dispatchable generators, however, can schedule their energy
generation and have a varied cost accordingly. We denote the
cost function of dispatchable generators by Cg(gh

D,n), where
gh

D,n is the energy generated by the dispatchable generator
belonging to user n and Cg(0) = 0. The dispatchable genera-
tor has an upper limit on its energy production capacity. We
denote the maximum energy production capacity of the dis-
patchable generator belonging to user n as gmax,n. Then we
have

0 ≤ gh
D,n ≤ gmax,n, ∀h ∈ {1, . . . ,H}. (7)

The cost function includes three parts for every user: cost
charged by the providers, energy generation cost and discom-
fort cost. We assume that the cost function is an increasing
function of the total load, and is convex. A quadratic cost
function, e.g., as in [38], satisfies both of the above assump-
tions, and is also widely accepted to model the cost charged
by the providers to the consumers. We therefore consider a
quadratic cost function

Bh(Lh) = KhL2
h, (8)

where {Kh}H
h=1 ∈ (0, 1), and Kh changes over time.

We introduce a discomfort cost to reflect the discomfort of
users for shifting and rescheduling the appliances. The dis-
comfort cost indicates the difference between the scheduled
energy consumption pattern and the desired energy consump-
tion pattern. The desired energy consumption pattern of each
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appliance a ∈ An during time slot h is denoted by ēh
n,a. As the

higher is the difference between a user’s planned or expected
hour of operating an appliance and it’s actual operating hour,
the higher will be the discomfort. Moreover, if the user has to
wait longer than a certain duration to operate an appliance, the
rate of increase of the discomfort will be even higher. Thereby,
we model the discomfort cost as a quadratic function, which
is also a common practice. The discomfort cost can be defined
as follows.

Definition 1: The discomfort cost is defined as

D(en) =
H∑

h=1

∑

a∈An

ωn,a

(
ēh

n,a − eh
n,a

)2
, (9)

where en = (en,a)
An
a=1 and ωn,a represents the willingness of

user n to shift appliance a ∈ An. A large ωn,a indicates that
user n is less willing to shift appliance a for a lower billing.

Therefore, the cost function is defined as

C =
H∑

h=1

Bh
(
ln,h, l−n,h

) +
H∑

h=1

Cg

(
gh

D,n

)
+ KD · D(en), (10)

where KD is the weight factor for the discomfort cost. A
large KD indicates higher discomfort when shifting appliances.
l−n,h is the load vector of all the users except user n at time
slot h.

IV. GENETIC ALGORITHM FOR ENERGY

STORAGE UNITS PLANNING

As mentioned before, storage units can help reduce the bill
for the users by discharging during peak hours. However, the
costs for initial installation may far exceed the billing reduc-
tion over a long time. Therefore, it becomes important to
assess whether it is worthy for a specific user to install storage
units and what size of the storage units is the most econom-
ical. In this section, we consider distributed energy storage
units owned by residential users and analyse the planning
problem balancing the cost in the planning period and during
its use. Distributed energy storage unit can be considered as
both a power consumer and a power producer. The storage size
can not be dynamically changed based on everyday or every
hour consumption, but the planning level optimization problem
is necessary for optimizing a rather long term investment
where the size is determined based on, e.g., peak renew-
able energy generation levels, average energy consumption
levels etc. Despite optimizing the size of the storage unit,
the dynamic and stochastic load characteristics (instantaneous)
make it necessary to optimize the DRM performance at a finer
time granularity. For a finer granularity DSM optimization
(which can be considered as the dispatch level) the storage
size is given, and one optimizes over through load shift-
ing by use of local renewable generation, local storage and
also power dispatch from the grid, together. We explicitly
specify that the grid network architecture is given, and the
load demands and power production are known in statis-
tics, characterized by representative growing rates and daily
variations [50].

In general, the planning problem can be formulated in terms
of minimization of a cumulative cost function in the grid as
follows:

min fobj(X,C)

s.t. ψ(X,C) = 0

η(X,C) ≤ 0, (11)

where fobj is a cumulative cost we try to minimize in the
grid, X is the system state vector, and C is the control vec-
tor. The grid network structure is assumed to be fixed and
the branches between network nodes are known to us. The
evaluation of the cumulative cost function mainly depends on
the deployment and size of distributed energy storage units.
Thus, every solution could be coded by a vector, whose size
is equal to the amounts of network nodes. Each element of
the solution vector contains information about whether or not
to deploy the storage unit. 0 represents no distributed energy
storage unit is installed in the node. 1, 2, . . . , kn represent the
size of the energy storage unit installed in the node for every
user. kn is an integer, n ∈ N . The deployment and the size
of distributed energy storage units are stored in C, which is
the output of the optimization procedure. Such a non-linear
and constrained optimization problem can be solved using
GA. However, the daily variations in energy management may
result in high computation complexity with GA. Hence, we
propose a hybrid approach in this paper including GA and an
inner algorithm for energy management optimization which is
introduced in detail in the following sections. The proposed
approach is presented in Algorithm 1. The space complexity
of Algorithm 1 is O(population). The GA randomly gener-
ates an initial population whose individuals are characterized
by the pre-assigned size of distributed energy storage units.
Once the initial population is created, the inner algorithm
for energy management optimization is performed. The inner
optimization output is used to calculate the fitness function for
every individual in the population. If GA does not converge, it
will generate a next population. Selection, crossover and muta-
tion are performed in this phrase. In selection step, we adopt
the “remainder stochastic sampling without replacement” strat-
egy. In crossover step, we use “uniform crossover”, where the
crossover happens with a probability of 0.5. In mutation step,
all the elements will choose a different value in a defined set
to mutate in a small probability.

Green energy storage units are assumed to be integer mul-
tiples of a base unit. Assuming the base unit as BU. The GA
fitness function includes costs of initial installation, costs of
network upgrading and the total cost during daily use. The
fitness function is given as

FGA = CDES + CUP + Cdaily, (12)

where

CDES =
∑

n∈N
PrBU · knPBU, (13)

CUP =
nbranches∑

b=1

C0b, (14)

Cdaily =
M∑

m=1

∑

n∈N
αn

m−1Cm,n, (15)
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Algorithm 1: Energy Storage Units Planning Algorithm

Input: PrBU, PBU, nbranches, {C0b}nbranches
b=1 , {αn}n∈N , and

Xhis,m,n
Output: k∗

1 calculate the upper bound with the energy management
algorithm;

2 i = 0;
3 generate initial population;
4 repeat
5 if i ≥ 1 then
6 generate the next population;
7 end
8 inner optimization with the energy management

algorithm for each individual;
9 evaluate fitness function for each individual;

10 i = i + 1;
11 until GA converges;

where CDES denotes the aggregated initial installation cost of
all the users n ∈ N , PrBU is the installation price of base
unit and PBU is the size of the base unit. CUP is the network
upgrading cost, nbranches is the total number of branches in
the grid and C0b denotes the cost for upgrading branch b.
The details on the upgrading cost evaluation can refer to [51].
Cdaily denotes the aggregation of daily costs of all the users
n ∈ N during an M-day period. The cost of user n in day m,
Cm,n, can be calculated using Eq. (10) with the history energy
consumption patten Xhis,m,n. 0 < αn < 1 shows the degree in
which the energy consumption patten of earlier days is valued
to user n.

The GA is constrained by the maximum number of base
units which can be deployed for one user, i.e., for any n ∈ N ,
it should satisfy kn ≤ Kmax, Kmax is constrained by economic
and technical conditions. Smaxuse,n is denoted as the maximum
potential usage of each storage in the energy management
algorithm. Therefore, we can write the upper bound of the
GA as

kn ≤ min
(
Kmax, Smaxuse,n/BU

)
, ∀n ∈ N . (16)

For the individuals in GA, we use Algorithm 2 to study the
inner optimization for energy management each day and then
calculate the fitness function to evaluate the termination crite-
rion of the GA. Evaluating fitness function is actually a process
of looking for the minimal fitness function, where the newly
calculated fitness function needs to be continuously compared
with the minimum fitness function calculated before.The GA
ends with the termination criterion that the best fitness function
value remains constant over an assigned number of genera-
tions, or when the maximum number of iterations is reached.
The output of the GA indicates the optimal size of energy
storage device for every user.

Having considered distributed energy storage units owned
by residential users and analyzed the planning problem to
reduce bills, we are motivated to take users’ privacy into

consideration. In the next section, we propose a game-theory-
based distributed energy management algorithm concerning
the privacy issues.

V. GAME THEORETICAL APPROACH FOR

ENERGY MANAGEMENT

We build a game-theory-based distributed energy manage-
ment model, where users adjust their energy consumption
strategies to achieve the Nash equilibrium in the game theory.
It is designed to be beneficial for every user’s own interest and
privacy as well as cutting down peak load in the grid. In this
section, we define and derive Nash equilibrium, and introduces
a distributed energy management algorithm to obtain the Nash
equilibrium of the game based on proximal decomposition
algorithm and the best response algorithm.

A. Problem Formulation

We define the strategy vector of each user n as

xn = (en, gn, sn), (17)

and the corresponding strategy profile at time slot h of user
n is

xh
n =

(
eh

n, gh
n, sh

n

)T
. (18)

The feasible energy scheduling profile set of user n can thus
be expressed as

Qn = {xn : Constraints(2), (3), (4), (5), (6) and (7),

∀h ∈ H}. (19)

For convenience, we rewrite the total load of user n during
time slot h (Eq. (1)) in a vector form as

lhn = −gh
ND,n + δl

Txh
n, (20)

where the auxiliary vector δl = (1, . . . , 1,−1, 1,−1)T. Also,
the discomfort cost (Eq. (9)) is rewritten as

D =
H∑

h=1

(
x̄h

n − xh
n

)T
Wn

(
x̄h

n − xh
n

)
, (21)

where x̄h
n = (ēh

n,1, . . . , ēh
n,a, . . . , ēh

n,An
, 0, 0, 0) is the desired

energy scheduling pattern of user n in time slot h and where
the (An + 3)-dimensional diagonal matrix Wn is formed as
Wn = Diag(ωn,1, . . . , ωn,An , 0, 0, 0).

Then, the cost function of user n can be written as

C(xn, l−n) =
H∑

h=1

Kh

(
lh−n − gh

ND,n + δl
Txh

n

)(
−gh

ND,n + δl
Txh

n

)

+
H∑

h=1

Cg

(
δg

Txh
n

)
+ KD

H∑

h=1

(
x̄h

n − xh
n

)T

× Wn

(
x̄h

n − xh
n

)
, (22)

where l−n is the load of all other users except user n, lh−n is the
aggregated load of all other users except user n at time slot h,
and δg is an ausiliary where an auxiliary vector is introduced
as δg = (0, . . . , 0, 1, 0, 0)T.
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To this end, the elements of the energy scheduling game
among users is defined as follows.

• Players: All users in set N
• Strategies: Each user n ∈ N selects its green energy

scheduling vector xn ∈ Qn to minimize its cost
• Payoffs: f (xn, l−n) = C(xn, l−n) for each user n ∈ N .

B. Nash Equilibrium Derivation

In order to analyze the properties of the Nash equilibrium
of the proposed energy scheduling game, we reformulate the
game as a variational inequality (VI) problem [28]. A VI
problem is defined as follows.

Definition 2: Given a closed and convex set F : K ⊆ R
n and

a mapping F : K → R
n, the VI problem, denoted as VI(K,F),

consists of finding a vector x∗ ∈ K (called the solution of the
VI) such that

(
y − x∗)TF

(
x∗) ≥ 0. (23)

The following Lemma describes the equivalence between a
game and a VI problem.

Lemma 1: Given the game G〈Q, f 〉, suppose that for each
player n

i) the strategy set Qn is closed and convex;
ii) the payoff function fn(xn, x−n) is continuously differen-

tiable in x and convex in xn for every fixed x−n.
Then, the game G is equivalent to VI(Q,F), where F(x) =

(∇xn f (x))Qn=1.
Therefore, the equivalence between the energy scheduling

game and the VI problem is given in the following theorem.
Theorem 1: The energy scheduling game is equivalent to

the VI problem VI(Q,F), where

F(x) = (∇xn f (x)
)Q

n=1. (24)

Proof: The Hessian matrix of the payoff function can be
written as follows with block elements

∇2
x

h1
n x

h2
n

f (xn, l−n) = δgδg
TC′′

g

(
δg

Txh1
n

)

+ 2Kh1δlδl
T + 2KDWn, h1 = h2

∇2
x

h1
n x

h2
n

f (xn, l−n) = 0, h1 �= h2, (25)

where 0n denotes the n-dimension zero matrix. Since all the
eigenvalues are nonnegative, the Hessian matrix is positive
semidefinite. Thus, the payoff function f (xn, x−n) is continu-
ously differentiable in x and convex in xn for every fixed x−n.
Also, the strategy set Qn of every user n is evidently closed
and convex. According to Lemma 1, we can obtain the VI
reformulation.

Theorem 2: The energy scheduling game has a nonempty
and compact solution set.

Proof: Following from the existence of a solution of the VI,
in addition to conditions i) and ii) in Lemma 1, if strategy set
Qn of each player n is compact, then the game has a con-
vex and nonempty solution set. With the first two conditions
proved before, since the constraints are all defined as linear
inequalities, the third condition readily satisfies.

Next, we will discuss about the uniqueness of the Nash
equilibrium. The Nash equilibrium is not unique. However, all

Algorithm 2: Distributed Energy Management Algorithm

Input: {εi}∞i=0, {ρi}∞i=0, and τ > 0
Output: x∗

1 choose any feasible starting point x(0); set i = 0;
2 repeat
3 Choose any feasible start point s(0); j = 0;
4 repeat
5 For each user n,;

6 y(j+1)
n = argmin fn(yn, l−n)+ τ

2 ||y(j)n − x(i)n ||;
7 j = j + 1;
8 until ||l(j) − l(j−1)|| < 10−2;
9 Find z(i) such that ||z(i) − y(j)|| ≤ εi;

10 x(i+1) = (1 − ρ)x(i) + ρnz(i);
11 i = i + 1;
12 until ||l(i) − l(i−1)|| < 10−2;

the Nash equilibriums share some properties. For each user
n, given any two optimal strategy vector x∗

n = (e∗
n, g∗

n, s∗
n),

x∗∗
n = (e∗∗

n , g∗∗
n , s∗∗

n ), the following are true

H∑

h=1

Cg
(
g∗

n,h

) =
H∑

h=1

Cg
(
g∗∗

n,h

)
, (26)

e∗
n,h + s∗

n,h − g∗
n,h = e∗∗

n,h + s∗∗
n,h − g∗∗

n,h, ∀h ∈ {1, . . . ,H},
(27)

Dn
(
e∗

n

) = Dn
(
e∗∗

n

)
. (28)

Thus, for each time slot h, the total load of user n, lhn is
constant among all the Nash equilibrium solutions. Then, the
aggregated load of all other users except user n, lh−n is constant
among all the Nash equilibriums. As a result, although each
user has an infinite number of optimal strategy vectors to be
chosen, all the strategies lead to the same value in payoff
function.

C. Distributed Implementation of Energy Management

We now focus on how to reach unique Nash equilibrium of
our energy scheduling game. Best response algorithms are usu-
ally utilized to obtain the Nash equilibrium solutions of games.
However, the strict or strong convexity of the payoff func-
tions, which is required for the convergence in best response
algorithms, is not satisfied in our case. In order to overcome
this defect, we introduce the proximal decomposition method
whose convergence is guaranteed under some milder condi-
tions [52]. We consider a regularization of VI(K,F), given
by VI(K,F + τ(I − y)), which is strongly monotone with a
sufficiently large τ . The regularized VI is equivalent to the
following game.

min
xn

fn(xn, x−n)+ τ

2

∥∥∥xn − x(i)n

∥∥∥

s.t. xn ∈ Qn. (29)

The solution of the game can be computed using the best
response algorithm. Hence, based on the proximal decomposi-
tion algorithm and together with the best response algorithm,
Algorithm 2 is proposed to solve our problem.
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TABLE II
INFORMATION EXCHANGE IN GREEN ENERGY

MANAGEMENT IMPLEMENTATION

Here, we should guarantee that
∑∞

i=0 εi < ∞ and ρi ∈
[Rm,RM] with 0 < Rm ≤ RM < 2. As a special case, we can
set εi = 0 and ρi = 1,∀i for simplicity.

Now our concern is the value of τ . The following theo-
rem shows the relationship between the value of τ and the
convergence of Algorithm 2.

Theorem 3: Algorithm 2 converges when

τ > (N − 1)(A + 3) maxKh. (30)

Proof: We denote F(x) = (∇xn f (x))Qn=1 and let Jxn Fn(x) be
the Jacobi matrix of F(x) (i.e., the Hessian matrix of fn). The
aforementioned algorithm globally converges if the matrix

ϒF,τ = ϒF + τ I (31)

is a P-matrix [23]. Here,

[ϒF]ij =
{
αmin

i , i = j
−βmax

ij , otherwise (32)

where

αmin
i = inf

z∈Q
λleast

(
JxiFi(z)

)
and βmax

ij = sup
z∈Q

∥∥Jxi Fj(z)
∥∥ (33)

with λleast(A) being the least eigenvalue of A.
For our problem, we can write the Jacobi matrix J(x) as

Jnn(x) = 2�T
l K�l + �T

g DC′′
g (xn)�g + 2KDWn

Jnm(x) = �T
l K�l, n �= m (34)

where we introduce two H-dimensional diagonal matrixes K
and DC′′

g (xn) such that K = Diag(K1, . . . ,KH) and DC′′
g (xn) =

Diag(C′′
g(x

1
n), . . . ,C′′

g(x
H
n )), and where two auxiliary matrixes

are introduced that �l = [IH, . . . , IH, −IH, IH,−IH] and
�g = [0H, . . . , 0H, IH, 0H, 0H]. Then, we have αmin

i ≥??0
and βmax

ij ≤ (A + 3) maxKh. Hence, in order to meet the
requirement that ϒF,τ is a P-matrix, it should hold that
τ > (N − 1)(A + 3) maxKh.

Facilitated with bidirectional communications, smart meters
act as energy schedulers. The information exchanged in the
DSM mechanism can be sorted by transfer direction and is
listed in Table II. Fig. 2 shows how the proposed energy man-
agement mechanism is implemented based on Algorithm 2. 1©
represents information flow from central unit to users in the
initialization phase. 2© and 4© represent information flow from
user n to other users in the initialization phase and operational
phase, respectively. 3© and 5© represent information flow form
other users to user n in the initialization phase and operational
phase, respectively. We discuss the implementation under the

Fig. 2. Implementation of DSM.

Fig. 3. Total cost for 100 users among different deployment cases of energy
storage units.

condition ε = 0 and ρ = 1 in order to ensure that no user’s
scheduling details need to be communicated to the grid. The
implementation of Algorithm 2 can be divided into two phases:
initialization phase and operational phase. In the initialization
phase of the outer loop, the central unit chooses proper τ and
broadcasts {Kh}H

h=1 and τ to every user. Meanwhile, each user
randomly chooses an initial strategy x(0)n . As the mechanism
then goes to the initialization of the inner loop, each user
randomly initializes z(0)n as the initial strategy of the regular-
ized game and announces its corresponding load. Then the run
time phase of the inner loop begins. In the operational phase,
every user solves (29) for current optimal energy consump-
tion pattern according to the collected load information of all
users and their own energy consumption pattern constraints.
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Fig. 4. Daily storage usage for 100 users.

Fig. 5. Convergence of outer loop iterations of Algorithm 2.

Fig. 6. Aggregated load comparing among different amount of energy
generation and storage units.

Then, the current total load information is broadcast to all
users again. Users who have acquired new load information,
update optimal energy consumption pattern and broadcast in

Fig. 7. Total cost comparing among different number of energy generation
and storage units.

TABLE III
PAR AND TOTAL COST FOR 100 USERS WITH DIFFERENT

NUMBER OF GENERATION AND STORAGE UNITS

Fig. 8. Energy consumption during a single-hop operation against the number
of cognitive radio nodes.

real-time. The Nash equilibrium is reached when the update
does not change compared to its previous value. Users only
need to broadcast the aggregated value and not the detailed
scheduling vectors of each of their appliances. This, not only
protects users privacy to a certain extent, but also reduces the
communication overhead significantly.

VI. NUMERICAL RESULTS

In this section, we present simulation results and study
the performance of our proposed DSM mechanism. We use
the MATLAB optimization toolbox, and the genetic algorithm
toolbox as optimization tool. All the simulations are conducted
using MATLAB in a Sony server equipped with 4-core CPU,
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Fig. 9. Comparison between 100 users’ different energy consumption patterns. (a): Aggregate load without DSM mechanism. (PAR = 6.27) (b): Aggregate
load with our proposed DSM mechanism. (PAR = 4.38) (c): Aggregate load with day-ahead DSM mechanism. (PAR = 5.48).

16 GB memory, and Mango DB, which can enable a stable
simulation environment. Computational complexity is defined
as nouter∗ninner∗N∗noptimize, where nouter ≤ 2 and ninner ≤ 102.
In the first part, the performance of the energy storage plan-
ning algorithm is presented. Subsequently, a detailed analysis
of the energy management algorithm is presented in the sec-
ond part. We firstly present the performance of the whole
system and for individual consumers. Then the impact of the
number of energy generation and storage units is analysed.
Besides, how the value of discomfort weighting coefficient
affects the performance of the proposed DSM mechanism, is
also analysed.

We consider a scenario where one day is divided into
H = 24 time slots and there are N = 100 users in our
system. Each user has between 10 to 20 nonshiftable appli-
ances, such as refrigerator and lightning, and also 10 to 20
shiftable appliances, which may include washing machine,
dishwasher, PHEV etc. Users randomly select their appliance
set while considering that higher energy consumption is more
likely to occur in day-time hours. The pricing scheme involves
two times: day-time hours, i.e., from 8:00 in the morning to
12:00 at night and night-time hours, i.e., from 12:00 at night to
8:00 in the next morning [38]. The grid coefficient Kh is such
that Kday = 1.5Knight. The initial average price is 0.1$/kWh.
We assume that all the dispatchable energy generation units
are the same type and a linear cost function Cg(g) = Kgg
is adopted. The maximum energy production capacity of a
single generation device gmax is set as 0.4kWh. Similarly, stor-
age units are assumed to be lithium-ion batteries [53]. Each
user’s storage device is assumed to be the multiple of a base
unit. The maximum power level of each base unit is set as
0.024kWh and the minimum power level Smin is assumed to
be 0kWh.

A. Performance of Storage Planning

In this section, we compare the total cost after energy
storage planning and without storage deployment. The long-
term energy consumption patterns of each user is generated
respectively according to a set of 20 patterns with similar
characteristics subjected to a uniform distribution.

As shown in Fig. 3, although a relatively large cost is
devoted at first in the case with storage planning, less costs

Fig. 10. PAR for each user in different DSM mechanisms.

are paid in the subsequent days. As a result, the total cost
in the case with energy storage planning become less than
the other case after 169 days. In the long run, Our proposed
storage planning scheme could save up nearly $54 for 100
users per day, and the sequential quadratic programming (SQP)
based storage planning scheme [50] could save up tp nearly
$36 for 100 users per day. Considering a ten-year lifetime,
the case with our proposed storage planning scheme for 100
users would save up to nearly $197100 in total, which is 33%
higher than SQP based storage planning. Fig. 4 illustrates the
energy storage usage for 100 users during one day. We can
observe that energy storage units gradually charge to the max-
imum level and discharge in the peak hours so that the cost
is effectively reduced.

B. Impact of Generation and Storage Units

In this subsection, we compare the simulation results in six
cases with different amount of energy generation and storage
units. NS and NG are denoted as the amount of energy storage
and generation units, respectively. We investigate 6 different
cases when NS and NG are set to 0, 5, 10. Fig. 5 shows the
relationship between the number of outer loop iterations and
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Fig. 11. The comparison of aggregate load between different active users. (�PAR=decrease in PAR).

Fig. 12. PAR vs. Discomfort weighting coefficient KD.

optimized total cost when the amount of energy storage and
generation units differs. It demonstrates that these 6 cases tend
to converge after twice iterations. Fig. 6 shows the aggregated
load at each time slot when the number of users equipped
with storage and generation units varies. Compared among
different number of storage units with the same number of
generation units, we can see that peak load decreases and the
trend tends to be smooth when the number of storage units
increases. Similarly, the increase in the number of generation
units when the number of storage units is fixed, decreases
the peak load and the whole trend tends to be smooth across
the day. Fig. 7 shows some similar characteristics in total cost
when the number of energy generation and storage units varies.
In general, an increasing number of energy generation and
storage units both lead to a lower cost.

C. PAR Analysis for DSM

The PAR and total cost is given in TABLE III. It can be
seen that when the number of storage units is fixed, the PAR
and the total cost reduce with increase in the number of gen-
eration units. Also, with increase in the number of storage
units, both PAR and total cost reduce, when the number of
generation units is fixed. Our results do numerically verify

that the number of energy generation and storage units has a
great impact on both PAR and total cost.

D. Cognitive Radio Communication Analysis

Fig. 8 illustrates energy consumption during a single-hop
operation against different numbers of cognitive radio nodes,
where the link success probability (LSP) varies from 60% to
90%. In Fig. 8, we can see that the higher LSP is, the lower is
energy consumption. As the number of cognitive radio nodes
increases, energy consumption during a single-hop operation
reduces further. When the number of cognitive radio nodes
reaches 120, energy consumption during a single-hop opera-
tion with different LSP decreases to the lowest, around 0.07 J.
Thus, the utilization of cognitive radio technology in the smart
grid communication network can effectively reduce energy
consumption.

E. PAR Analysis for DSM

Fig. 9(a) illustrates aggregate load without DSM mecha-
nism, Fig. 9(b) illustrates aggregate load with our proposed
DSM mechanism, and Fig. 9(c) illustrates aggregate load with
day-ahead DSM mechanism [18]. In the scenario without
DSM mechanism, users adopt the initial expected energy con-
sumption pattern directly without taking control over energy
generation and storage. Day-ahead DSM mechanism [18] pro-
vides optimal energy generation and storage strategy, where
the optimization process is modeled as a noncooperative
Nash game based on the proximal decomposition algorithm.
A distributed and iterative scheme converging to the Nash
equilibrium is presented, which allows minimum information
exchange and protects users’ privacy. Comparing the results
in Fig. 9(a) and Fig. 9(b), we can see that the peak load
has been greatly reduced while the off-peak loads generally
increase at different levels after our proposed DSM mecha-
nism is deployed. The PAR value of 100 users without DSM
mechanism is 6.27, and is reduced to 4.38 after using our
proposed DSM mechanism. In fact, due to the existence of
local energy generation device, both aggregate load and peak
load from the grid are reduced. Similarly, in Figs. 9(b) and
9(c), it is clear that the reduction in PAR using our proposed
DSM mechanism is much higher than the case of day-ahead
DSM (16.1% higher). Our proposed DSM mechanism shows
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Fig. 13. Comparison between 100 users’ different energy consumption patterns. (a): Total cost without DSM mechanism (total cost = $633.9). (b): Total
cost with our proposed DSM implementation (total cost = $491.7). (c): Total cost with day-ahead DSM mechanism (total cost = $557.2).

superior performance in PAR compared to both the cases:
without DSM and the day ahead DSM.

The PAR for each user without DSM mechanism, with our
proposed DSM mechanism, and with day-ahead DSM mech-
anism is shown in Fig. 10. The average PAR without DSM
mechanism and day-ahead DSM mechanism are 6.38 and 5.48,
respectively, after deploying our proposed DSM mechanism,
the average PAR reduces to 4.37, a reduction of about 31.5%.

Fig. 11 illustrates the aggregate load among different active
users. The number of active users are set as 5, 15, 25 among
our 100-user capacity scenario, which corresponds to hav-
ing 5%, 15%, and 25% of active users, respectively. From
Fig. 11, we see that as the number of active users increases, the
aggregate load curve becomes progressively more flattened,
reducing the load during peak hours and raising the load dur-
ing valley hours. Specifically, the initial PAR value decreases
from 4.38 to 4.03 with 5 active users (i.e., 8.1% less), to 3.69
with 15 active users (i.e., 15.6% less), to 3.46 with 25 active
users (i.e., 20.1% less). It means the more active users are, the
higher is the PAR reduction.

We further investigate the impact on the grid when con-
sumers have different preferences on whether or not to shift
their appliances for a better price. Firstly, each user’s willing-
ness on shifting a certain appliance ωn,a is chosen randomly
with an average of 0.5, so that the discomfort weighting coeffi-
cient KD of each user can directly reflect the user’s preference.
We run our proposed algorithm when KD is set to different val-
ues and three cases are investigated with different amounts of
energy generation and storage units. Fig. 12 shows that in all
the three cases, PAR increases when KD increases and when
we choose a sufficiently high value of KD, PAR tends to float
around 4.46, 4.60 and 4.64, for the combinations NS = 10 and
NG = 10, NS = 10 and NG = 0, and NS = 0 and NG = 0,
respectively. That’s because when users show less willingness
to shift their appliances, there is little scope left to reduce PAR
by shifting the load.

F. Cost Analysis for DSM

Fig. 13 presents total cost without DSM mechanism, with
our proposed DSM mechanism, and with day-ahead DSM
mechanism, respectively. Total cost during peak hour is greatly

Fig. 14. Daily payment for each user in different DSM mechanisms.

reduced with our proposed DSM implementation due to shift-
ing of the load to other time slots, and reasonable utilization
of energy generation and storage units also offer help to cut
down the total cost. In Fig. 13(a) the total cost in one day is
$633.9. It reduces to $491.7 in Fig. 13(b) (i.e., 22.43% less),
and reduces to $507.2 in Fig. 12(c) (i.e., 19.99% less). Our
proposed DSM mechanism has the lowest cost, compared to
the day-ahead DSM mechanism and without DSM mechanism,
thus greener.

Since each user also aims to reduce its peak load to save the
cost as does the system, the proposed DSM mechanism based
on Algorithm 2 is not only beneficial to the whole system for
the reduction of total cost and PAR but also helpful to each
user. Fig. 14 illustrates daily payment for each user without
DSM mechanism, with our proposed DSM mechanism, and
with day-ahead DSM mechanism, respectively. We can see
that all users have a reduction in their payment, as the average
cost before scheduling is $6.34 which decreases to $4.92, i.e.,
22.43% with our proposed DSM mechanism. In day-ahead
DSM mechanism, the average cost for every user is $5.07,
i.e., 20.03% less than what would have been incurred by the
user’s initial desired energy consumption pattern without DSM
mechanism. The cost reduction brought by the day-ahead DSM
mechanism is smaller than our proposed DSM mechanism.
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Fig. 15. Weighted discomfort cost for each user with our proposed DSM
mechanism.

Fig. 15 shows that users’ weighted discomfort costs vary
from 0.005 to 0.013 and just an average of 0.008 unit of dis-
comfort cost is produced with our proposed DSM mechanism.
Our proposed DSM mechanism can effectively reduce daily
payment and PAR for every user without causing significant
discomfort for them, thus greener.

VII. CONCLUSION

In this paper, we first establish a cognitive radio based
communication infrastructure in smart grid for green home
energy scheduling which accommodates various household
appliances, energy generation and storage units. Then, GA is
proposed for the planning problem of energy storage units in
DSM, where the cost function consists of the billing, genera-
tion costs and discomfort costs. Moreover, we develop game
theory based energy management algorithm without the leak-
age of any user privacy in DSM. Finally, extensive simulations
are conducted to evaluate the performance of our proposed
DSM mechanism, from the aspects of performance of storage
planning, impact of generation and storage units, cognitive
radio communication analysis, PAR analysis for DSM, and
cost analysis for DSM.
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