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Abstract
The degrees of freedom that confer to strongly correlated systems their many intriguing properties
also render them fairly intractable through typical perturbative treatments. For this reason, the
mechanisms responsible for their technologically promising properties remain mostly elusive.
Computational approaches have played a major role in efforts to fill this void. In particular,
dynamical mean field theory and its cluster extension, the dynamical cluster approximation have
allowed significant progress. However, despite all the insightful results of these embedding
schemes, computational constraints, such as the minus sign problem in quantum Monte Carlo
(QMC), and the exponential growth of the Hilbert space in exact diagonalization (ED) methods,
still limit the length scale within which correlations can be treated exactly in the formalism. A
recent advance aiming to overcome these difficulties is the development of multiscale many body
approaches whereby this challenge is addressed by introducing an intermediate length scale
between the short length scale where correlations are treated exactly using a cluster solver such
QMC or ED, and the long length scale where correlations are treated in a mean field manner. At
this intermediate length scale correlations can be treated perturbatively. This is the essence of
multiscale many-body methods. We will review various implementations of these multiscale
many-body approaches, the results they have produced, and the outstanding challenges that
should be addressed for further advances.

1. Introduction

Strongly correlated systems include some of the most technologically promising materials of our time. To
harness their significant promise, understanding the fundamental mechanisms responsible for their
intriguing properties is essential [1–5]. This understanding remains a challenge for the condensed matter
community despite several decades of intense effort. For instance, although the discovery of high
temperature superconductors dates back to 1987 [6], the underlying superconducting mechanism remains
the subject of intense research activity. Following their discovery, the Hubbard model was postulated to
contain the ingredients necessary to explain the properties of high temperature superconductors and their
low-energy excitations [7]. But despite its simplicity, an exact solution of the Hubbard model beyond one
dimension remains elusive [8, 9]. Therefore, numerical methods have played a crucial role. These methods
are however constrained by the minus sign problem for quantum Monte Carlo (QMC), or by the
exponential scaling of the Hilbert space for exact diagonalization (ED), to relatively small system sizes.
Embedding schemes have emerged as an important avenue to treat the problem in the thermodynamic
limit. These schemes map the lattice problem onto an impurity, for the case of dynamical mean field theory
(DMFT), or onto a cluster for the case of its cluster extensions, dynamical cluster approximation (DCA) or
cellular DMFT, embedded into a mean field [10, 11]. Embedding approaches allow the exact treatment of
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short length scales at the level of the cluster or the impurity, and the treatment of longer length scales at the
mean field level. Multiscale many body (MSMB) methods follow this logic to its natural next step by
incorporating between the previous two length scales, an intermediate one at which correlations are treated
with diagrammatic perturbation theory [12].

In general, the difficulty in understanding correlated systems lies in the fact that there are no simple
theories to explain both the weak interaction limit of the metallic state and the strong interaction limit of
the Mott insulating phase [13, 14]. The most successful theory of interacting fermions is the Fermi liquid
theory [15–17]. The basic underlying assumption is that the interaction can be turned on adiabatically
from the non-interacting free fermions limit. The consequence is that the quantum numbers of the
non-interacting fermions remain unchanged. Electrons can be treated as quasi-particles in a rather stable
state with a lifetime that becomes very long for those states near the Fermi level.

The Fermi liquid theory is a very efficient description of interacting fermions in a metallic phase
[15–17]. It is applicable to almost all metallic phases, except for special circumstances such as the notable
exception of one-dimensional systems. The theory owes its simplicity to being an effective renormalized
single particle theory. Once the system is beyond the simple single particle description, there is no universal
prescription to handle the competition or cooperation between the different degrees of freedom and the
interplay between the kinetic and the potential energies. Precisely for this reason, numerical methods are
often inevitable for practical calculations.

Widely used mean field methods factorize the interaction terms in the Hamiltonian to reduce the
problem to an effective single particle theory in a static potential. The mean field, Hartree–Fock (HF),
approximation often provides reasonable results [18–21], but its shortcomings are also obvious, in
particular for intermediate interaction strengths where quantum fluctuations are large. The HF
approximation quenches the quantum or temporal fluctuations completely. This may be a reasonable
assumption if the interactions are overpowered by the kinetic energy terms. However, for many physical
realizations of strongly correlated systems, perhaps the most well known one being the cuprate
superconductors, the interaction is of the same order of magnitude as the bandwidth. Naively factorizing
the interaction term to suppress all the quantum fluctuations is questionable at best. Indeed, there is
currently no simple mean field theory that can explain most features of the cuprate superconductors.
Understanding the metallic phases beyond Fermi liquid theory is key for understanding broken symmetry
phases, such as d-wave superconducting pairing in the cuprates. While one can construct a phase with no
explicit broken symmetry and use the mean field method to understand the effective theory, this always
involves fractionalized particles and strong constraints such as those of gauge theories [22].

Beyond mean field theory, there exists a plethora of techniques based on weak coupling expansion. They
are typically based on low order perturbative methods, such as second order perturbation theory, or on
selecting a certain class of diagrams and summing them up to infinite order. A typical example is the
random phase approximation (RPA), which selects the class of ladder diagrams and sums them up to
infinite order [23–26]. A more sophisticated approach is to sum a large class of diagrams in an iterative way.
For example, parquet diagrams are generated when second order diagrams are inserted iteratively into the
interaction vertex. This generates a class of diagrams that can only be separated into two disconnected
pieces by cutting at least two fermion lines [27–29]. The advantage of the parquet approach compared to
second order perturbation theory is in the ability to sum up a large variety of diagrams including those at
infinite order. This, in principle, allows the instability towards a broken symmetry to be captured [30–32].
Its main advantage over RPA is in its unbiased sum of diagrams in different scattering channels to enable
the study of the competition among different broken symmetries.

Instead of using a diagrammatic expansion approach, the DMFT maps the strongly correlated lattice
onto an impurity site embedded in a self-consistently determined effective medium. The interest in the high
spatial dimension limit of strongly correlated models in the late 80’s and early 90’s led to the understanding
that in this limit, strongly correlated models with local interactions can be greatly simplified. This is due to
the fact that an expansion in terms of the hopping amplitude in infinite dimension leads to the vanishing of
all diagrams except the local ones, and, for a translationally invariant system, the model loses all spatial
dependence. This simplification led to the DMFT.

DMFT remains the subject of active research efforts, particularly because there is no universal quantum
impurity solver. Various methods have been proposed over the past few decades. These include
semi-analytical methods based on perturbation theory or modified mean field theories. The more well
known methods include the iterative perturbation theory and the local moment approximation. Numerical
approaches include various kinds of QMC and ED methods. Recently, density matrix renormalization
group and matrix product state methods have also been explored. Quantum computing algorithms for
solving the quantum impurity problem have been proposed recently [33–36]. After all, solving even a single
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impurity is a non-trivial problem, as the mean field hybridization function is not given by a simple form
that can allow an analytical solution.

It is worth noting that the DMFT can be viewed as a formal generalization of the coherent potential
approximation (CPA) proposed by Soven in the 60’s [37, 38]. The CPA has since been extensively used for
studies of random disorder models with negligible interactions, in particular for random alloys. Various
extensions of CPA have been proposed over the years. The earliest one that goes beyond the single site
approximation is the molecular CPA [39, 40]. It embeds the cluster into an effective medium that possesses
the same structure as the cluster itself. It thus generates an effective medium different from that of the CPA.
The obvious deficiency of the method is the breaking of translational invariance.

A different scheme of embedding cluster methods is the DCA [41, 42]. By construction, the method
naturally preserves the translational invariance of the original model by directly working with both the
cluster and the effective medium in momentum space. The method has been extensively employed on the
Hubbard model [43–45], Anderson model [46], periodic Anderson model [47], and Falicov–Kimball
model [48]. The cluster extension is not just a quantitative improvement on the DMFT. It is necessary to
produce important features that are absent in the DMFT results. Perhaps the most important one is the
DCA’s ability to capture nonlocal correlations such as that of d-wave pairing, which is obviously absent for
approximations that do not consider spatial dependence explicitly [49]. The method has also been
considered in the context of multiple scattering theory where it is re-branded as non-linear CPA [50].

The difficulty of solving a cluster impurity (or embedded cluster) problem scales exponentially. Roughly
speaking, QMC based methods scale exponentially with the number of impurity sites (cluster size), with
inverse temperature, or with the interaction strength [51–54]. The exception is strong-coupling expansion
based Monte Carlo methods, but this is usually limited to a rather small number of impurity sites [55, 56].
Another class of impurity/cluster solvers is based on diagonalization of the effective finite size Hamiltonian.
For these Hamiltonian-based solvers, such as ED [57–62], the Hilbert space grows exponentially with the
cluster size and thus both computing memory and time requirements grow at the same rate. This is also
true to a large extent for another Hamiltonian-based approach, the numerical renormalization group
method [63–66]. In general, for practical calculations, the maximum number of impurity sites is rather
modest (∼10 sites).

Over the last couple of decades various novel methods have been proposed. These include the density
matrix renormalization group [67, 68], the related matrix product wavefunction [69] and, even more
recently, different forms of machine learning approaches [70, 71]. These more recent methods may have
potential for certain applications. For instance, they may be more efficient for calculating real time Green
functions in nonequilibrium problems [72]. Approaches based on machine learning could also be more
efficient in solving a large set of impurity problems, and this may be useful for applications on random
systems that require averaging over random disorder realizations [73]. However, none of these novel
impurity solvers are suitable for the calculation of the vertex function which is essential for most methods
that are built on an expansion on top of the DMFT solution. Additionally, Monte Carlo sampling of the
partition function provides more flexibility for controlling the error as the impurity cluster size is increased.
Also, although it has been proven that the single impurity problem does not exhibit a minus sign problem,
the absence of minus sign in the Monte Carlo sampling cannot be assumed for a generic impurity problem
[74].

Following the logic of embedding a small system into a mean-field host, one can anticipate better
accuracy in the result if an intermediate length scale is inserted between the previous two. Since short length
scales are appropriately treated with exact solvers and the long length scale by a mean field, this
intermediate length scale can be treated reliably with diagrammatic methods. This is the essence of MSMB
methods for strongly correlated systems as formulated in the early 2000’s [12] and the subject of continued
efforts since then [75].

This review focuses exclusively on the methods for studying systems in equilibrium. It is noteworthy to
point that effort has been devoted to the generalization of the MSMB approaches to non-equilibrium
problems [76–78]. We refer the reader to the original article for details [76], as we do not discuss these
nonequilibrium approaches in the present paper.

The rest of the review is structured as follows. In section 2, we summarize the DMFT method and its
connection to the Anderson impurity problem by approaching it from its ‘cavity method’ formulation. In
section 3, we discuss two cluster extensions of DMFT, DCA and cellular dynamical mean field theory
(CDMFT). We proceed in section 4 with a discussion of the extended dynamical mean field theory
(EDMFT) that extends DMFT to the treatment of nonlocal interaction. Section 5 is focused on the 1/d
expansion, a systematic expansion of DMFT with respect to the hopping amplitude. In section 6, we
describe the original formulation of the MSMB method. The parquet formalism, which encompasses
various commonly used diagrammatic approximations, and which is essential for the diagrammatic
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Figure 1. Schematic illustration of the Hubbard model on a square lattice. Electrons are allowed to hop between nearest
neighboring sites with a hopping amplitude t, and the interaction of strength U is local.

treatment of intermediate length scales, is described in section 7. Following this, we briefly describe
different implementations to incorporate nonlocal corrections into the DMFT/DCA starting with the
dynamical vertex approximation in section 8, and then the dual fermion method in section 9. In section 10,
we present the dual boson extension for corrections to EDMFT. In section 11, we discuss efforts to
incorporate nonlocal correction into the GW approximation (an approach that obtains the self-energy from
the single particle Green function (G) and the screened Coulomb interaction (W )) in the form of the ‘triply
irreducible local expansion’ (TRILEX). In section 12, we discuss functional renormalization group and its
usage for nonlocal corrections to DMFT. In section 13, an important computational challenge, the
numerical representation of the vertex functions in memory, is discussed. In section 14, we discuss
important physical constraints on the methods. In section 15, we summarize results obtained on different
models with various implementations of the multiscale many-body approach before ending with our
conclusions.

2. Dynamical mean field theory

Following the discovery of high temperature superconductors, it was argued that the Hubbard model (1)
captures their low energy properties [7]. This deceptively simple model describes itinerant electrons that
can hop between nearest-neighbor sites 〈i, j〉 on a lattice with a hopping integral tij, and are subject to a
Coulomb interaction U when a site is doubly occupied. The model is schematically depicted in figure 1 and
defined as:

Ĥ = −
∑
〈i,j〉,σ

tij c†i,σcj,σ +
∑

i

Un̂i,↑n̂i,↓, (1)

where ci,σ (c†i,σ) is the destruction (creation) operator that destroys (creates) an electron with spin σ at site i.

n̂i,σ = c†i,σci,σ is the number of particles of spin σ at site i.
The DMFT method in itself is a generalization of the usual mean field theory. But unlike the usual mean

field theory, say for the Ising model for example, the mean field here is not an order parameter. Instead it is
a function of time or frequency. Thus, the approach captures all temporal fluctuations. Focusing on the
translationally invariant paramagnetic phase, there is no explicit order parameter. One may also construct
an explicit order parameter to represent the broken symmetry, but this is not done routinely and is not the
focus of this discussion.

Within the DMFT solution of a translationally invariant system, the spatial fluctuations are completely
suppressed as in a traditional mean field theory. As we will see, a major way to improve the approximation
is to systematically incorporate the corrections due to the spatial dependence of the model into the DMFT
solution. Also, since the self-consistency condition is valid only at the single particle level, there is no
guarantee that high order Green functions, such as the different susceptibilities, are matched between the
lattice and impurity models.

When the DMFT was developed in the early 90’s [11, 79–86], solving even a single impurity problem
was rather challenging. With the formulation of new numerical algorithms and advances in computing
power, a single impurity problem can, in general, be numerically solved quite efficiently. While there is still
not a completely satisfactory method that is accurate for a wide range of parameters, particularly for solving
interacting problems with random disorder which requires a large ensemble of different impurity
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realizations for disorder averaging [73, 87, 88], the single impurity problem can mostly be handled at the
present time.

As a side note, it is worth mentioning that earlier work on DMFT can be traced back to the study of the
transverse-field Sherrington–Kirkpatrick model [89]. In that model the spatial fluctuations are completely
suppressed as the model consists of spin couplings in the fully connected network with the transverse
external magnetic field, thus it can be mapped to a single site problem [90]. The idea of similarly handling
fermion problems only appeared in the late 80’s in studies of fermionic systems in the infinite dimensional
limit by Vollhardt and Metzer [79, 80]. A series of papers by Müller–Hartmann were also influential in the
development of DMFT and later generalizations to the DCA [81, 82]. In 1991, the physics of the Hubbard
model via DMFT was discussed by Georges and Kotliar [83]. The first numerically ‘exact’ DMFT solution of
the Hubbard model was presented by Jarrell [84].

The DMFT formalism can be explained quite transparently from a path integral formulation. Consider
the action of the Hubbard model on a lattice,

S = −
∑
ri,rj,σ

∫ β

0

∫ β

0
dτidτjψ

∗
σ(ri, τi)G−1

0 (ri, τi, rj, τj)ψσ(rj, τj)

+ U
∑

ri

∫ β

0
dτiψ

∗
↑(ri, τi)ψ↑(ri, τi)ψ

∗
↓(ri, τi)ψ↓(ri, τi), (2)

where G0 is the bare Green function, ψ∗
σi

(ri, τi) and ψσi (ri, τi) are the Grassmann fields for spin σi at
location ri and imaginary time τ i.

The first part of the action contains the kinetic energy as characterized by the bare Green function G0. It
is simply obtained from the bare dispersion of the considered model. The second term includes the
interaction characterized by the parameter U, which we assume to be local. Any interaction beyond the
local Hubbard term will involve further approximations in the context of the DMFT.

The exact Green function of the above action can be completely characterized by the self-energy Σ. If we
write the self-energy in the frequency-momentum space, the relation between the bare Green function and
the exact Green function G is given by the Dyson equation,

G(k,ω) =
1

G−1
0 (k,ω) − Σ(k,ω)

. (3)

In the simplified case of a translationally invariant system, the idea of the DMFT is to relate the full
lattice problem with spatial dependence to a single site problem. To this end, DMFT reframes (2) into an
effective action for a single site with a bare Green’s function G:

Seff = −
∫

dω
∑
σ

ψ∗
σ(ω)G−1(ω)ψσ(ω) (4)

+ U

∫
ω1+ω3=ω2+ω4

dω1dω2dω3dω4ψ
∗
↑(ω1)ψ↑(ω2)ψ∗

↓(ω3)ψ↓(ω4).

Consider the Anderson impurity model characterizing an impurity coupled to a band of conducting
electrons and given by the Hamiltonian:

HAIM = Un↑n↓ − μ
∑
σ

c†σcσ

+
∑

j,σ

Vj

(
f †jσcσ + c†σfjσ

)
+
∑

jσ

εjf
†

jσ fjσ. (5)

where c†σ, cσ are creation and destruction operators for the impurity electrons while f †jσ , fjσ are those of the
conduction electrons. Its action is:

SAIM = −
∫

dω
∑
σ

ψ∗
σ(ω)G−1

AIM(ω)ψσ(ω)

+ U

∫
ω1+ω3=ω2+ω4

dω1dω2dω3dω4ψ
∗
↑(ω1)ψ↑(ω2)ψ∗

↓(ω3)ψ↓(ω4), (6)

where GAIM is the single impurity Anderson model non-interacting Green’s function defined by:

G−1
AIM(iωn) = iωn + μ−Δ(iωn) (7)
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with

Δ(iωn) =

∫ +∞

−∞
dω

1

iωn − ω

∑
jσ

V2
j δ(ω − εj). (8)

The AIM action (6) is equivalent to (4) with G playing the role of the non-interacting AIM Green’s
function. The construction can be justified via the concept of the ‘cavity method’ in the infinite dimension
limit whereby all degrees of freedom are integrated out except for the site labelled by the index 0. In this
limit of d →∞ for a hypercubic lattice, the hopping amplitude is rescaled as tij = t/

√
2d so that the kinetic

energy and the interaction energy remain of the same order. The effective action, Seff , in this process is
defined by:

1

Zeff
exp(−Seff[ψ

∗
0,σψ0,σ]) =

1

Z

∫ ∏
i�=0,σ

exp(−S[{ψ∗
i,σ,ψi,σ}]). (9)

where Z and Zeff are the partition functions associated with S and Seff respectively. The effective action can
be written as:

Seff[ψ
∗
0,σψ0,σ] = S0 +

N∑
n=1

∑
i1,j1,···in,jn

η∗0,i1
η∗0,i2

· · · η∗0,inηj1,0ηj2,0 · · · ηjn ,0

∏
i,j=1,···,n

∫
dτidτjG

(0)

× (i1, τi1 , i2, τi2 , · · ·, in, τin ; j1, τj1 , j2, τj2 , · · ·, jn, τjn ). (10)

where S0 is the local action at site ‘0’:

S0 = −
∫ β

0

∫ β

0
dτdτ ′

∑
σ

ψ∗
σ(τ)G−1

0 (τ , τ ′)ψσ(τ ′) + U

∫ β

0
dτψ∗

↑(τ)ψ↑(τ)ψ∗
↓(τ)ψ↓(τ). (11)

G(0) is the Green’s function connecting the cavity to the impurity. ηi,0 = ti,0ψ0,σ , with ti,0 the hopping from
site i to 0.

Only terms of order n = 2 survive the expansion (10) in the d → ∞ limit. Leading to:

Seff[ψ
∗
0,σψ0,σ] = S0 +

N∑
i1,j1=1

t0,i1 tj1,0

∫
dτdτ ′ψ∗

0,σψ0,σG(i1, τi1 , j1, τj1 ). (12)

Rewriting this in frequency space, gives the AIM action (6) with GAIM replaced by G such that:

G−1(iωn) = iωn + μ−
∑

i,j

t0,itj,0G(iωn). (13)

This relation connects the impurity Green function to the lattice Green function. For the Bethe lattice [91],
G−1(iωn) = iωn + μ− t2G(iωn). For a general lattice, the connection between the lattice Hubbard model
and the single impurity model is established by setting the self-energy,

Σlattice(k,ω) = Σimpurity(ω). (14)

Since the self-energy of the original lattice Hubbard model has spatial dependence while that of the
single impurity Anderson model does not, to construct the lattice Green function one has to rely on the
coarse-graining process that assumes the self-energy of the lattice model to be the same in the entire
Brillouin zone.

Glattice(k,ω) =
1

G−1
lattice,0(k,ω) − Σ(k,ω)

≈ 1

G−1
lattice,0(k,ω) − Σlattice(ω)

. (15)

The missing link between the Hubbard model and the Anderson model is to determine the effective bare
Green function of the Anderson model. For the D-dimension case, this is given by:

Gimpurity(ω) =
∑

k

1

(2π)D
Glattice(k,ω) =

∑
k

1

(2π)D

1

G−1
lattice,0(k,ω) − Σlattice(ω)

. (16)

The summation over the momentum can thus be replaced by an integral over the bare density of states
to simplify the calculation. The bare density of states for the hypercubic lattice at the limit of infinite spatial
dimensions can be exactly calculated [81, 82]. We have gathered all the ingredients for the DMFT
approximation and the algorithm can be summarized as in figure 2.
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Figure 2. DMFT algorithm: step 1. The impurity solver provides the impurity Green function, Gimp. Step 2. The impurity Dyson
equation is used to extract the self-energy Σ. Step 3. The self-energy is coarse-grained over the entire first Brillouin zone to
obtain the lattice Green function. Step 4. The bath Green function for the impurity problem is calculated and fed into the
impurity solver. Step 5. Repeat steps 1 to 4 until convergence is obtained for the self-energy or Green function.

3. Cluster route for extending the DMFT

A natural and direct avenue to generalize the DMFT is to incorporate nonlocal correlations by including
more than a single impurity site, i.e. by formulating the theory around a cluster of multiple sites in a
self-consistently determined host. This type of cluster DMFT remains an important method for the study of
strongly correlated systems, as it allows, by increasing the cluster size, a systematic correction unlike
perturbative expansion methods. Moreover, one can envision that a perturbative expansion on top of the
cluster method would produce an even better result, since the bare effective Hamiltonian or action for the
perturbative expansion, which corresponds to the DCA or CDMFT solution on the smaller system, is
presumably more accurate and already includes a substantial amount of nonlocal correlations.

For the classical spin model, the first attempt of a multiple site mean field theory was the so-called
Bethe–Peierls–Weiss approximation using a cluster of (z + 1) sites, with one site at the center surrounded
by z sites on the shell [91–94]. The interaction between the center spin and its z nearest neighbor spins is
treated explicitly while the interaction between the remaining z spins with the other spins outside their own
cluster is treated by a mean field.

Another approach by Oguchi is a more direct generalisation of the mean field method [95]. A cluster of
Nc spins is considered. The interaction among these Nc spins is treated explicitly, and the interaction
between the spins at the edge of the cluster and spins outside of the cluster is treated by a mean field. Unlike
the Bethe–Peierls–Weiss method where pairwise interactions are treated explicitly only for pairs involving
the central spin, pairwise interactions among all spins of the Nc spin cluster are treated explicitly in the
Oguchi approach.

A cluster of impurities in real space is considered instead of a single one for the cellular dynamical mean
field theory [96, 97]. There is a technical problem with using such an approach for the paramagnetic
solution of the Hubbard model as the cluster naturally breaks translational invariance. A procedure for
restoring the symmetry is needed for a periodic solution [98].

A further approach for a cluster generalization of DMFT is based on the idea of coarse-graining that is
central to the DCA [41, 99–101]. A cluster of impurities is used, but after the local cluster is solved the
lattice quantities are averaged over different patches of the first Brillouin zone for a coarse-grained quantity.
The advantage is that the method is manifestly translationally invariant. This allows a perturbative
expansion to be implemented on top of the DCA solution more naturally. As we will discuss, almost all
perturbative expansion methods become simpler and less cumbersome to implement when formulated in
momentum space.

One can consider that the DMFT impurity bare Green function is the coarse-grained lattice Green
function. Since the self-energy which is obtained by solving the impurity model does not have spatial
dependence, the coarse-graining procedure for DMFT is done over the entire first Brillouin zone with one
single impurity site. Effectively, from a diagrammatic point of view, DMFT neglects momentum
conservation at the internal vertices. The DCA systematically restores momentum conservation at these
internal vertices. To this end, it divides the Brillouin zone into Nc cells with each cell (of linear size Δk)
represented by a cluster momentum K in the center of the cell. The DCA then requires that momentum
conservation in the internal vertices be respected for momentum transfers between cells (momentum
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Figure 3. Illustration of the coarse-graining process in DCA for an eight-site cluster. The momentum k is mapped onto the
nearest cluster point K so that k̃ = k − K remains inside the cell containing K.

Figure 4. DCA algorithm: 1. The impurity solver provides the impurity Green function, Gimp(K). 2. The Dyson equation is used
to extract the self-energy Σ(K). 3. The self-energy is coarse-grained over the patches that fill the first Brillouin zone to obtain the
lattice Green function, G(K) 4. The bath Green function, G(K), for the impurity problem is feed into the impurity solver. 5.
Repeat from step 1 until convergence is obtained for the self-energy or Green function.

transfers larger than Δk), but neglected for momentum transfers within a cell (less than Δk). In this way
momentum conservation is fully recovered in the limit of Nc → ∞, while the DMFT result is obtained for
Nc = 1.

The DCA coarse-graining process is illustrated by figure 3 for Nc = 8. In DCA, the self-energy is no
longer momentum-independent. Rather, we have for a lattice momentum k, Σ(k) = Σ(K). Where K is the
momentum at the center of the cell containing k. The impurity, or in this case the cluster, Green’s function
is here related to the lattice Green’s function by:

Gimpurity(K,ω) ≈
∑

k

1

(2π)D
Glattice(k,ω) =

∑
k

1

(2π)D

1

G−1
0,lattice(k,ω) − Σlattice(K,ω)

, (17)

where the summation over k is restricted to the patch corresponding to the impurity/cluster site with
momentum K. The impurity solver is now a cluster solver for the momentum-dependent self-energy Σ(K).

The algorithm for DCA is summarized in figure 4.
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4. Extended dynamical mean field theory (EDMFT)

The earliest attempt to include the effect of nonlocal interactions was motivated by the competition
between the local interaction and the RKKY interaction in heavy fermion materials [102]. The basic idea
was to include the density-density and/or spin–spin interaction term and scale the interaction strength with
respect to the spatial dimensionality so that its fluctuations are non-zero in the high dimension limit
[102–107]. This procedure leads to an impurity embedded in a self-consistent fermionic bath and, at the
same time, a self-consistent bosonic bath due to the nonlocal interactions.

In DMFT, the hopping is considered as a function of spatial dimension d, tij ∼ 1/
√

d
|i−j|

in the infinite

dimension limit. The EDMFT includes the nonlocal interaction in a similar manner: Vij ∼ 1/
√

d
|i−j|

[102–104]. Here, we only consider the density–density interaction. A generic two-body interaction can
include spin–spin, correlated hopping, and pair hopping. For example, if the nonlocal interaction is
density–density interaction, such as in the extended Hubbard model, the effective action for the impurity
problem acquires an extra term including a retarded density–density coupling mediated by the charge
susceptibility [102, 105].

S0 =

∫
dτdτ ′

∑
σ

ψ∗
σ(τ)G−1

0 (τ , τ ′)ψσ(τ ′) − U

∫
dτn↑(τ)n↓(τ)

+

∫
dτdτ ′φ∗(τ)D−1

0 (τ , τ ′)φ(τ ′) +

∫
dτφ(τ)n(τ). (18)

The effective action is equivalent to that of the single impurity model where G and D act respectively as
effective fields for the fermionic bath and for the bosonic bath in the Anderson impurity model. They can
be obtained as usual via the Dyson equations. For the Bethe lattice [105],

G−1(iωn) = iωn + μ−
∑

i,j

t0,itj,0G(iωn), (19)

and
D−1(iωn) =

∑
i,j

V−1
0,i V−1

j,0 D(iωn). (20)

Since the retarded coupling can be understood in term of a bosonic field coupled to the impurity charge
density, EDMFT remedies the limitation of DMFT where the interaction is strictly restricted to the local
on-site Hubbard interaction. We note that the decoupling of the interaction by Hubbard–Stratonovich
fields is not unique: one can decouple the coupling in different ways [108]. The decoupling presented above
only decouples the density–density interaction, the V term in the extended Hubbard model.

The algorithm is thus similar to that of the DMFT, except that at each iteration both the mean fields for
the fermionic and for the bosonic baths have to be updated. The algorithm can be summarized as in
figure 5.

5. 1/d expansion

One of the earliest attempts to consider the effect of finite dimension and move away from the infinite
dimension limit is the systematic expansion with respect to the hopping amplitude. This approach has been
studied in other contexts, especially in the closely related CPA for disordered systems [109–113]. Since the
hopping term carries the factor of 1/

√
d, an expansion with respect to the hopping regains the dimensional

dependence at the expense of including multiple sites. Work by Schiller and Ingersent studied the case of
two impurities for the Falicov–Kimball model [114]. The approach has also been applied to the half-filled
Hubbard model [115].

The 1/d corrections can be recovered by considering a multi-impurity problem. For a single impurity
(n = 1) or a two-impurity (n = 2) problem,

S(n) =
∑
σ

n∑
α,β=1

∫
dτ

∫
dτ ′ψ∗

ασ(τ)(G(n)
α,β)−1(τ − τ ′)ψβσ(τ ′)

+
n∑

α=1

U

∫
dτnα↑(τ)nα↓(τ), (21)

9
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Figure 5. EDMFT algorithm: 1. The impurity solver provides the impurity Green function for the electrons, Gimp and the
impurity Green function for the Bosonic field, Dimp. 2. Dyson equation is used to extract the self-energy Σ and the polarization,
Π. 3. The self-energy and the polarization is coarse-grained over the entire first Brillouin zone to obtain the lattice Green
functions. 4. The bath Green function for the electrons and the Bosonic field of the impurity problem is feed into the impurity
solver. 5. Repeat from step 1 until convergence is obtained for the self-energy and polarization or Green functions.

where α and β label the sites for n = 2 [114, 115]. The mean fields G(1) and G(2) are chosen in such a way
that the impurity Green functions G(1) and G(2) coincide with the full on-site and nearest neighbor lattice
propagators, Glattice

00 and Glattice
01 :

G(1) = G(2)
11 = Glattice

00 , G(2)
12 = Glattice

01 . (22)

For skeleton diagrams (diagrams without self-energy dressing or vertex correction) of order O(1/d), the
impurity self energies Σ(1) and Σ(2)

αβ and the diagonal and off-diagonal lattice self energies, Σlattice
0 and Σlattice

1

are related by [114, 115].

Σlattice
0 = Σ(1) + 2d(Σ(2)

11 − Σ(1)), (23)

Σlattice
1 = Σ(2)

12 . (24)

The lattice Green function can be obtained from the lattice self-energy:

Glattice
lm (iω) =

1

1 +
√

d Σlattice
1

G0
lm

(
iω − Σlattice

0 (iω)

1 +
√

d Σlattice
1 (iω)

)
, (25)

where G0
lm(z) and Glattice

lm (z) denote the unperturbed and dressed lattice propagators between sites l and m,
respectively [114, 115].

Among the shortcomings of the 1/d expansion are its limitations in the description of long range
fluctuations. Perhaps more importantly, the truncation at finite order may lead to non-analytic properties
of some dynamical quantities [116]. The method is an example of the nested cluster scheme and is also
related to the recently proposed self-energy embedding theory [98, 117, 118].

6. Multiscale many body

Given the challenge of solving a large cluster by numerical methods and the lack of accurate analytical
approaches, perturbation theory is a possible route for the exploration of physics beyond local theories.
Initial efforts aimed to use perturbative methods as solvers for the cluster impurity problem. Notably, the
fluctuation exchange method was used as an impurity cluster solver [119]. The fluctuation-exchange or
FLEX is one of the simplest methods to incorporate correlations among different channels. It is, therefore, a
conceptually appealing approach for systems in which particle–hole or particle–particle vertex fluctuations
are not small. If correlations of the two particle fluctuations are ignored, one obtains the second order
perturbation theory for which the irreducible vertex is replaced by the bare vertex. FLEX allows vertex
contributions from different channels to be correlated, thus the name of fluctuation exchange
approximation.

The general scheme of the MSMB method as envisioned by Jarrell and collaborators is to construct a
theory which allows for the treatment of different length scales by different approaches [12, 120]. The short
length scale is addressed by some highly accurate numerical approach, such as QMC. The long length scale
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Figure 6. Conceptual idea of the multiscale many body approach. The original lattice model is mapped onto a small cluster
(yellow–orange–red colors), embedded in a larger cluster (rainbow colors) embedded in a mean field (orange color). The
information passed between the clusters and the effective medium is composed of irreducible quantities like the self-energy and
the fully irreducible vertex function.

Figure 7. Algorithm for the multiscale many body method. 1. The fully irreducible vertex (Λ) and optionally the self-energy (Σ)
are obtained from the DMFT or DCA solver. 2. The parquet method or some other perturbative method is used to calculate the
full vertex to restore spatial dependence or enhance spatial resolutions in the full vertex (F). 3. The full vertex is fed into
Schwinger Dyson equation and Dyson equation to update the self-energy and the Green function respectively. 4. The Green
function can be coarse-grained to be fed back to the DMFT or DCA solver as the bath Green function for self-consistent
calculations.

is treated at a mean field level, while the intermediate length scale is treated by some form of perturbative
technique.

An early proposition was to supplement the QMC calculation on small cluster sizes with FLEX on larger
clusters via a self-energy self-consistency scheme between the two methods [121]. It was generalized in 2006
to address short and long length scales within the DCA formalism while the intermediate length scale would
be treated by the parquet formalism [12]. In this approach, the connection between the two methods is
established by the fully irreducible vertex from the DCA calculation on the cluster. The promise of the
approach stems from the better scaling of the parquet formalism compared to that of QMC as a cluster
solver (figure 6).

The general construction of the MSMB method, as summarized in figure 7, is obviously rather general.
There is in fact plenty of freedom in the choice of a solver for the intermediate length scale. Indeed, this area
of research has been the subject of significant activity over the past decade or so. Nevertheless, most of the
developed methods are based on some simplification of the original proposal, either in picking a certain
subclass of diagrams from the parquet formalism or in simplifying the solution by numerical techniques.

7. Diagrammatic methods and the parquet formalism

A major route for perturbative expansions around the DMFT solution is based on the parquet diagrams.
This approach encapsulates many of the approximations that have emerged in this field, including the
dynamical vertex approximation. For this reason, we review the parquet method in rather self-contained
detail in this section.

Standard diagrammatic perturbative expansions attempt to describe all the scattering processes as single
or two-particle Feynman diagrams. In the single-particle formulation the self-energy describes the
many-body processes that renormalize the motion of a particle in the interacting background of all the
other particles. In the two-particle context, one is able to probe the interactions between particles using the
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Figure 8. Illustration of the reducibility of a diagram in the particle–hole horizontal channel. (a) The diagram is reducible in
the particle–hole channel in the sense that the diagram can be separated by cutting two horizontal Green function lines.
(b) Examples of diagrams which are irreducible with respect to the particle–hole horizontal channel. The one on the left-hand
side is reducible in the particle–hole vertical channel. The one on the right-hand side is reducible in the particle–particle
channel. (c) Examples of fully irreducible diagrams. They cannot be separated into two parts by cutting two Green functions
lines in any one of the three channels. Reprinted figure with permission from [123], Copyright (2009) by the American Physical
Society.

so-called vertex functions, which are matrices describing two particle scattering processes. For example, the
reducible (full) two-particle vertex Fph(12; 34) describes the scattering amplitude of a particle–hole pair
from its initial state |3, 4〉 into the final state |1, 2〉. Here, i = 1, 2, 3, 4 represents a set of indices which
combines the momentum ki, the Matsubara frequency iωni and, if needed, the spin σi and band index mi.
Since the total momentum and energy of the vertex are conserved, it is convenient to adopt the notation
Fph(2–4)1,3 for the numerical implementation on the single band Hubbard model. Other representations
are also possible [122].

In general, depending on how particles or holes are involved in the scattering processes, one can define
three different two-particle scattering channels. These are the particle–hole (p–h) horizontal channel, the
p–h vertical channel and the particle–particle (p–p) channel. The parquet formalism is, in essence, a
method for summing up diagrams that characterize scattering processes at the two-particle level. From
another perspective, the diagrams are generated by inserting the one loop, second order, diagrams
repeatedly into itself. Without channel mixing, this is equivalent to the RPA. With the mixing of three
channels, this becomes the parquet formalism.

The vertices can be categorized by extending the notion of diagram reducibility to the two-particle level
as illustrated by figure 8. At the one particle level, a diagram is said to be reducible if it can be split in two
disconnected parts by breaking a single Green’s function line. A two-particle diagram will be said to be
irreducible if it cannot be separated in two disconnected parts by breaking two Green function lines in the
same channel [30]. It will be said to be fully irreducible if it cannot be separated in two disconnected parts
by breaking two-Green’s function lines in any channel. In the single particle formalism, the Green function
is related to the self-energy containing all single-particle irreducible diagrams by the Dyson equation. A
connection is made between the single-particle and the two-particle diagrams by the Schwinger–Dyson
equation that connects the self-energy to the (full/reducible) vertex F containing all allowed diagrams in a
given channel. The subset of all two-level diagrams in the full vertex that are irreducible in the same channel
is known as the irreducible vertex Γ. The subset of irreducible vertices that are irreducible in any channel is
called the fully irreducible vertex Λ.

It is worth noting that the above idea for the decomposition is not unique. One can devise other
possible decompositions. For example, a recent attempt is to decompose diagrams in terms of the
fermion–boson vertex. We will not explore this direction in detail in this review. The above decomposition
is the most natural one in the sense that the method can be easily understood in terms of an iterative
process. The higher order diagrams are all generated by iteratively replacing the vertex function at a lower
order approximation.

Furthermore, we are mostly interested in models that preserve the SU(2) spin rotation symmetry. Since
this symmetry is always obeyed for the two-dimensional calculations at non-zero temperature, it is
convenient to preserve this symmetry. This is accomplished by decomposing the vertices in the so-called
spin-diagonalized representation. In this representation, the spin degrees of freedom decompose the
particle–hole channel into the density and the magnetic channels, and the particle–particle channel into the
spin singlet and the spin triplet channels which we denote as d-channel, m-channel, s-channel, and
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t-channel respectively [30]. They are defined for the irreducible vertex as follows,

Γd = ΓPH
↑↑;↑↑ + ΓPH

↑↑;↓↓, (26)

Γm = ΓPH
↑↑;↑↑ − ΓPH

↑↑;↓↓, (27)

Γs = ΓPP
↑↓;↑↓ − ΓPP

↑↓;↓↑, (28)

Γt = ΓPP
↑↓;↑↓ + ΓPP

↑↓;↓↑, (29)

and similarly for F and Λ.
The formalism is completed by equations that connect the different types of vertices. The full vertex is

related to the irreducible vertex by the Bethe–Salpeter equation and the irreducible vertex is in turn related
to the fully irreducible vertex by the parquet equation. We reproduce the full set of equations for the
parquet formulation in the spin diagonalized representation in the following.

The Schwinger–Dyson equation that connects the vertex to the self-energy is

Σ(P) = −UT2

4N

∑
P′ ,Q

{G(P′)G(P′ + Q)G(P − Q)(Fd(Q)P−Q,P′ − Fm(Q)P−Q,P′)

+ G(−P′)G(P′ + Q)G(−P + Q)(Fs(Q)P−Q,P′ + Ft(Q)P−Q,P′)} , (30)

where G is the single-particle Green function, which itself can be calculated from the self-energy using the
Dyson equation,

G−1(P) = G−1
0 (P) − Σ(P), (31)

where G0 is the bare Green function. Here, the indices P, P′ and Q combine momentum k and Matsubara
frequency iωn, i.e. P = (k, iωn).

The reducible and the irreducible vertices in a given channel are related by the Bethe–Salpeter equation,

Fr(Q)P,P′ = Γr(Q)P,P′ +Φr(Q)P,P′ , (32)

Fr′(Q)P,P′ = Γr′(Q)P,P′ +Ψr′(Q)P,P′ , (33)

where r = d or m for the density and magnetic channels and r′ = s or t for the spin singlet and spin triplet
channels. The vertex ladders are defined as

Φr(Q)P,P′ ≡
∑

P′′
Fr(Q)P,P′′χ

ph
0 (Q)P′′Γr(Q)P′′,P′ , (34)

Ψr′(Q)P,P′ ≡
∑

P′′
Fr′(Q)P,P′′χ

pp
0 (Q)P′′Γr′(Q)P′′,P′ , (35)

where χ0, the bare susceptibility, is the product of two single-particle Green functions.
The parquet equations in the spin diagonalized representation are

Γd(Q)PP′ = Λd(Q)PP′ −
1

2
Φd(P′ − P)P,P+Q − 3

2
Φm(P′ − P)P,P+Q

+
1

2
Ψs(P + P′ + Q)−P−Q,−P +

3

2
Ψt(P + P′ + Q)−P−Q,−P, (36)

Γm(Q)PP′ = Λm(Q)PP′ −
1

2
Φd(P′ − P)P,P+Q +

1

2
Φm(P′ − P)P,P+Q

− 1

2
Ψs(P + P′ + Q)−P−Q,−P +

1

2
Ψt(P + P′ + Q)−P−Q,−P, (37)

Γs(Q)PP′ = Λs(Q)PP′ +
1

2
Φd(P′ − P)−P′,P+Q − 3

2
Φm(P′ − P)−P′,P+Q

+
1

2
Φd(P + P′ + Q)−P′ ,−P −

3

2
Φm(P + P′ + Q)−P′ ,−P, (38)

Γt(Q)PP′ = Λt(Q)PP′ +
1

2
Φd(P′ − P)−P′,P+Q +

1

2
Φm(P′ − P)−P′,P+Q

− 1

2
Φd(P + P′ + Q)−P′ ,−P −

1

2
Φm(P + P′ + Q)−P′ ,−P. (39)
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It is important to note that if we substitute the irreducible vertices Γ (equations (36)–(39)) into the
Bethe–Salpeter equation (equations (32) and (33)) the crossing symmetries (symmetry relations of the
vertex that are a consequence of the Pauli exclusion principle for identical fermionic particles) in the full
vertex F is automatically satisfied regardless of the numerical values of the vertex ladders Φ and Ψ, assuming
the fully irreducible vertices, Λ, obey the crossing symmetries. We write all the full vertices explicitly in the
following, using only the vertex ladders, Φ, Ψ, and the fully irreducible vertices, Λ.

Fd(Q)P,P′ = Λd(Q)PP′ −
1

2
Φd(P′ − P)P,P+Q − 3

2
Φm(P′ − P)P,P+Q

+
1

2
Ψs(P + P′ + Q)−P−Q,−P +

3

2
Ψt(P + P′ + Q)−P−Q,−P +Φd(Q)P,P′ ; (40)

Fm(Q)P,P′ = Λm(Q)PP′ −
1

2
Φd(P′ − P)P,P+Q +

1

2
Φm(P′ − P)P,P+Q

− 1

2
Ψs(P + P′ + Q)−P−Q,−P +

1

2
Ψt(P + P′ + Q)−P−Q,−P +Φm(Q)P,P′ ; (41)

Fs(Q)P,P′ = Λs(Q)PP′ +
1

2
Φd(P′ − P)−P′,P+Q − 3

2
Φm(P′ − P)−P′,P+Q

+
1

2
Φd(P + P′ + Q)−P′,−P −

3

2
Φm(P + P′ + Q)−P′,−P +Ψs(Q)P,P′ ; (42)

Ft(Q)P,P′ = Λt(Q)PP′ +
1

2
Φd(P′ − P)−P′,P+Q +

1

2
Φm(P′ − P)−P′,P+Q

− 1

2
Φd(P + P′ + Q)−P′,−P −

1

2
Φm(P + P′ + Q)−P′,−P +Ψt(Q)P,P′ . (43)

The full parquet formalism encompasses a variety of approximations that are widely used in condensed
matter physics and materials science. The hierarchy of these different approximations is neatly summarized
in figure 9.

• Hartree–Fock and second order perturbation theory: at the highest level, we might make the
approximation on the two-particle Green function (analogous to the conventional single particle HF
perturbation) such that the four-point correlation function can be factorized as a product of two
two-point correlation functions. It is equivalent to ignoring the contribution from the full vertex
functions. From the Schwinger–Dyson equation, the self-energy has two contributions a HF term and
a second order perturbation theory term.

• Self-consistent second order perturbation theory: substituting the bare vertex for the full vertex in the
Schwinger–Dyson equation and solving for the self-energy self-consistently results in the
self-consistent second order perturbation theory.

• Random-phase approximation (RPA): the irreducible vertex in the longitudinal charge channel is
approximated by the bare Coulomb interaction. And then the Bethe–Salpeter equation is used to sum
up over all the ring-type diagrams [23, 24].

• T-matrix approximation (TMA): similar to RPA, the irreducible vertex in the transverse particle–hole
channel or particle–particle channel, instead of longitudinal particle–hole channel, is approximated
by the bare Coulomb interaction. And then the Bethe–Salpeter equation is used to sum all the
ladder-type (instead of ring-type in RPA) diagrams [124].

• Fluctuation exchange approximation (FLEX): a combination of RPA and TMA, such that the
fluctuations in different channels are treated equally [125].

The parquet formalism dates back to the 50’s, but as can be seen from the analytical form of the
governing equations, a general analytical solution is rather hard to track [126, 127]. Over the years various
approximations to simplify the equations have been proposed to solve a set of problems ranging from the
Anderson impurity to nuclear structure [30, 31, 128–154]. In addition, a numerical solution is
computationally demanding. This difficulty is in general common to theories that involve the two-particle
vertex functions. The computational difficulty arises mostly from the memory requirements to store the
vertex functions as they are four-legged objects unlike the single particle quantities that only have two legs.
If momentum and energy conservation are implemented, the single particle quantities scale linearly with
the size of the space-time grid, on the other hand the vertex function scales as the third power of the size of
the space-time grid. This challenge is not insurmountable and may be overcome with appropriate
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Figure 9. Hierarchy of approximations encompassed by the parquet approximation. See the text for details. S.D. and B.S. stand
for Schwinger–Dyson equation and Bethe–Salpeter equation respectively. v is the bare vertex characterizing the lowest order
two-particle scattering processes.

Figure 10. Algorithm for the parquet method. 1. Read in the fully irreducible vertex, Λ. 2. Solve the Bethe Salpeter equation for
the irreducible vertex, Γ. 3. Solve the parquet equations for the full vertex, F. 4. Use the Dyson Schwinger equation to solver for
the self-energy. 5. The Green function is updated by the Schwinger equation. Repeat from step 2 until convergence in the full
vertex and self-energy is obtained.

parallelization. In fact, the advent of petascale computing enabled the first solution for the two-dimensional
problem [123, 155].

The algorithm for the numerical solution of the parquet formalism is summarized in figure 10.
Perhaps the most challenging problem from the numerical point of view is the difference in the nature

of the single particle and the two-particle functions. The single particle quantities in the Matsubara
frequency space do not diverge. On the other hand, the two particle vertex has strong divergences when the
metallic phase is unstable at the momentum and energy corresponding to an instability. For instance, in the
Hubbard model, the particle–hole vertex at the verge of the antiferromagnetic instability has a strong
divergence for momentum transfer (π,π). For this reason, the vertex is represented by numbers spanning a
wide range of values over many orders of magnitude. This clearly is a recipe for possible numerical
instabilities in the iterative solution for the vertex functions at low temperature and on the verge of long
range order phase transitions. As we will discuss in the rest of this review, various methods have been
proposed to improve the stability of the numerical solutions. These include simplifying the equations, or
abandoning the self-consistent approach for the vertex functions.

8. Dynamical vertex approximation (DΓA)

The original dynamical vertex approximation (DΓA) is a simplification of the multiscale many-body
method with a pragmatic mindset that limits the calculation to the local fully irreducible vertex using
perturbation theory [156, 157]. As discussed in section 7 above, a full parquet solution with space-time
resolution is very challenging. A natural scheme to sidestep the difficulty is, in the spirit of DMFT, to
consider the vertex to be only time or frequency dependent. The local fully irreducible vertex from a DMFT
calculation can then be used as input for the parquet formalism. The method subsequently follows the
procedure discussed above for the parquet method, therefore, this aspect will not be repeated in this section.
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Figure 11. Algorithm for the dynamical vertex approximation. 1. The fully irreducible vertex is obtained from the DMFT solver.
2. Perturbative methods or the parquet method is used to obtain the full vertex, F. 3. The Schwinger–Dyson equation is solved
for the Green function. The results can be read out after this step. For self-consistent calculation, 4. The Green function can be
coarse-grained to obtain the bath Green function for the impurity problem and the procedure repeated from step 1 until
convergence in the Green function is obtained.

Since this approach is relatively transparent and numerically practical with modest computational costs
[158], besides the two-dimensional Hubbard model, it has been applied to several problems including the
three-dimensional Hubbard model, the attractive Hubbard model [159], nanoscopic quantum junction
systems [160], and it has also been recently combined with ab initio calculations [161]. A more elaborate
calculation based on parquet method has been performed for the one-dimensional Hubbard model [162].

There are a few variations of the dynamical vertex approximation. The full parquet formalism can be
solved self-consistently with the fully irreducible vertex from the DMFT solution used as input. One can
also consider self-consistency at the level of both the parquet equations and the DMFT equations: this
involves finding the fully irreducible vertex from the DMFT solution, then using this to solve the parquet
equations. The parquet formalism provides both the full vertex and the dressed Green function. The dressed
Green function can in turn be treated as input for the DMFT equation to obtain self-consistency in both the
DMFT loop and the parquet equations loop.

Initial applications on the half-filled Hubbard model motivated a further simplification by decoupling
the particle–hole channels from the particle–particle channels. This simplification can be justified by the
physics of the systems of interest. For example, in the Hubbard model near half-filling, the density wave is
driven by the nesting in the particle–hole channels and one can argue for choosing the particle–hole ladder
summations. On the other hand, when the system is driven by s-wave pairing such as that in the attractive
Hubbard model, one can keep only the particle–particle channel. There is no systematic universal argument
on which channel should be dominant. For most interesting regimes, such as the d-wave pairing in the
Hubbard model, presumably all channels could contribute and one may have no choice but to try to tackle
the full set of equations of the parquet formalism.

The algorithm is summarized in figure 11.

9. Dual fermions

Another path to the multiscale treatment of correlations in a fermionic system is that of the dual fermions
approach that was built on previous analogous methods for bosonic systems. This approach systematically
incorporates nonlocal correlations into the DMFT solution. The method is distinguished from others in
that it maps a strongly correlated fermionic lattice onto weakly correlated delocalized fermions. This allows
a perturbative treatment of nonlocal correlations using some subsets of allowed diagrams to produce
satisfactory corrections on top of the short-length scale correlations that are addressed by an exact solver.

The dual fermion formalism is an extension of the theory by Sarker for strongly correlated system [163].
He proposed a strong coupling expansion of the solution from the atomic limit that predates widespread
usage of DMFT. Similar ideas have also been proposed for the study of one dimensional system [164]. In
this theory, the Hubbard model is mapped onto another interacting fermionic model in which the
multi-particle hopping-exchange processes appear explicitly. The formulation is equivalent to the dual
fermion formalism as currently known [165–167].

16



Quantum Sci. Technol. 7 (2022) 033001 Topical Review

Starting from the action of itinerant electrons on a lattice that can be written as:

S
[
c∗, c

]
=

∑
ω,k,σ

c∗ω,k,σ [iω + μ− hk] cω,k,σ +
∑

i

Sloc[c∗, c], (44)

where μ is the chemical potential, hk is the hoping term in momentum space, c∗ω,k,σ(cω,k,σ) are the
Grassmann variables corresponding to the creation (annihilation) operator, and Sloc is the local part of the
action. The lattice problem can be reframed into that of a set of impurities and an additional term to
account for the remaining contributions:

S[c∗, c] =
∑

i

Simp[c∗i , ci] −
∑
ω,k,σ

c∗ω,k,σ[Δ(iω) − hk]cω,k,σ. (45)

Revisiting the expression of the partition function, a Hubbard–Stratonovich transformation can be applied
on the second term, introducing new fermionic degrees of freedom. The action can then be expressed as:

S[c∗, c; f ∗, f ] =
∑

i

Srestr,i[c∗, c; f ∗, f ] +
∑
ω,k,σ

f ∗ω,k,σ fω,k,σ

g2(iω)[Δ(iω) − hk]
. (46)

where g is the single particle DMFT Green function and Srestr,i is the action restricted to site i, and is defined
by:

Srestr,i[c∗, c; f ∗, f ] = Simp[c∗, c] +
∑
ω,σ

[f ∗ω,σg−1(iω)cω,σ + h.c.]. (47)

The lattice fermionic degrees of freedom can then be integrated out of the action restricted to the respective
sites following:

∫
exp

(
−Srestr,i

[
c∗, c, f ∗, f

])
D
[
c∗, c

]
= Zimp exp

(
−
∑
ω,σ

f ∗ω,σg−1(iω)fω,σ + V
[
f ∗i , fi

])
. (48)

This last expression introduces the dual potential V[f ∗i , fi] in terms of the new fermionic degrees of
freedom. It is shown to include all 2n-vertices for the impurity with n = 2, 3, 4, . . . .

An explicit expression for the dual potential is obtained by expanding both sides of this equation and
comparing the resulting expressions order by order. The dual potential to lowest order reads

V[f ∗, f ] =
1

4

∑
ωω′ν

∑
σ1,σ2,σ3,σ4

γσ1,σ2,σ3,σ4(iω, iω′, iν)f ∗ω+ν,σ1
fω,σ2 f ∗ω′,σ3

fω′+ν,σ4 + · · · . (49)

where γ is the DMFT reducible or full vertex. Thus, nonlocal correlations are addressed by solving the
many-body problem with bare Green function g and interaction potential V. The lattice fermions can finally
be integrated out to produce an action that only depends on the dual fermions:

SD[f ∗, f ] = −
∑
ω,k,σ

f ∗ω,k,σGd,0
σ (iω, k)fω,k,σ +

∑
i

V[f ∗i , fi]. (50)

With the bare dual fermion Green function defined by:

Gd,0
σ (iω, k) = − g2(iω)

[g(iω) + (Δ(iω) − hk)−1]
. (51)

The action of equation (50) is the tool to account for nonlocal correlations. It can be treated using
diagrammatic perturbation theory. In this context, the interaction potential is usually truncated to the
four-point vertex. For most practical calculations, higher order terms of the dual potential are truncated
[168], though they may have non-negligible effect [169, 170]. However, the formalism is shown, by
construction, to be convergent both in the strong coupling and in the weak coupling regime. The process
for solving the formalism follows a typical diagrammatic procedure. The impurity Green function and the
vertex are obtained from the DMFT calculation. The impurity Green function is used to evaluate the dual
fermions non-interacting Green function. The vertex and the non-interacting Green’s function are then
used for a self-consistent diagrammatic solution with a given subset of all the allowed diagrams. This
solution produces the dressed dual fermion Green’s function. The dual Green function can subsequently be
used to evaluate the lattice Green function. Alternatively, phase transitions can be studied directly using the
dual fermion diagrams since the instability identified in the dual fermions space is found to be equivalent to
that of the lattice Green function. In general, upon solving the dual fermion problem, a new expression for
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Figure 12. Algorithm for the dual fermion method. 1. The DMFT solver provides the Green function and the full (reducible)
vertex function. 2. The Green function and the irreducible vertex function are used to construct the dual fermion bare Green
function and the dual potential. 3. A perturbative method or the parquet method can be used to calculate the self-energy and the
Green function of the dual fermions. 4. Inverse transform of the Green function from dual fermions to physical fermionic degree
of freedom. The results can be read out after this step. For self-consistent calculation. 5. The Green function can be
coarse-grained to obtain the bath Green function of the DMFT impurity problem.

the impurity self-energy or the impurity hybridization can be extracted and fed back into the impurity
solver and the entire procedure repeated iteratively until convergence. The algorithm of the dual fermion
method is summarized in figure 12.

The dual fermion formalism, as discussed above, was initially introduced to add nonlocal correlations to
the DMFT result. It was subsequently extended to the DCA [171, 172]. In this context, it serves as a way to
address intermediate length scales beyond the short ones that are treated by the cluster solver of the DCA
formalism.

Because the dual fermions concept is rather general, it has been the subject of numerous developments
[173–178]. A notable generalization is the treatment of disorder with this formalism [179, 180]. The effect
of disorder in correlated systems has long been an important outstanding problem in condensed matter
physics, particularly for the two dimensional case. While experimentally available systems such as
semi-conductors usually involve long range Coulomb interactions, the problem of a perhaps simpler
Anderson–Hubbard model which have both interaction and disorder at local sites still represents an
outstanding challenge which has attracted a lot of attention.

Another important development is the treatment of nonlocal interactions, such as that of the extended
Hubbard model with nearest neighbor interaction. The inclusion of nonlocal interaction opens up the
possibility for interesting physics such as charge density wave and the more exotic bond order wave. The
dual fermions method has also been generalized for the EDMFT to the dual bosons theory as we discuss in
the following section [181].

The dual fermion method has additionally been used to generalize the real space DMFT to the real space
dual fermion method which allows the study of systems with open boundary condition [182].

10. Dual bosons, extension of EDMFT

One can apply ideas similar to those of the dual fermions for DMFT to EDMFT [181]. As discussed in
section 4, the nonlocal part of the EDMFT is not limited to the hopping term, but also includes interaction
terms [102]. For this problem, the action can be written as:

S
[
c∗, c

]
=

∑
ω,k,σ

c∗ω,k,σ [iω + μ− hk] cω,k,σ +
1

2

∑
ω,k

V(k)nω,−knω,k +
∑

i

Slocal[c∗, c]. (52)

The next step is to introduce a Hubbard–Stratonovich transformation as in the dual fermion
formulation for the nonlocal bilinear term of the kinetic energy. In addition, the nonlocal density-density
potential energy term is decoupled by another Hubbard–Stratonovich transformation for the bosonic
charge density. In parallel with the dual fermion method, the original fermionic degrees of freedom, and the
bosonic charge density can formally be integrated out exactly, yielding a new effective potential given by the
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Figure 13. Algorithm for the dual boson method. This algorithm is parallel to the dual fermion method, except that both the
bosonic Green function and the dual potential with the bosonic degrees of freedom are needed. 1. The DMFT solver provides the
Green function and the reducible vertex functions. 2. The Green function and the reducible vertex functions for both
fermion–fermion vertex (Ff−f

imp) and fermion–boson vertex (Ff−b
imp) from the DMFT solver are used to construct the Green

functions (Gdual and Ddual) and the dual potential (Vdual). 3. Perturbative methods can be used to calculate the self-energy and the
Green function of the dual fermions and dual bosons. 4. Inverse transformation of the Green function from dual fermions and
dual bosons to physical fermionic and bosonic degrees of freedom. The results can be read out after this step. For the full
self-consistent calculation 5. The Green function can be coarse-grained to obtain the bath Green function of the DMFT impurity
problem.

vertices of the impurity model. The action becomes

SD[f ∗, f ] = −
∑
ω,k,σ

f ∗ω,k,σ Gd,0
σ (iω, k)fω,k,σ −

∑
ω,k

φ∗
−ω,−kDd,0(iω, k)φω,k +

∑
i

V[f ∗i , fi,φi]. (53)

Similar to the dual fermions, the potential of the dual variables can be expanded and truncated at finite
order of the vertex functions of the impurity problem. Perturbative methods can be used to solve the
effective problem expressed in terms of the dual variables. The method has been applied to problems with
nonlocal interaction, such as the extended Hubbard model and models with long range Coulomb coupling
[183–187].

The algorithm of the dual bosons method is summarized in figure 13.

11. GW approximation with three-particle irreducible vertex

A conventional scheme to address quantum fluctuations beyond HF is the so-called GW approximation. It
was developed for solutions of the electron gas problem in the 50’s. Due to its simplicity, it has been widely
adapted in density functional theory calculations and it can be derived from many-body perturbation
theory. The form of the self-energy in the GW approximation is kept as that of the HF approximation, but
the interaction, originally just the Coulomb term, is dynamically screened [188–192].

Recent proposals have utilized the properties of the GW approximation and extended it by introducing a
dynamical three point vertex function. The method can be derived from the partial bosonization of the
electron–electron interaction via the Hubbard–Stratonovich transformation in different channels. The
effective action becomes that of an electron–boson coupling problem. The bosonic fields from the
decoupling of the electron–electron interaction can be considered as the electrons coupled to the charge
and spin fluctuations. This is equivalent to solving the self-energy in the Hedin’s equation with the vertex
correction [191]. Instead of solving the electron–boson vertex with spatial dependence, the vertex is
calculated via an effective impurity problem similar to that of DMFT. The spatial dependence of both the
fermion and the boson self-energies is generated by the fermion (G) and the boson (D) Green functions.
This generalization was introduced by Aryal and Parcollet as the TRILEX [193, 194]. The method can be
formally derived from a functional of the vertex given by three-particle irreducible diagrams [195, 196].

The key step for incorporating nonlocal correlations is to consider the polarization and the electron
self-energy with the local boson-fermion vertex from the numerical solution of the impurity problem, see
figure 14 for the diagrams. The rest of the algorithm is parallel to that of the EDMFT. The updated
self-energy and the polarizability are coarse-grained and fed back into the EDMFT effective impurity
problem.

The algorithm for the TRILEX method is summarized in figure 15.
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Figure 14. Diagrams for generating momentum dependence for the self-energy of the single particle function and the
polarization of the two particle function.

Figure 15. Algorithm for the TRILEX method. 1. The DMFT solver provides the boson-fermion vertex. 2. The Hartree diagrams
of the GW approximation are calculated with the vertex from the DMFT for both the self-energy and the polarization to generate
spatial dependence. 3. The Dyson equation is employed to calculate the Green function for both the fermions (G) and the bosons
(D). 4. The coarse-grained Green functions can be fed back to the effective DMFT impurity problem. Repeat from step 1 until
convergence is attained.

12. Functional renormalization group

The functional renormalization group for fermionic systems evolved from approaches used in the one
dimensional Luttinger liquid [197–200]. The full vertex in this context is usually denoted as ‘g’, for this
reason, the method is often referred as g-ology [201, 202]. From the renormalization group perspective, the
frequency dependence of the vertex function is not the most relevant contribution. Thus for systems that do
not have explicit frequency dependence in the bare vertex, such as the electron–phonon coupling, the
frequency or time dependence is often neglected [203].

The generalization of g-ology beyond one dimension gained increased attention after the work by
Shankar [203, 204]. Traditional implementations of Wilsonian renormalization group only consider the
flow of a handful of coupling constants, which is physically the case for one dimensional systems as there
are only two Fermi points instead of a surface. The functional formalism for all coupling constants is
considered when the method is generalized to high spatial dimensions.

The idea of performing renormalization group on a system with an extended Fermi surface was
suggested by Anderson [205]. Benfatto and Gallavotti [206], and Feldman and Trubowitz [207, 208] studied
the stability of the Fermi liquid against perturbations. Effective theories based on the idea of
renormalization group for Fermi liquid were derived by Polchinski [209], and for superconductors by
Weinberg [210].

Most studies in the late 90’s and early 00’s focused on the two dimensional Hubbard model [211–217].
Two important developments paved the way for using FRG to improve DMFT solutions. First, originally,
the conventional renormalization group uses an energy cutoff [203]. This is clearly not a unique choice, and
other cutoffs such as temperature, interaction, and even an hybridization cutoff for the impurity problem
have been proposed and implemented [218–220]. The second development is the implementation of the
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frequency dependent vertex. This is largely motivated by the interest in studying more complicated
electron–phonon coupling models [221, 222]. When only electron–phonon coupling is considered, the
frequency dependence, even at the single particle level, is not considered. That is, the self-energy is not
renormalized. The situation changes when explicitly retarded interactions are considered in models with
electron–phonon coupling or local disorder, such as the Anderson impurity model [122, 223–225].

It was realized early in the study of the frequency dependent vertex that the method can be used to study
mean field fluctuations. Attempts have been made to use it for the study of Gaussian fluctuations of the
slave boson mean field solution for the t-J model [226]. Progress in this research direction has been limited
because the conventional assumption that the bandwidth should be larger than the interaction is not met
for a wide range of parameters of the slave boson t-J model.

Related ideas have been revived in the past few years to consider mean field fluctuations. Instead of a
static mean field solution, the solution of the DMFT is considered [227]. The technique developed as a
result can be directly applied to build up the spatial dependence from the DMFT or DCA solution. The
main idea is that the bare vertex is replaced by the full vertex from the DMFT or DCA, and the self-energy
is set to that of the DMFT or DCA for the initial conditions of the renormalization flows.

From a general perspective, the renormalization group can be viewed as summing up diagrams that are
often referred to as forming the leading divergence [228]. In particular if second order perturbation is used
in the renormalization group calculation, the diagrams generated have the same topology as those of the
parquet method discussed above.

There is however a subtlety. The integration over the internal frequency and momentum are not the
same as those of the parquet method. The difference depends on the different cutoff schemes being used,
but the summation is never performed over the full range of frequency and momentum, instead it is done
on a shell of the energy range, and iteratively approaches the desired low energy or low temperature
manifold.

It has long been believed that the leading divergences of the one-loop FRG and the parquet should be
equivalent [202, 229, 230]. A recent proposal of a multi-loop flow equation for the four-point vertex
framework showed that the FRG flow consisting of successive one-loop calculations is equivalent to a
solution of the parquet equations. This further supports the idea of FRG as a possible alternative to solving
the parquet equations [231, 232].

Given the same topology of the diagrams, one might expect that the leading divergence among these two
methods should be the same even outside of the multi-loop setting. Therefore, for the purpose of looking
for the instability from metallic to ordered phase, these two approaches should be expected to give the same
result. On the other hand, for the metallic phase with no proximity to an instability, the results are not
naively equivalent.

The clear advantage of the functional renormalization group is the ease of the numerical calculations.
Unlike, the parquet or even the simplified dynamical vertex approximation, the functional renormalization
group works directly on the full reducible vertex. The numerical solution does not involve solving
self-consistent equations. It is given by the flow of the full vertex as the cutoff is lowered to the desired
energy or temperature. The formulation is represented in term of ordinary differential equations.

The main challenge of the parquet method is the instability of the numerical solution. Even if we assume
the existence of a unique solution, a robust method to attain this solution remains highly non-trivial. This is
ultimately the main issue with methods that seek self-consistent solutions. Unlike the DMFT in which only
single particle quantities are involved, the two-particle methods, full parquet or simplified forms, involve
solving for the vertex through self-consistent equations. Divergence in the vertex function is expected to
occur as the temperature is lowered. Therefore, equations with variables spanning a large range of values
over many orders of magnitude have to be solved. This is clearly a non-trivial task from the perspective of
numerical simulations. Although one can solve the equations at high temperature, it is not always clear how
far the solution can be pushed down in temperature. Contrary to this, the functional renormalization group
method sums up the same set of diagrams without the necessity of solving relevant equations
self-consistently. The divergence is approached step by step rather than via shooting as is done in the
self-consistent solution.

While the advantage of functional renormalization group from the point of view of numerical stability is
clear, the justification of its usage for nonlocal corrections with the vertex function from the DMFT solution
is not obvious. The conventional wisdom of renormalization group calculations is that the bandwidth
should be large and the interaction is a small parameter. The full vertex from DMFT is not necessarily small
compared to the effective bandwidth. Therefore, the conventional wisdom of justifying the low order
expansion is not incontrovertibly fulfilled. Moreover, these couplings generate self-energy corrections,
which have been shown to be important for studying systems with retardation effects, leading to the
renormalization of the Fermi velocity and quasiparticle lifetime. Thus, these couplings have to be kept even
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Figure 16. RG equations for the full vertex. There is a pair of red arrows which represent the derivative of the product of
propagators with respect to the RG scale Λ.

though they are often ignored in the non-retarded systems. In brief, the effective system being solved is
retarded although the original Hubbard model is not.

To leading second order expansion, the renormalization group equations for the scale (Λ) dependent
full vertex function, FΛ(k1, k2, k3) [211, 212], and the self-energy, ΣΛ(k) for a spin rotational invariant
two-body interacting system, are given by:

∂ΛFΛ(k1, k2, k3) =−
∫

dp∂Λ[GΛ(p)GΛ(k)]FΛ(k1, k2, k)FΛ(p, k, k3)

−
∫

dp∂Λ[GΛ(p)GΛ(q1)]FΛ(p, k2, q1)gΛ(k1, q1, k3)

−
∫

dp∂Λ[GΛ(p)GΛ(q2)]
[
−2gΛ(k1, p, q2)FΛ(q2, k2, k3)

+ FΛ(p, k1, q2)FΛ(q2, k2, k3) + FΛ(k1, p, q2)FΛ(k2, q2, k3)
]

, (54)

∂ΛΣΛ(k) = −
∫

dp∂Λ[GΛ(p)][2FΛ(p, k, k) − FΛ(k, p, k)], (55)

where k = k1 + k2 − p, q1 = p + k3 − k1, q2 = p + k3 − k2,
∫

dp =
∫

dp
∑

ω 1/(2πβ), and GΛ is the
self-energy corrected propagator at cutoff Λ (figure 16).

The RG equation can be presented in terms of diagrams. For a non-retarded system, the low energy
instability can be obtained from the renormalization flow of the couplings, and different phases can be
identified by the fixed points corresponding to the relevant spin and charge modes. One can explicitly
construct the flows of the susceptibilities of different order parameters. For example the pairing
susceptibility, χδ(k,ω), is defined by:

χδ
Λ(0, 0)=

∫ ∫
dp1dp2〈cp1,↓c−p1,↑c†−p2,↑c†p2,↓〉Λ. (56)

The RG equations are:

∂Λχ
δ
Λ(0, 0) =

∫
dp∂Λ[GΛ(p)GΛ(−p)](Zδ

Λ(p))2, (57)

∂ΛZδ
Λ(p) = −

∫
dp′∂Λ[GΛ(p′)GΛ(−p′)]Zδ

Λ(p′)gΛ(p′,−p′,−p, p). (58)

The function Zδ
Λ(p) is the effective vertex in the definition for the susceptibility χδ

Λ. The RG equations
for susceptibilities are solved with initial condition χδ

Λ=Λ0
(0, 0) = 0. The dominant instability in the ground

state is given by the most divergent susceptibility by solving the renormalization equations numerically.
Similar equations can be derived for other susceptibilities.

For the FRG boosted DMFT approach, DMF2RG [227], the initial condition for the full vertex functions
and the self-energy are both given by the DMFT [227]. The scale dependent bare propagator is defined as
an interpolation between the DMFT propagator and the bare lattice propagator as

G0
Λ(k, iω)−1 = ΛG0

imp(iω)−1 + (1 − Λ)G0
lattice(k, iω)−1. (59)

Since one can treat the functional renormalization group as a vehicle for summing diagrams, it can in
principle be applied on any effective fermionic interacting system. For example, it has recently been used as
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Figure 17. Algorithm for the functional renormalization group boosted DMFT. 1. The full reducible vertex and the Green
function are obtained from the DMFT solver. 2. They are fed into the FRG method as the initial conditions. 3. Solve the flow
equations for the FRG to obtain the Green function, full vertex, and susceptibilities.

a solver for the dual boson method [233]. FRG on auxiliary fermion or dual fermion has also been
considered [234, 235].

The DMF2RG algorithm is summarized in figure 17. For the derivation of the FRG formulation in the
context of strongly correlated systems we refer the readers to references [203, 212, 219, 236]. Details of the
implementation and approximations of the DMF2RG can be found in reference [227].

13. Numerical methods to represent vertex functions

The various methods described above in principle provide nonlocal corrections to the conventional
dynamical mean field theory or additional nonlocal corrections in the case of the DCA or the cellular
dynamical mean field theory. The ultimate goal is to attain a better approximation to the exact solution.
The physically most interesting regimes are often in the intermediate coupling away from the trivial limits
that could serve as a good basis for perturbative treatments. After all, all considered methods are based on
some truncation with respect to the interaction or more complicated objects as those in the ‘dual’ variables
approach. Moreover, the actual numerical implementation is sometimes rather challenging. Unlike DMFT
where only single particle quantities are involved in the self-consistent equations, the storage requirement of
two particle vertex functions is increased by two powers of the space-time grid size. Simply storing those
vertices is in itself a rather difficult task. Of course, that largely depends on the interaction and the
temperature range. One can naively expect that more fine resolution in the space-time grid is needed for
intermediate interactions and low temperatures. For high temperature and very weak or very strong
coupling, a rather sparse grid for discretizing the space-time functions could be sufficient.

The above storage problem can be resolved to an extent in today’s clusters with tens of thousands of
computing nodes. How to efficiently manipulate an object with such large memory requirement, and
involving all-to-all memory swaps, is an active research problem in computer science [155, 237]. Altogether,
with the improvement of computer hardware and better implementations, the storage problem can be
mitigated.

The main issue that is ultimately common to most of these methods is the convergence to a solution.
There is in general no guarantee that a self-consistent solution exists. While even in the single particle
self-consistent method, there is no guarantee that there is a uniform convergence to the solution. The
situation is more acute in theories that require two particle self-consistency. The vertex function is a
measure of the instability towards an ordered phase, therefore it should become singular as the instability is
approached. One can often work in the range of interactions and temperatures where singularities are far
from being reached. However, this may altogether defeat the purpose of the methods as the regimes near the
instabilities are usually those where corrections to the DMFT are of most interest. The challenge of finding a
stable numerical solution of the parquet formalism was already discussed in the early days when the
formalism was applied to the single impurity Anderson model [132, 238]. It is fair to say that a universally
reliable approach for a solution has yet to be found.

For DMFT, besides the simple iterative method, the more powerful Broyden method which utilizes the
gradient of the hybridization function in the impurity problem has been implemented and is occasionally
used in cases where convergence is difficult to achieve [239]. For the two-particle theories, given the
complexity of the equations being solved, more sophisticated methods have been attempted. One of them is
the homotopy method, in which a known convergent solution is relaxed to hopefully lead to a solution for
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another temperature or interaction strength. Practically, the methods are not in general easy to apply and
convergence is not guaranteed.

The above difficulties in solving for the two-particle vertex function self-consistently may give an
advantage to FRG based methods in which no self-consistent solution is sought. The solution is obtained
not by solving non-linear integral self-consistent equations, but rather by solving differential equations with
initial conditions. This allows more flexibility in the numerical solution.

For substantial progress to be accomplished, it is essential that numerical methods perform well while,
at the same time, requiring reasonable computational resources. Although storing the full vertex is a
daunting task, the amount of information it actually contains is, in practice, not very large. At least for the
weak coupling case, the vertex functions contain very small entropy in the sense that it can be compressed
numerically to a large extent and still retain most of the information. It has been suggested for a long time
that, a possible route to storing the vertex function is to use the spectral representation [240, 241]. A clear
advantage in the spectral representation is that the high frequency information is built in the representation.
The spectral representation has been further explored in recent studies [242, 243].

Various efforts have also been devoted to understanding the frequency structure of the vertex function.
These may help with new ideas on approximation schemes for the vertex function [244–250]. The latest
proposal is to use a tensor network representation [251].

Yet another intuitive scheme is to consider an inhomogeneous grid to represent momentum-frequency
space indices. Generically, the frequency or momentum dependence is described by an interpolation
scheme. This can be justified specifically for the frequency indices because the low frequency information
should be more important, contains most of the information and thus requires higher resolution. Moreover
the high frequency contribution can be well fitted by simple functions for convenient storage. Generally,
such methods which are based on interpolations, can be seen as approximating the vertex as follows:

F(ωk,ωk′ ,ωq) = S(F̃(ω̃k, ω̃k′ , ω̃q),ωk,ωk′ ,ωq), (60)

where F is the vertex in the uniform frequency grid ω and F̃ is the actual data stored in the grid of some
arbitrary basis in ω̃. S is the interpolating function or the basis function that maps F̃ to F.

Note that there is no inverse for such an interpolation or basis expansion. Similar ideas can also be
extended to the space grid. This has been studied recently in the context of FRG and also the parquet
method [252–256]. An extreme case of only retaining the transfer frequency and momentum has been
proposed as a simplification of the parquet equations for analytical solutions for single impurity problems
[133–135].

The lack of an inverse transformation to the original vertex means that the self-consistent equations are,
in principle, altered by the transformation. The representation is however a controlled approximation in the
sense that the larger number of basis functions or the larger number of grid points can reduce the acquired
error. On the other hand, strictly speaking, the crossing symmetries of the vertex, that are a manifestation of
the Pauli exclusion principle, are also broken by such interpolation or basis expansion schemes. These
symmetries are one of the key features of the parquet algorithm.

A scheme that has been studied in the context of FRG is to factorize the vertex function approximately
[227]. In the representation of the vertex function with two fermionic frequencies and one bosonic transfer
frequency, the frequency transfer has the most dominant contribution. Thus, one can argue physically that
the frequency or momentum transfer part of the vertex function can be factorized. This drastically reduces
the computational effort and, in particular, the storage requirement. A less drastic approximation is the
so-called two-level approximation [246], for which the low frequency part of the vertex is calculated exactly
while only the frequency transfer dependence is kept for the high frequency part of the vertex. Another
recent proposal is to consider the momentum dependence by using an expansion in terms of, say, spherical
harmonics. This can help reduce the storage for the spatial dimension and thus allow studies of larger
cluster sizes [252].

It is important to point out out that the corrections on top of the DMFT solution, while they are indeed
quite meaningful, are often not large for most momentum-frequency points, particularly for weak or very
strong interactions. It is, in this sense, appropriate to inquire what are the effects of numerical errors on a
method that would, in principle, be capable of significant corrections to DMFT. Might the approximate
numerical solutions overwhelm the expected solution? Of course, one could expect that corrections in the
intermediate regime are larger, but the convergence problem in this regime may prevent a satisfactory
solution.

Overall, a number of challenges still remain for general numerical solutions. Algorithmic breakthroughs,
advances in the representation of the vertex function and in the solvers, are needed for general converging
solutions over a wider range of parameters.
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Figure 18. Diagram illustration of the crossing symmetry for the particle–particle vertex.

14. Exact constraints

14.1. Conserving approximation
A milestone in the theory of condensed matter physics is the formulation of the so-called conserving
approximations by Baym and Kadanoff [257, 258]. The idea of constructing approximations based on a
functional of the Green function was pioneered by Luttinger and Ward, Φ(G) [259]. It was shown that the
functional derivative with respect to the Green function can be used to define the self-energy δΣ = trΣδG.
Putting it together with the Dyson equation G−1 = G−1

0 − Σ, the correlation functions generated by the
functional obey conservation laws and thus the Ward identities.

Conventional methods that are also conserving approximations include self-consistent solutions of the
Hatree–Fock, TMA, and GW approximations. Another well known method that is also a conserving
approximation is the fluctuation exchange (FLEX) approximation.

Dynamical mean field theory and its cluster extensions, CDMFT and DCA, are both conserving
approximations although the Ward identity on the lattice is strictly speaking not satisfied due to the
coarse-graining procedure. Though ‘conserving approximation’ does not necessary imply ‘better
approximation’, conserving approximations may be more important for broken symmetry cases, that are
not routinely studied by the DMFT.

It has been argued that both the dual fermion and the dual boson approximations give conserving
approximations for ladder summation [181]. That should also be the case for the dynamical vertex
approximation, at least for the ladder approximation.

14.2. Mermin–Wagner–Coleman theorem
This theorem forbids broken continuous symmetry for a system in dimensions two or less at a finite
temperature [260–262]. A particularly interesting case is that of the spin rotation symmetry in the two
dimensional Hubbard model that should not be broken and thus no true phase transition should occur.

We are not aware of a proof that any of the methods presented in this review satisfies this constraint.
There is plenty of evidence that the DMFT and its cluster extensions do show finite transition temperatures
through measurements of the susceptibilities.

A recent study by the parquet method seems to provide numerical evidence that Mermin–Wagner
theorem could be satisfied [252]. The dual boson theory has also been argued to fulfill the Mermin–Wagner
theorem by restricting the Hubbard model double occupancy to be the same as that of the impurity model
which is solved numerically in an exact manner [187].

14.3. Causality
DMFT, CDMFT, and DCA can be shown to be causal. We are not aware of a proof of causality for dual
fermion, dual boson, dynamical vertex approximation, parquet, or FRG [41, 42]. However, in practice, that
does not seem to be a serious problem.

14.4. Crossing symmetry, Pauli principle
An important feature of the parquet method is that the crossing symmetries, as illustrated for the
particle–particle vertex in figure 18, expressing the identity:

Fpp(12, 34) = −Fpp(21, 34),

are satisfied. The full FRG also satisfies the crossing symmetries. However, in practical implementations, the
crossing symmetries may sometimes be broken due to the approximations made on the vertex functions.

15. Applications

In this section we discuss the major applications of the MSMB methods discussed above. The list of
applications here is not intended to be exhaustive, in particular we focus exclusively on studies of lattice
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Figure 19. Comparison of the determinant quantum Monte Carlo (DQMC) imaginary time Green function at k = (π, 0) [panel
(a)] and k = (0, 0) [panel (b)] with the result from several diagrammatic approaches [self-consistent second order (SC 2nd),
fluctuation exchange (FLEX), parquet approximation (PA)]. The parquet approximation shows the best agreement with the
DQMC result. Reprinted figure with permission from [123], Copyright (2009) by the American Physical Society.

models. Efforts to combine density functional theory with these post-DMFT/DCA methods are the subject
of current active research. Readers interested in these efforts will find useful discussions in references [161,
263–272].

15.1. Parquet
The parquet formalism is quite demanding from the point of view of computational resources and, for this
reason, it has not been as extensively pursued as other diagrammatic methods despite its promise. We
highlight two earlier studies using this method. Recent studies include applying it to the dual fermion
diagrams and dynamical vertex approximation, or simplifying the calculation by different representations of
the vertex functions as discussed in previous subsections.

Yang et al solved the full parquet equation for the half-filled 4 × 4 cluster [123]. Results were compared
to those obtained from the determinant quantum Monte Carlo (DQMC), fluctuation exchange (FLEX), and
self-consistent second-order approximation methods. This comparison, illustrated in figure 19, shows a
satisfactory agreement with DQMC and a significant improvement over the FLEX or the self-consistent
second-order approximation.

When exploring the origin of instabilities identified in the susceptibility, the parquet formalism enables
the identification of separate channel contributions. Indeed, a key feature of the parquet equations is that
they express the contribution to a given scattering channel by processes from other channels. This is
essential in understanding the mechanisms for key processes and phase transitions. Yang et al analyzed the
pairing vertex as a function of temperature and doping. To this end, they wrote it in the form of its
contributions from the charge and spin channels: Γ = Λ + Φc +Φs, and applied the d-wave projection to
this equation to get the expression in terms of the different components: Vd = VdΛ + Vdc + Vds. This
analysis indicated that the dominant contribution to Vd originates from the spin channel [273].

The relations (40)–(43) can also allow us to restore the crossing symmetries for the full vertices during
the iterative solution of the self-consistent equations. This procedure was found to enhance the stability of
the self-consistent solution. With two-particle diagrams, physical instabilities can be identified by examining
the divergence of the susceptibility in the associated scattering channel. This divergence is also manifested
through the leading eigenvalues of the pairing matrix in the channel r, Mr = Γr × χr

0, becoming equal to 1.
As shown in figure 20, the leading eigenvalues of the pairing matrix typically diverge prematurely in the
self-consistent solution of the parquet formalism and thus lead to a breakdown of the numerical solution at
moderate to large values of the interaction. However, when the crossing symmetries are enforced
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Figure 20. For a simple iterative solution of the parquet formalism, leading eigenvalues of the pairing matrix in different
channels [density (d), magnetic (m), spin singlet (s), and spin triplet (t)] as a function of the iteration number at temperature
T = 0.4t on a 2 × 2 cluster. Without enforcing the crossing symmetries, the leading eigenvalues approach 1 and divergence
occurs prematurely in the self-consistent solution for U = 4t and U = 6t. When the crossing symmetries on F are explicitly
restored at every iteration, the solution is found to remain stable for the same values of U. Reprinted figure with permission from
[155], Copyright (2013) by the American Physical Society.

throughout the iterative process, a more stable solution is found. This allows a better approach to the actual
physical instability [155].

Kusunose solved parquet equations for both the impurity Anderson model and the Hubbard model on a
square lattice mainly for the particle–hole symmetric or the half-filled case [141]. He argued that in both
models the vertex renormalization in the spin channel eliminates the magnetic instabilities of the
mean-field theory to ensure satisfaction of the Mermin–Wagner theorem. The parquet method gives the
same critical exponents as the self-consistent renormalization Moriya theory in the quantum critical region.

Pudleiner et al studied the Pariser–Parr–Pople (PPP) model or Hubbard model with nonlocal
interaction for the conjugated π bonds in benzene [274]. They found that quasiparticle renormalization is
much weaker in the PPP than in the Hubbard model, but the static part of the self-energy enhances the
band gap of the PPP model. In addition, the vertex corrections to the optical conductivity are much more
important in the PPP model.

15.2. Dynamical vertex approximation
Most of the applications of the dynamical vertex approximation are focused on the Hubbard model in two
dimensions. The one dimensional Hubbard model has also been studied by the full parquet dynamical
vertex approximation [275]. For the three dimensional Hubbard model, it has been found that the
antiferromagnetic phase develops incommensurate magnetic ordering as the doping increases [162].
Interesting results on the critical exponent have also been obtained [276].

The main gain of including more spatial fluctuations is the suppression of the tendency towards
ordering. The dynamical vertex approximation has been shown to reduce the transition temperature of the
antiferromagnetic ordering in the half-filled Hubbard model in both two and three dimensions. As we
discussed in the previous section, neither DMFT nor dynamical vertex approximation fulfill the
Mermin–Wagner theorem, thus broken symmetry is allowed at a finite temperature even for the
two-dimensional case. We summarize the major results from the dynamical vertex approximation in the
following.
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Figure 21. Nonlocal corrections to DMFT obtained by the parquet DΓA on an 8 site Hubbard ring at half-filling for U = 2t and
temperature T = 0.1t. The figure shows the comparisons between the exact, and the DΓA results for the real and the imaginary
parts of the self-energy at different momentum points and for the DMFT results as a function of Matsubara frequency. Reprinted
figure with permission from [277], Copyright (2018) by the American Physical Society.

15.2.1. Hubbard model
Valli et al used the parquet dynamical vertex approximation to study the electronic self-energies and the
spectral properties of the finite-size one-dimensional Hubbard model with periodic boundary conditions.
In this model the Fermi liquid theory is invalid, and that should present a rather challenging case for any
perturbative expansion on top of the DMFT solution [275]. Valli et al suggested that for a non-degenerate
bare dispersion, the parquet dynamical vertex approximation quantitatively reproduces the exact
many-body solution of the system. This is illustrated in figure 21 that compares the exact self-energy to that
of the parquet DΓA. Given that the system should be a Luttinger liquid which cannot be adiabatically tuned
into a Fermi liquid, this is a very encouraging result.

Schäfer et al have studied the two-dimensional Hubbard model on a square lattice [278]. They defined
two transition lines in the phase diagram: one for the gap cutting across the nodal direction and the other
for a gap throughout the Fermi surface. The self-energy data shows that the evolution between the two
regimes occurs in a gradual way, not through a phase transition, and also that at low enough temperatures
the whole Fermi surface is always gapped.

Schäfer et al also showed that the electron self-energy is well separable into a local dynamical part and a
static nonlocal contributions for the three dimensional Hubbard model [279]. The quasiparticle weight
remains essentially momentum independent for different fillings, including in the presence of overall large
nonlocal corrections to the self-energy.

Pudleiner et al computed the self-energy for the half-filled Hubbard model on a square lattice using
lattice QMC simulations and the dynamical vertex approximation [280]. The self-energy is strongly
momentum-dependent, but it can be parameterized via the noninteracting energy–momentum dispersion
εk, except for some pseudogap features right at the Fermi edge.

In reference [281], Schäfer et al studied the two dimensional Hubbard model by combining dynamical
vertex approximation, lattice QMC, and variational cluster approximation (VCA). They demonstrated that
scattering at long-range fluctuations due to paramagnons opens a spectral gap at weak-to-intermediate
couplings, irrespective of the preformed localized or short-ranged magnetic moments. They argued that the
two-dimensional Hubbard model has a paramagnetic phase which is insulating at low enough temperatures
for any finite interaction and no Mott–Hubbard transition is observed.

Schäfer et al found that the antiferromagnetic phase transition of the Hubbard model in three
dimensions is in contradiction with the conventional Hertz–Millis–Moriya theory [162]. They argued that
the quantum critical behavior is driven by the Kohn anomalies of the Fermi surface, even when electronic
correlations become strong.

Rohringer et al studied the three dimensional half-filled Hubard model [276]. They found the Neel
temperature is lowered from that of the DMFT as expected. More interestingly, they found the critical
exponents to be the same as those of the three dimensional Heisenberg antiferromagnet in contrast to mean
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field exponents. This demonstrates that non-mean-field behavior can indeed be obtained by these
systematic nonlocal corrections.

Rohringer and Toschi studied several spectral and thermodynamic properties of the Hubbard model in
two and three dimensions [282]. Specifically, by evaluating the electronic scattering rate and the
quasiparticle mass renormalization in the low energy regime, they characterized the gradual deterioration
by nonlocal correlations of the Fermi liquid physics as a function of the interaction strength. They found
that the kinetic energy either increases or decreases compared to that of the DMFT depending on the
interaction strength being weak or strong, respectively. They argued that these results correspond to the
evolution of the ground state from a nesting-driven (Slater) to a superexchange-driven (Heisenberg)
antiferromagnet.

15.2.2. Attractive Hubbard model
Lorenzo Del Re et al studied the attractive Hubbard model in three dimensions for the pairing or charge
density wave ordering [159]. They found that the fitted critical exponents from the ladder DΓA results were
larger not only than the DMFT ones, but also larger than the exact ones belonging to the corresponding
universality class.

15.2.3. Periodic Anderson model
Schäfer et al studied the phase diagram and quantum critical region of the periodic Anderson model [283].
They found a phase transition between a zero-temperature antiferromagnetic insulator and a Kondo
insulator. In the quantum critical region, they determined a critical exponent γ = 2 for the
antiferromagnetic susceptibility. This becomes γ = 1 at high temperature.

15.3. Dual fermions
The dual fermion method has been used to investigate models from the Falicov–Kimball to the Hubbard
model in both two and three dimensions. The Anderson model for random disorder has also been studied
and so far, this is the only post-DMFT method for the study of disorder. Perhaps a more interesting study is
that of the Anderson–Hubbard model, which investigates the long standing problem of the competition
between Mott insulator and Anderson insulator. We summarize the major results from the dual fermion
method in the following.

15.3.1. Hubbard model
Hafermann et al used the ladder diagrams for the dual fermion and found that the critical Néel temperature
of the mean-field solution is suppressed in the ladder approximation of the two-dimensional Hubbard
[284].

Rubtsov et al found that the antiferromagnetic pseudogap, the Fermi-arcs formation, and the
non-Fermi-liquid effects due to the Van Hove singularity are correctly reproduced by the lowest-order
diagrams for the two-dimensional Hubbard model [285].

Otsuki et al obtained the phase diagram for the two-dimensional Hubbard model [286]. This features a
phase separation region in the low-doping regime around the Mott insulator.

Astretsov et al mapped out the phase diagram of the 2D Hubbard model as a function of temperature
and doping. They identified an antiferromagnetic region at low doping and a superconducting dome at
higher doping [177]. Their results support the role of the van Hove singularity as an important ingredient
for the high value of Tc at optimal doping. At small doping, the destruction of antiferromagnetism is
accompanied by an increase of the charge fluctuations supporting the scenario of a phase-separated state
driven by quantum critical fluctuations.

Tanaka studied the square-lattice Hubbard model at half-filling using the ladder dual fermion
approximation. He found that the almost simultaneous creation of the pseudogap and the loss of the Fermi
liquid feature is consistent with what is expected in the Slater regime [287]. Although the pseudogap still
appears in the quasi-particle-like single peak for U � 4, the Fermi-liquid feature is partially lost on the
Fermi surface already at higher temperatures as expected in the Mott–Heisenberg regime, where local spins
are performed at high temperatures. A sharp crossover from a pseudogap phase to a Mott insulator at finite
U � 4.7t was found to occur below the temperature of the pseudogap formation.

van Loon et al applied the dual fermion approach with a second-order approximation to the self-energy
for the Mott transition in the two-dimensional Hubbard model [288]. A strong reduction of the critical
interaction and an inversion of the slope of the transition lines with respect to single-site dynamical
mean-field theory was observed.

Katanin et al showed the suppression of the quasiparticle weight in the three-dimensional Hubbard
model [289]. With an additional correction in the susceptibility to fulfill the Mermin–Wagner theorem
[290], they also found a dramatically stronger impact of spin fluctuations in two dimensions where the
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Figure 22. Leading eigenvalues of the antiferromagnetic pairing matrix as a function of temperature for U = 4t for the DCA 1
site cluster and the dual fermion corrected result on a 4 × 4 cluster. The dual fermion corrections are calculated with different
approximations: second order Σ(2), FLEX, and parquet. The leading eigenvalue is calculated by either including only the single
particle correction in the self-energy, or both the single particle correction and the two-particle correction in the irreducible
vertex. Σd = 0 corresponds to the bare dual fermions quantities with no DCA calculation. Reprinted figure with permission
from [171], Copyright (2011) by the American Physical Society.

pseudogap is formed at low enough temperatures. They proposed that the origin of the pseudogap at
weak-to-intermediate coupling is in the splitting of the quasiparticle peak.

Hirschmeier et al studied the three dimensional Hubbard model and they reported that in the
weak-coupling regime, spin-flip excitations across the Fermi surface are important while the
strong-coupling regime is described by Heisenberg physics [291]. For intermediate interaction, aspects of
both local and nonlocal correlations appear. They also found that the critical exponents of the transition in
the strong-coupling regime are consistent with the Heisenberg model down to an interaction of U = 10t.
Again the identification of non mean-field exponents is an interesting finding.

Antipov et al demonstrated that diagrammatic multiscale methods anchored around local
approximations are indeed capable of capturing the non-mean-field nature of the critical point of lattice
models [292]. This is an interesting result as the mean field theory describes the longest length scale in the
problem.

van Loon et al studied the two-dimensional square-lattice for small to moderate interaction strengths
[293]. The nonlocal correlations beyond dynamical mean-field theory induce a pseudogap in the density of
states. The upper bounds on the crossover temperature are found to be significantly lower than previously
reported dynamical vertex approximation results at U = t.

As mentioned previously, the methods presented here can be applied to quantum cluster theories such
as DCA and CDMFT to perturbatively capture nonlocal correlations beyond the length scale of the initial
cluster size. Figure 22 shows an analysis of the leading eigenvalue of the antiferromagnetic pairing matrix
for different approximate methods within the dual fermion approach. The figure indicates how the
unphysical phase transition obtained from the mean field result (DCA with one site) is suppressed with
different approximations of the dual fermion solution [171].

Figure 23 shows a compilation of results obtained using different methods and illustrates the systematic
corrections to the transition temperatures through the incorporation of nonlocal correlations in the
two-dimensional Hubbard model at half-filling. The figure depicts, at large U and at low T, the DMFT
paramagnetic metal solution indicating the first-order Mott metal insulator transition with a low
temperature Mott paramagnetic insulator. The first-order transition terminates at a critical value of
Uc = 10t. Including the short range antiferromagnetic correlations such as in CDMFT, VCA or
second-order dual fermions (DF(2)), modifies the critical interaction value and the shape of the coexistence
region. Including longer-range antiferromagnetic fluctuations through ladder DΓA or the two-particle
self-consistent method leads to further modifications eventually transforming the MIT into a crossover at
small U that is consistent with the Uc → 0 for T → 0 limit.

15.3.2. Hubbard model on a triangular lattice
Yudin et al studied the Hubbard model on a triangular lattice [294]. They showed that the band flattening is
driven by correlations and is well pronounced even at sufficiently high temperatures, of the order of 0.1–0.2
times the hopping parameter.
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Figure 23. Comparative phase diagrams of the two-dimensional Hubbard model obtained from different methods. The figure
demonstrates the effects of systematic incorporation of nonlocal correlations on the Mott metal insulator transition temperature
as a function of interaction. Reprinted figure with permission from [277], Copyright (2018) by the American Physical Society.

Lee et al studied the Hubbard model on the triangular lattice at half filling. They determined the
metal–insulator transition and the hysteresis associated with a first-order transition in the
double-occupancy and nearest-neighbor spin-correlation functions as functions of temperature [295]. By
calculating the spin susceptibility, an enhancement of antiferromagnetic correlations and evidence for
magnetically ordered phases were found.

Antipov et al studied the half-filled Hubbard model on an isotropic triangular lattice with a spin
polarized extension of the dual fermion approach [296]. They found that the dual fermion corrections
drastically decrease the energy of a spin liquid state while leaving the non-collinear magnetic states almost
non-affected. This makes the spin liquid become a preferable state in a certain interval of interaction
strength of the same order of magnitude than the bandwidth.

Li et al studied both the half-filled and the doped Hubbard model on a triangular lattice and produced
its phase diagram [297].

15.3.3. Hubbard model on the honeycomb lattice
Hirschmeier et al studied the Hubbard model on the honeycomb lattice in the vicinity of the quantum
critical point by means of a multiband formulation of the dual fermion approach. They found that the
critical interaction strength of the quantum phase transition from a paramagnetic semimetal to an
antiferromagnetic insulator is in good agreement with other numerical methods [298]. They also argued
that the Hubbard model on the honeycomb lattice behaves like a quantum nonlinear σ model, while
displaying signs of non-Fermi-liquid behavior.

15.3.4. Falicov–Kimball model
Astleithner et al studied the Falicov–Kimball model. Using the full parquet dynamical vertex
approximation, they argued that weak localization corrections in the particle–particle channel are not the
dominant vertex corrections to the optical conductivity [299].

15.3.5. Kondo lattice model
Otsuki studied the Kondo lattice model to explore possible superconductivity emerging from the critical
antiferromagnetic fluctuations [300]. The d-wave pairing is found to be the leading instability only in the
weak-coupling regime. As the coupling is increased, a change of the pairing symmetry into a p-wave
spin-singlet pairing was found.

15.3.6. s–d exchange model
Sweep et al studied the critical values of the s–d exchange coupling constant [301]. They reported a
difference between the DMFT and dual fermion results that is more than a factor of two for the square
lattice and spin one-half localized electrons.

15.3.7. Anderson disorder model
Terletska et al generalized the dual fermion approach to disordered systems using the replica method [179,
302]. The developed method utilizes the exact mapping to the dual fermion variables, and includes
inter-site scattering via diagrammatic perturbation theory in the dual variables. As shown in figure 24
nonlocal effects that are missed in the CPA are captured.
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Figure 24. Nonlocal corrections to the CPA for the disorder Anderson model. The dual fermion corrections capture the nonlocal
corrections that are absent in the CPA results. This leads to a better agreement with the DCA result for the imaginary part of the
self-energy and the density of states as the disorder strength is increased. Left panel: Im Gr=0(ωn) in d = 1 at T = 0.02. Right
panel: total density of states for different disorder strengths: W = 0.25, 1.25, 2.0(4t = 1). Reprinted figure with permission from
[179], Copyright (2013) by the American Physical Society.

15.3.8. Anderson Falicov–Kimball model
Yang et al generalized the dual-fermion formalism for disordered fermionic systems to include the effect of
interactions. The phase diagram for the two dimensional Anderson–Falicov–Kimball model was obtained
[303].

15.3.9. Anderson–Hubbard model
Haase et al studied the three-dimensional Anderson Hubbard model. They report that the dual-fermion
approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results. This
is shown in the phase diagrams of figure 25 obtained with DMFT (a), dual fermions with second order
diagrams (b), and dual fermions with FLEX diagrams (c). The systematic improvement of the solution first
with the incorporation of non-local corrections and then in terms of the level of the diagrammatic
treatment is shown through the expected suppression of the DMFT critical temperatures for the
antiferromagnetic phase. These solutions allowed the authors to calculate the hysteresis in the double
occupancy in three dimensions, taking into account nonlocal correlations [180].

Otsuki studied the Kondo lattice model [300], and found that different superconductivity pairing
symmetries emerge from the critical antiferromagnetic fluctuations. He found the d-wave pairing to be the
leading instability only in the weak-coupling regime. As the coupling is increased, a change of the pairing
symmetry into a p-wave spin-singlet pairing is observed. The competing superconductivities are ascribed to
a crossover between small and large Fermi surfaces, which occurs with the formation of heavy
quasiparticles.

15.4. Dual bosons
The dual boson method has been applied on models with nonlocal interactions. These include the
truncated long range Coulomb coupling, the nearest neighbor interaction in the extended Hubbard model,
and the anisotropic dipolar coupling for cold atoms. A key difference is that those nonlocal density–density
type couplings can lead to the competition between charge fluctuations and spin fluctuations which results
in charge density wave ordering and possibly bond wave ordering [304].
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Figure 25. U–T phase diagram of the 3D Anderson–Hubbard model for different values of the disorder strength V obtained
with DMFT (a), dual fermions with second order diagrams (b), and dual fermions with FLEX diagrams (c). The shaded regions
correspond to the antiferromagnetic phase. W is the bandwidth. Note that the authors do not calculate the critical temperatures
in the region of U/W < 1/3. Reprinted figure with permission from [180], Copyright (2017) by the American Physical Society.

15.4.1. Extended Hubbard model
Vandelli et al proposed to use QMC to sample diagrams from the dual boson theory for the extended
Hubbard model [186]. They proposed that the single-particle Green function allows one to estimate the
transition point to the charge density wave phase.

15.4.2. Hubbard model with dipolar coupling

van Loon et al studied the Hubbard model with long-range dipole–dipole interactions [305]. This is an
interesting model in the context of experiments with cold atoms on optical lattice [306]. Besides the stripe
phase and the checkerboard phase, based on their dual boson calculation they suggest that there is a novel
phase with ‘ultralong-range’ density correlations at distances of tens of lattice sites.

15.4.3. Hubbard model with Coulomb coupling
Hafermann et al and van Loon et al studied the polarization for the two dimensional Hubbard model with
long range Coulomb coupling [183, 307]. They found that plasmon spectra are qualitatively different from
those of the random-phase approximation: they exhibit a spectral density transfer and a renormalized
dispersion with enhanced deviation from the canonical behavior.

15.5. TRILEX
Applications of TRILEX are mostly on the two dimensional Hubbard model.

Aryal et al found that the local vertex, for strong interactions, gains a strong frequency dependence,
driving the system to a Mott transition for the half-filled Hubbard model on a square lattice [193]. At low
enough temperatures, large spin fluctuations lead to an enhancement of the momentum dependence of the
self-energy. Upon doping, they find a Fermi arc in the spectral function.

Vučičević et al studied the dependence of the superconducting temperature on the bare dispersion at
weak coupling, which shows a clear link between strong antiferromagnetic correlations and the onset of
superconductivity [194]. They identified a combination of hopping amplitudes particularly favorable to
superconductivity at intermediate doping.

15.6. FRG
Functional renormalization group has been used extensively for over two decades. Recent applications to
improve the DMFT solution have so far been mostly limited to the Hubbard model.

Tranto et al first proposed to use FRG to expand the DMFT solution [227]. They studied the half-filled
square lattice Hubbard model and found that the method provides more prominent momentum
dependence than the conventional FRG method.
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Vilardi et al studied the doped two dimensional Hubbard model [308]. They found strong
antiferromagnetic correlations from half-filling to 18% hole doping at low temperature, and a sizable
d-wave pairing interaction driven by magnetic correlations at the edge of the antiferromagnetic region.

16. Conclusion

We have reviewed MSMB numerical methods to address strongly correlated systems by appropriately
treating the short length scale, the long length scale and the intermediate length scale. The different
methods implemented to date have produced promising results despite being hindered by a variety of
numerical challenges. Since short length scales are treated exactly, diagrammatic methods arise as a suitable
approach to deal with the intermediate length scales by systematically evaluating appropriate subsets of
possible diagrams. In this context the parquet formalism is the most natural toolkit. We have reviewed the
construction of the parquet formalism and the different diagrammatic approximations that it encompasses
as well as algorithms for their numerical solutions. We have not discussed in this review efforts to extend
the methods into ab initio calculations. These represent an important next step for appropriate treatments
of real materials. In general, MSMB methods to incorporate nonlocal corrections into the DMFT solution
represent an active area of research and new implementations are actively being developed to overcome
previous shortcomings.

Some of the latest ideas have not been discussed in the present review. These include but are not limited
to the parquet method for the vertex in the boson-fermion representation [309–312], the atomic
approximation of the four-particle irreducible functional method [313], one-particle irreducible functional
method [314], nonlocal expansion method [315], and FLEX + DMFT approach [316, 317].

Another important topic is that of the solvers for the vertex functions. While there are many different
numerical solvers for the impurity/cluster problem, most of them are not suitable for the calculation of the
vertex function which is essential for perturbative expansions around the DMFT solution. While many
solvers may be generalized for the calculation of vertex function, at present the practical methods are exact
diagonalziaton and QMC.

For the ED method, the calculation of the vertex function is usually down to brute force calculation in
the Källén–Lehmann spectral representation. Unlike the calculation of the single particle quantity, the
method based on expansion in terms of a continued fraction is not applicable for the calculation of the
vertex functions [11, 59, 318, 319]. Thus the calculation is limited to a rather small number of bath sites or
orbitals [157, 287].

For the QMC approach, besides the minus sign problem [320, 321], the main challenge for calculating
the vertex is the noise in the measurements, especially at high frequency. This is particularly acute for the
hybridization expansion approach. Significant progress has been made to reduce the noise by measuring in
a basis of orthogonal polynomials [322–325]. There is continuous improvement on the sampling efficiency
and on the ability to attain ergodicity [326–330]. For further discussion of these approaches, we refer the
interested readers to the comprehensive review by Gull et al [53].

As we have seen, the different implementations of MSMB approaches have produced very significant
results that validate the motivation of the approach. Indeed, more appropriate treatments of nonlocal
correlations improve the results both qualitatively and quantitatively. To improve the robustness of the
approach and to extend the methods to broader ranges of parameters, further developments are needed to
overcome the computational challenges. This may involve new insights on the physics, leading to modified
algorithms, or the development of new numerical techniques.

While we discuss several executions of the MSMB approach, an omission in this paper is a definite
guideline with pros and cons of the respective methods. In particular, it is desirable to answer the question
of which method provides the best results with the least numerical effort. Presently, there are various
reasons why it is rather difficult to address this question. First, many of the methods have not been fully
investigated, some of them may not even have been optimally implemented. Second, the question of ‘best
results’ needs qualification, it is unlikely that there is one method which holds a clear advantage over the
others in terms of getting the best results. This can be understood from the point of view that all the
methods discussed are based on some form of perturbative expansion on top of effective interacting
models. The range of parameters is an important factor in deciding the quality of different expansions.
Third, the implementation of a given method also affects the quality of the results. All the methods require
the handling of different types of vertex functions. The procedure for storing and approximating the vertex
functions can be a non negligible factor in the final results. While there is intense activity on the MSMB
approaches, the field is still rather young. We have painted a detailed picture of the landscape in our
discussions of the different methods, the nuances within the methods, and possible subtleties across the

34
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numerical approximations involved. In time, we believe the community will push these different
implementations to the point of producing a fuller picture; allowing for more transparent comparisons.
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[73] Terletska H, Zhang Y, Tam K-M, Berlijn T, Chioncel L, Vidhyadhiraja N and Jarrell M 2018 Appl. Sci. 8 2401
[74] Yoo J, Chandrasekharan S, Kaul R K, Ullmo D and Baranger H U 2005 J. Phys. A: Math. Gen. 38 10307
[75] Rohringer G, Hafermann H, Toschi A, Katanin A, Antipov A, Katsnelson M, Lichtenstein A, Rubtsov A and Held K 2018 Rev.

Mod. Phys. 90 025003
[76] Jung C, Lieder A, Brener S, Hafermann H, Baxevanis B, Chudnovskiy A, Rubtsov A N, Katsnelson M I and Lichtenstein A I 2012

Ann. Phys. 524 49
[77] Zhou C and Guo H 2019 Phys. Rev. B 99 075414
[78] Chen F, Cohen G and Galperin M 2019 Phys. Rev. Lett. 122 186803
[79] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[80] Metzner W and Vollhardt D 1989 Phys. Rev. B 39 4462
[81] Müller-Hartmann E 1989 Z. Phys. B 74 507
[82] Müller-Hartmann E 1989 Z. Phys. B 76 211
[83] Georges A and Kotliar G 1992 Phys. Rev. B 45 6479
[84] Jarrell M 1992 Phys. Rev. Lett. 69 168
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[201] Menyhárd N and Sólyom J 1973 J. Low Temp. Phys. 12 529
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[275] Valli A, Schäfer T, Thunström P, Rohringer G, Andergassen S, Sangiovanni G, Held K and Toschi A 2015 Phys. Rev. B 91 115115
[276] Rohringer G, Toschi A, Katanin A and Held K 2011 Phys. Rev. Lett. 107 256402
[277] Rohringer G, Hafermann H, Toschi A, Katanin A A, Antipov A E, Katsnelson M I, Lichtenstein A I, Rubtsov A N and Held K

2018 Rev. Mod. Phys. 90 025003
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