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We present a solution for the nonequilibrium dynamics of an interacting disordered system. The approach
adapts the combination of the equilibrium dynamical mean-field theory and the equilibrium coherent potential
approximation methods to the nonequilibrium many-body formalism, using the Kadanoff-Baym-Keldysh com-
plex time contour, for the dynamics of interacting disordered systems away from equilibrium. We use our time
domain solution to obtain the equilibrium density of states of the disordered interacting system described by
the Anderson-Hubbard model, bypassing the necessity for the cumbersome analytical continuation process. We
further apply the nonequilibrium solution to the interaction quench problem for an isolated disordered system.
Here, the interaction is abruptly changed from zero (noninteracting system) to another constant (finite) value at
which it is subsequently kept. We observe via the time dependence of the potential, kinetic, and total energies
the effect of disorder on the relaxation of the system as a function of final interaction strength. The real-time
approach has the potential to shed light on the fundamental role of disorder in the nonequilibrium dynamics of

interacting quantum systems.
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I. INTRODUCTION

The physics of strongly correlated systems remains the
subject of sustained research efforts due to the many in-
triguing properties that they exhibit. Dynamical mean-field
theory (DMFT) is now well established as an essential tool
in advancing the understanding of these systems in equilib-
rium [1-5]. The method and its cluster extensions [6—11]
have been used extensively for strongly correlated systems.
It has been extended to the nonequilibrium problem and used
effectively to study the dynamics away from equilibrium in
different settings [12—19]. Although it has been adapted to
the treatment of heterogeneous systems [20-22], the approach
is typically focused on clean systems. However, whether by
design or as a result of crystal growth constraints, disorder is
ubiquitous and plays a central role in real materials and in the
devices that they enable. The interplay between disorder and
electron-electron interaction strongly influences the electronic
structure and transport properties of materials and is responsi-
ble for many unusual phenomena [23-25]. Both disorder and
electron interactions are the driving forces for the associated
metal-insulator transitions, with electron localization resulting
from electron-electron interaction [26,27] or from disorder
[28-30]. The presence of both effects gives rise to intriguing
behaviors such as many-body localization that are the subject
of intense activity in relevant research communities [31-35].

The coherent potential approximation (CPA), which pre-
dates DMFT and shares similarities with this approach in its
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formulation, has been separately used extensively to study
various disordered systems [36-39]. While DMFT maps
the lattice problem onto an impurity embedded in a self-
consistently determined host, CPA simulates scattering in a
random potential by a self-consistently determined homoge-
neous effective host. The CPA method has also been extended
to the nonequilibrium dynamics of disordered systems and
applied to the analysis of transport in various systems [40,41].

Both CPA and DMFT are Green’s function-based ap-
proaches and can be easily combined to study the interplay of
disorder and electron interactions [42—46]. However, methods
that can describe these ever-present interplays when systems
of interest are driven away from equilibrium are still lacking.

The implementation of such an approach, combining both
CPA and DMFT nonequilibrium solutions, is the focus of
this paper. We implement this solution for interacting disor-
dered systems on the complex time axis. We use our solution
to extract the density of states of the equilibrium system
for different values of the interaction and different disorder
strengths, observing at strong interactions the insulator-to-
metal transition that has been reported in certain correlated
systems [47,48]. Obtaining these results for the density of
states from our real-time simulation not only enables us to
test the validity of our solution, but these calculations of
equilibrium density of states from a real-time formalism have
the added advantage of bypassing the cumbersome analytical
continuation process. We further apply the formalism to the
interaction quench of an Anderson-Hubbard model where the
noninteracting system, initially in equilibrium at finite temper-
ature, has the interaction abruptly switched to another finite
value at a given time. This process reveals different dynamics
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in the time-dependent energies across the quench as a function
of disorder strength.

The rest of the paper is structured as follows. In Sec. II,
we discuss the model for the interacting disordered system
and the nonequilibrium formalism combining both DMFT and
CPA. In Sec. III, we present some results for the densities of
states of the equilibrium problem and the relaxation of the
time-dependent energies for various final interaction strengths
as a function of disorder strength. Finally, we end with our
conclusions in Sec. IV.

II. MODEL AND METHODS
A. Model

We are interested in an interacting disordered system that
can be described in equilibrium by the single-band Anderson-
Hubbard model defined by

H=— Z l,‘j(ClTUCjﬂ + H.c.) + Z UI’l,‘TI’lw

(ij)o i

+ ) Vi = i ¢))

The first term represents the kinetic energy, the second term
the interaction U between electrons, V' describes the random
disorder potential, and  is the chemical potential. Here, t;; =
Ihop 1s the hopping amplitude between nearest neighboring
sites denoted by (ij). We work in units wherec =h =e = 1.
Also, cL (ciy) 1s the creation (annihilation) operator for a par-
ticle of spin o =1, | at site i. Furthermore, U is the Coulomb
interaction at a doubly occupied site. Then n; , = c}; Cis 18 the
number operator for particles of spin o at site i. Additionally,
V; is the local onsite disorder potential randomly distributed
according to a probability distribution P(V;). We use a box dis-
tribution P(V;) = ﬁ@(W — |Vi]). We employ the shorthand
notation (... )y = f dV;P(V;)(...)to denote the disorder av-
eraging. Our analysis of the Anderson-Hubbard model will be
done on the Bethe lattice with a large coordination number
z — 0o. We will study this system at half-filling when, at
time Zquench, the interaction is abruptly switched from an initial
value of U; = 0 to a final value U, = U, while the disorder
strength remains constant at its set value.

B. Nonequilibrium formalism

For the nonequilibrium many-body formalism, starting at
an initial time 7y;,, the system is evolved forward in time to
times of physical interest up to a maximal time #,,,x and then
backwards again to the initial time #y;,. The formalism in-
volves different types of Green’s functions including G=(z, t')
(the lesser), G (¢, t') (the greater), and GR(, t') (the retarded)
Green’s functions. Physical observables can be obtained from
these different Green’s functions.

For a system initially in equilibrium at a temperature
T = 1/8, a vertical branch of imaginary times is added to
the time evolution, resulting in the Kadanoff-Baym-Keldysh
contour [49-52]. This adds to the different Green’s functions,
the Matsubara Green’s function and the mixed time Green’s
functions, for which one of the two times is on either the
forward or backward horizontal branch of real times, while

Wy =W Wy =W
Uy =0 U,=U
tmin tm@
tqucnch

FIG. 1. The Kadanoff-Baym-Keldysh contour, with initial and
final times #,i, and #,,,x. The interaction quench with the interaction
being switched from U; =0 to a finite value U, = U occurs at
time fguench. The disorder strength W is held fixed. The real- and
imaginary-time parts of the contour are discretized with respective
step sizes At and At.

the other is on the vertical branch of imaginary times. The time
evolution on the contour is illustrated schematically in Fig. 1.
In general, the formalism can be formulated either explicitly
in terms of the different Green’s functions or in terms of the
contour-ordered Green’s function from which all others can be
extracted. In the latter situation, which we adopt in this paper,
the formalism has the advantage of being very similar to that
of the equilibrium problem.
The contour-ordered Green’s function is given by

Gi ., ') = 6.(t, t/)Giqua(t, )+ 6.(t', NG, (@, ), ()
with the lesser and greater Green’s functions defined by oper-
ator averages in the Heisenberg representation:

Gio(t.1) = ic), (e, (D), 3)

G0t 1) = —ilc, (e, (). 4)

From these, we can construct the retarded and advanced
Green’s functions that are defined by

GRj o1, 1) = =if(t — 1) {{c;, (), ¢l (1)), ®)
G o, 1) = i0(t" — ) ({c;y (1), cly (1)), (6)

Here, 6.(¢,1") is the contour-ordered Heaviside function. It
orders time with respect to the contour: it is equal to 1 if
t is ahead of ¢’ on the contour and is equal to O otherwise.
Hereafter, we drop the superscript ¢ on the contour-ordered
Green’s function: any correlation function not identified as a
specific type (e.g., not G<) should be understood to refer to
the full contour-ordered Green’s function.

In these expressions, c;(t) and c;,(t) are, respectively,
the Heisenberg representation of the creation and annihilation
operators for an electron at site i with spin o at time ¢; 6
is the usual Heaviside function [i.e., 0 —¢)=0if r < ¢
and 0(t,t') = 1 otherwise]; {A, B} is the anticommutator of
operators A and B. The symbol (.A) is the expectation value
of the operator .4 evaluated with respect to the initial thermal
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state:

Tre_ﬁH(tmin)A

<A> - TrefﬂH(Imin) ’ (7)

where H(tmin) = Heq is the initial equilibrium Hamiltonian
before the quench.

We will particularly examine the dynamics of the system
through the time evolution of the total, potential, and ki-
netic energy of the system when the interaction is abruptly
quenched from U; = 0 to a finite value U, = U.

Within the DMFT framework, starting from the lattice
action and integrating out all sites except site i, the effective
action for the considered Hamiltonian can be written as

Ser = —i )| / drdt'c] (DA, 1)co (1)
o C

iy / dtHis (1), ®)
C

where Hjo is the local part of the Hamiltonian at site i that
includes the disorder value at this site. In an extension of
the equilibrium CPA, the hybridization A(z,t’) is obtained
from the disorder-averaged local Green’s function. From this
action, we can readily extend the equilibrium treatment of dis-
order and interaction [42-45] to the nonequilibrium problem.

The impurity Green’s function for a given disorder config-
uration is given by

Gy,(t,1") = —ilc(t)c (1" ))sy ©)
=[g;" - =] '@ ). (10)

where X, (¢, t') is the interaction self-energy for the disorder
configuration of the action in Eq. (8) and captures effects of
the interaction on the impurity. Here, G is the noninteracting
Green'’s function for the impurity problem given by

Gy (t,t)) = [(d +p — Vi)s. — A1, 1)) (11)

In this way, the disorder-averaged local Green’s function Gy
is obtained by averaging the impurity Green’s function over
all disorder configurations:

Guet.1) = {(Gy' = Zv)) ™ @ 1)),y (12)

The symbol (... )y, denotes the average over all possible dis-
order configurations, which we perform by taking the numeric
integral of [ dVP(V)... using the midpoint rectangular rule.

On the infinite-dimensional Bethe lattice, the hybridization
is then expressed as

At 1) = 17 Gaelt, 1), (13)

where t* is the hopping amplitude rescaled with the coordi-
nation number z so that typ = f_ﬂ We use t* = 0.25 and thus
set the bandwidth to be our energy unit and its inverse to be
the time unit. In our solution of Eq. (10), we use second-order
perturbation theory as the impurity solver, giving us the self-

energy:
Ty (t, ) = ~UOUE Gyt 1) Gy (' 1).  (14)

This self-energy Xy, is the interaction self-energy, and it is
calculated at this stage for a specific disorder configuration.

gVL (t t/) = ((iat +p—= VZ)(SC - A)_l(tvt,)

2,
A(t,t) = t*?Gape(t, ) Sy, (tt) = —U®U{ )G, (¢,1)Gv, (¢, 1)
W, &

FIG. 2. Self-consistency loop for the
DMFTH-CPA algorithm on the Bethe lattice.

nonequilibrium

Given that the disorder distribution is even (i.e., for any disor-
der configuration {V;}, there is a disorder configuration {—V;}
that has the same probability), the chemical potential is set to
u = U/2, and to low order in the disorder strength, dropping
the Hartree term ensures half-filling (n = 1) since we use
the disorder-averaged Green’s function to set the filling (see
Appendix A).

It should be noted that this nonequilibrium formalism
clearly reduces to DMFT for the clean/nondisordered system
(W =0) and to the equilibrium CPA for a noninteracting
system (U = 0) in equilibrium.

C. Algorithm and numerical implementation

The nonequilibrium DMFT+CPA algorithm follows the
self-consistency loop illustrated in Fig. 2. The loop is started
by setting the hybridization A(¢,¢’) to an initial guess (we
use an infinitesimal imaginary number) for the first calcula-
tion of the noninteracting Green’s function on the impurity
in Eq. (11). From this, the self-energy Xy, of Eq. (14) is
calculated for each configuration of the disorder, and the
average Green’s function G, of Eq. (12) is calculated by
averaging over all disorder configurations. At each subsequent
iteration, the new hybridization is calculated from the average
Green’s function by Eq. (13). This process is repeated until
convergence of the average Green’s function within a desired
criteria.

Our implementation of the contour-ordered Green’s func-
tion follows that of Ref. [13]. The different matrices are
represented as square complex matrices of size (2N, + N;) x
(2N; + N, ) with each index representing a point along the
complex time axis. Here, N; is the number of points along
each real-time branch of the contour, and N, is the number
of points along the imaginary-time branch. Certain observ-
ables (specifically the energies) need to be extrapolated to the
At — 0 limit. To this end, the calculation is performed for
multiple values of At, and standard Lagrange interpolating
polynomials are applied to obtain the Az — O values of ob-
servables. In this paper, we use N; = 200 and typically N,
values of 800, 1000, and 1200; or 1000, 1200, and 1400 fol-
lowed by an extrapolation to the Ar — 0 limit using Lagrange
polynomials on the three time grids.

We use the rectangular left-point integration rule, such that

2N, +N;

/th(t)—) Z w;F;, (15)
C

i=1
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where w; is the integral weight, defined by

w; = At, I <i<N,
w; = —Af, N, < i < 2N,
w; = —IAT, 2N; < i < 2N; + N;. (16)

The delta function on the contour can be discretized in
multiple equivalent ways. Following Ref. [13], it is often
convenient to point-split the delta function, such that the first
subdiagonal is occupied rather than the diagonal:

St

8t 1)) - = (17)
w;i

The product of two Green’s functions in frequency space be-

comes a convolution in contour time, which when discretized

is evaluated as a matrix product weighted by the w;:

2NN,
[A*B](f,t/)=/de(t,f_)B(l_, 1) — Z AjwiByj,
¢ k=1
(18)

and the continuous matrix inverse becomes a discrete matrix
inverse. Appropriately including the definition of the delta
function yields

A7 = [wiA w1 (19)

where the quantity in square brackets is a discrete matrix. Both
Egs. (18) and (19) can then be evaluated by standard linear
algebra routines such as LAPACK.

Equations (12) and (14) can be efficiently parallelized with
the number of parallel processes defined by the number of
points on the integration over possible disorder configurations.
In practice, a few hundred points at most are sufficient for the
disorder type that we consider.

III. RESULTS

A. Equilibrium density of states

To demonstrate the validity of the developed nonequilib-
rium DMFT+CPA method, we first apply the nonequilibrium
formalism described above for the equilibrium system in
real time. We compare the results from our time-dependent
approach with those calculated using a real-frequency equi-
librium approach. In this context, the density of states can be
obtained from the nonequilibrium retarded Green’s function
GR(t,t'). First, the time coordinates are changed from (¢, ')
to the Wigner coordinates (T, te1). The (,1') = (Tave, trel)
change of coordinates is schematically illustrated in Fig. 3.
Here, T, is typically viewed as the effective time of the
system, while . is the time with respect to which Fourier
transforms are performed to obtain frequency space quanti-
ties. A Fourier transform on this form of the retarded Green’s
function G(Tye, @) = [ dire1 exp(itre1)G(Tve, tre) yields the
density of states p(w) = —%Im[GR(TaVC, w)]. For the equi-
librium system, the result of this operation is, in principle,
independent of T,,.. However, a choice must be made for a
value of T, at which the range of 7| values available enables
the best numerical evaluation of the Fourier transform for the
density of states (typically halfway along the average time
axis).

8

3
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FIG. 3. Illustration of the relation between the contour time coor-
dinates (¢, ¢’) and the Wigner time coordinates (T, o) of the point
P in the two-time space.

Figure 4 shows the density of states p(w) obtained from
the time domain nonequilibrium approach for the Anderson
model of noninteracting electrons subjected to a random dis-
order potential [the Hamiltonian of Eq. (1) with U = 0].
The solution here corresponds to the nonequilibrium CPA.
For the clean noninteracting system (W = 0 and U = 0), the
density of states has a semi-elliptical line shape po(w) =
L V4r*2 — 2 (dotted line in Fig. 4). For a given disor-

27 1*2
der strength W, the density of states obtained from the time

15 T T T T

p(w)

FIG. 4. Equilibrium densities of states for the noninteracting
(U = 0) tight-binding Anderson model at three values of disor-
der strength W = 0.25, 0.5, and 0.75. At a given disorder strength
W, dashed lines are obtained using the standard frequency-space
CPA calculation formalism, while the solid lines are obtained via
the Fourier transform of the Green’s function calculated using the
contour-time formalism. The dotted black line is the density of states
for the noninteracting clean system (W = 0, U = 0). Oscillations
in the solid lines are due to the Gibbs phenomenon in the Fourier
transform of the time domain solution.
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=025

p(w)
p(w)

p(w)

0.2

FIG. 5. Equilibrium densities of states with different disorder
strengths for the equilibrium Anderson-Hubbard model at temper-
ature T such that 1/7 = g =40 with (a) U =0.25, (b) U =0.5,
(c) U =0.75, and (d) U = 1.4. In (a)—(c), the solid line represents
the clean system limit W = 0, the dashed line W = 0.25, and the
dotted line W = 0.5. In (d), a gray scale is used for disorder strengths
increasing from lighter to darker shade with a maximum disorder
strength (W = 0.5) represented by the black line and the clean sys-
tem (W = 0) represented by the dashed blue line.

domain calculation (solid line) is compared with the fre-
quency domain (dash line) CPA results. As expected, in-
creasing the disorder strength W causes the broadening and
suppression of the spectral peak. The density of states for this
noninteracting system has sharp edges that are hard to resolve
numerically and give rise to oscillations due to the Gibbs phe-
nomenon in the Fourier transform of the real-time approach.
Nevertheless, the overall line shape is in good agreement
between the two methods.

‘We now apply the method to the Anderson-Hubbard model
in equilibrium at temperature 7 such that 1/7 = 8 = 40 for
different parameters and examine the densities of states ob-
tained from our real-time method. These results are presented
in Fig. 5 for the equilibrium interacting disordered model with
(@ U =025 0b)U=0.5,()U=0.75,and (d) U = 1.4.
In panels (a)-(c), the solid line represents the clean system
limit W = 0, the dashed line W = 0.25, and the dotted line
W = 0.5. In panel (d), a gray scale is used with darker shades
indicating stronger disorder. The clean system, represented
by the dashed blue line, restores the expected equilibrium
Hubbard density of states for the Bethe lattice [53]. For weak
interactions [Figs. 5(a) and 5(b)], as the disorder is tuned from
weak to strong values, we observe a broadening of the density
of states. For moderate interaction strength [Fig. 5(c)], the
density of states at weak disorder displays Hubbard sidebands
and a quasiparticle peak. As the disorder strength is increased,
the sidebands and the quasiparticle peak are suppressed in
favor of a single broad peak akin to the density of states of the
weakly interacting clean system. This behavior is more pro-

nounced at strong interactions [Fig. 5(d)], where the the clean
system displays a gap separated by the two Hubbard bands.
Increasing the disorder strength for this system gradually fills
the gap in a process like the insulator-to-metal transition that
has been reported in certain correlated materials [47,48].

B. Relaxation of the energy across the interaction quench

We study the time evolution of the kinetic, potential, and
total energy in time when the interaction is suddenly switched
on from an initial noninteracting system (U; = 0) in thermal
equilibrium at temperature 7 given by 1/7T = =40 to a
finite interaction strength U, = U.

The total energy is obtained by summing up the kinetic and
potential energies [54].

The kinetic energy per lattice site is defined by

1 .
Euin(1) = = D S €xley o (cio (1)), (20)
k,o

where N is the number of sites, k is the momentum vector,
and ¢ is the dispersion relation. The kinetic energy can thus
be rewritten as

Eyin(t) = Z/p(e)eG:(t,t)de, 21

where € is the band energy.
The potential energy follows from the expression of the
double occupancy:
U(t)

Epot(t) = [Gaye * 2:ave]<(l‘7 1)+ T’ (22)

where
G=(t.t") = {[(id, — €)s. — X1} (¢, 1) (23)

is the lattice lesser Green’s function, G, is the Green’s
function averaged over all disorder configurations, X, is
the self-energy obtained from the Dyson equation with Gy,
and the noninteracting Green’s function. It thus includes the
effects of both the interaction and the disorder. The lesser
part of the convolution G,y * X,y is taken in Eq. (22) for the
potential energy.

Since the system is isolated, the total energy has a constant
value before the quench and another constant value after. For
the equilibrium system before the interaction quench, both
the potential and kinetic energies are also constant. However,
they exhibit nontrivial dynamics after the quench. This is
illustrated in Fig. 6. In panels (a) for U = 0.25 and (b) for
U = 0.5, the relaxation is shown for the clean system W = 0
(solid line), W = 0.5 (dashed line), and W = 0.75 (dotted
line). In panel (c) for U = 0.75, results are shown for the
clean system W = 0 (solid line), W = 0.25 (dashed line), and
W = 0.5 (dotted line). In panel (d) for U = 1.0, results are
shown for the clean system W = 0 (solid line) and W = 0.5
(dashed line). For weak final interactions where the density
of states is broadened by the disorder, the relaxation of both
the potential and kinetic energies have a monotonic evolution
before a plateau at their steady state values. This is shown in
Fig. 6(a) for U = 0.25 and Fig. 6(b) for U = 0.5. Here, the
steady state kinetic energy increases with disorder strength,
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Time Time

FIG. 6. Relaxation, as a function of disorder strengths, of the
kinetic, potential, and total energies of the Anderson-Hubbard model
when the interaction is switched at time ¢t = 0 from U; =0 to a
finite value of U, = U. In (a) for U = 0.25 and (b) for U = 0.5, the
relaxation is shown for the clean system W = 0 (solid line), W = 0.5
(dashed line), and W = 0.75 (dotted line). In (c) for U = 0.75, re-
sults are shown for the clean system W = 0 (solid line), W = 0.25
(dashed line), and W = 0.5 (dotted line). In (d) for U = 1.0, results
are shown for the clean system W = 0 (solid line) and W = 0.5
(dashed line). Panel (d) for U = 1.0 shows the breakdown of the
solution with second-order perturbation theory as the impurity solver.

while the steady state potential energy decreases with increas-
ing disorder strength. Figure 6(c) shows the energy relaxation
as the final interaction is increased to moderately strong values
(U = 0.75), where the equilibrium density of states would
feature a quasiparticle peak flanked by the onset of the Hub-
bard sidebands. The steady state potential energy shows little
change with the disorder strength, while the steady state ki-
netic energy decreases with increasing disorder strength.

Our solution for the nonequilibrium problem using second-
order perturbation theory as an impurity solver breaks down
for strong interactions for this interacting disordered system.
This breakdown is manifested through the divergence of the
kinetic and potential energies and a total energy after the
quench that is not constant, as pictured in Fig. 6(d) for U =
1.0. The breakdown is like what was previously observed for
the interaction quench of the clean system using nonequi-
librium DMFT with second-order perturbation theory as an
impurity solver [54]. Note also that the self-consistency loop
for both the equilibrium and the nonequilibrium situation be-
comes unstable for strong interaction strengths and for strong
disorder (U and W of the order of the bandwidth). Neverthe-
less, our solutions are robust for weak to moderate interaction
strengths.

We further analyze the relaxation of the system after the
quench by plotting the momentum distribution function as
a function of disorder strength for the two observed relax-
ation scenarios at a late simulation time, n(e, f,. = 20.0) =

20.0)

1
====
o

ne, T,

U=0.25

T4 0.2

=

0.2 04 04 0.2 0.2 04

0 0
€ €

FIG. 7. Momentum distribution function at the latest average
time of the simulation for the initial noninteracting equilibrium sys-
tem at a temperature such that 1/T = = 40 quenched at time # = 0
to an interaction strength (a) U = 0.25 and (b) U = 0.75 for disorder
strengths W = 0.0 (black), W = 0.25 (red), W = 0.5 (blue), and

W = 0.75 [green line in (a) only].

GZ(t,t), where G=(t, t) is the equal time lesser Green’s func-
tion from Eq. (23). This momentum distribution is shown in
Fig. 7 for (a) U = 0.25 and (b) U = 0.75. Our results show
that the momentum distribution function for an interaction
quench on a system that is initially noninteracting into a
weakly interacting system behaves as if increasing disorder
strength is analogous to lowering the temperature, Fig. 7(a).
On the other hand, when the quench takes the system from
noninteracting to a moderate interaction strength, the momen-
tum distribution after the quench behaves as if the temperature
of the system increases with increasing disorder strength,
Fig. 7(b). This is consistent with the identification of the
insulator-to-metal transition and of the nontrivial relaxation
across the quench as a function of disorder strength when the
interaction strength is increased from weak to moderate. Note
the absence of a W = 0.75 curve in Fig. 7(b) because of the
breakdown of the formalism discussed above.

IV. CONCLUSIONS

We have presented a nonequilibrium solution for correlated
disordered systems using a combination of CPA and DMFT
on the complex time axis of the Kadanoff-Baym-Keldysh
contour. The solution maps the lattice onto an impurity em-
bedded in a self-consistently determined mean field, and the
disorder is treated through averaging over different individual
configurations. We applied the approach to the equilibrium
problem and showed that it effectively produces the densities
of states of the system, bypassing the need for the analytical
continuation calculation. To demonstrate the application of
the formalism on a nonequilibrium problem, we simulate an
interaction quench on the Anderson-Hubbard model. Here, a
system initially in equilibrium at finite temperature sees its
interaction strength abruptly changed from zero to another
finite value. We identify different relaxation processes in the
energies of the system as a function of disorder strength. Our
solution uses second-order perturbation theory as an impurity
solver and breaks down at stronger interaction values. We plan
to extend these studies to other parameter regimes by adopting
other diagrammatic solutions for the impurity solver and ana-
lyze in greater detail the nature of these relaxation processes.
Altogether, the approach presents a valuable tool for studies

195156-6



NONEQUILIBRIUM DMFT+CPA FOR CORRELATED ...

PHYSICAL REVIEW B 106, 195156 (2022)

of nonequilibrium dynamics of correlated disordered systems
and may shed light on nontrivial dynamics that arise from
combined effects of both correlations and disorder when these
systems are driven away from equilibrium.
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APPENDIX

In the frequency domain, the Green’s function for a given
disorder configuration V;, with the self-energy evaluated up to
second order, can be written as

1

GU. Vi) = :
o+pu—V,—SH -5 - A

(AD)

Setting the chemical potential to u = U/2 and writing the
Hartree term as 2(,{ = %n,-, we can rewrite the Green’s func-
tion as

1

GWU, V) = :
o+ 50 —n) =V, =5 - A

(A2)

Defining &; = w — V; — E‘(,?) — A, we can write
1

GU,V)= ————.
( ) o+ 50 —n)

(A3)

By breaking the disorder-averaging process, for an even dis-
order distribution, into averages on pairwise sets {V;, —V;}
labeled with indices i and —i, we have

1 1
G Vv = 5| =T 1 =)
(GWU, Vi), -viy 2[@i+%(1—ni)

1
+
o_i+%(0—ny)

}. (A4)

Expanding n; = 1 + €V; and then the resulting expressions
with @i — @% to first order in V;, we obtain

/1 1 5
(GU. Vw5 —+—— )+ o(vy), (AS5)
wj w_;

or

(G, V) v,.—vy ~ 3[GWU, Vi) + GU, =V)] + O(V?),
(A6)

where G(U, V;) and G(U, —V;) on the right-hand side do not
feature the Hartree term. Thus, to low order in the disorder,
setting the chemical potential to pu = U/2 suppresses the
Hartree term. However, for strong disorder, these terms will
become important and so must be included. Note that we use
the bandwidth 4¢* = 1 as our unit of energy, thus keeping our
results within the regime of validity.
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