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Tuning spectral properties of individual and multiple quantum emitters in noisy environments
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A quantum emitter in a dynamic environment may have its energy levels drift uncontrollably in time with the
fluctuating bath. This can result in an emission and/or absorption spectrum that is spread over a broad range
of frequencies and presents a challenging hurdle for various applications. We consider a quantum emitter in an
environment that alters the energy levels so that the emission frequency is represented by a Gaussian random
distribution around a given mean value with given standard deviation and correlation time. We study the emission
spectrum of this system when it is placed under the influence of a periodic sequence of finite-width π pulses.
We show that this external field protocol can effectively overcome spectral diffusion in this system by refocusing
the bulk of the emission spectrum onto the pulse carrier frequency. We further consider two such emitters in
different noisy environments and find that the two-photon interference operation can be made efficient by the
sequence of finite-width pulses applied on both systems. Finally, we show that an ensemble of nominally similar
emitters, each with its different environment, and thus randomly shifted emission frequency, can have its overall
emission spectrum that would otherwise be inhomogeneously broadened according to the random distribution,
refocused onto a lineshape with a well-defined central peak that has the linewidth of an individual isolated
non-noisy emitter. These results demonstrate for this specific model of noisy environments, the protection of
spectral properties by an external control protocol here represented by a periodic sequence of finite-width pulses.
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I. INTRODUCTION

The ability to control and protect from environmental
variations the spectral properties of a quantum emitter in a
dynamic environment is of significant importance for numer-
ous applications extending from spectroscopy to a variety of
fundamental operations of quantum information processing
(QIP). Indeed, spectral diffusion, the random drift of the
emission frequency of a quantum emitter with time [1–6],
reduces the efficiency of essential QIP procedures such as
two-photon interference, entanglement generation between
distant quantum nodes, and coupling to cavities [7–14]. These
operations typically require well-behaved spectral signatures
of the involved quantum emitters. For this reason, spectral
features dominated by random fluctuations are significant ob-
stacles to the scalability of photon-mediated operations or QIP
interfaces [15–19].

One avenue to help overcome these fluctuations is the
design of increasingly pristine systems which is an onerous
task. Although this approach is indeed important to reduce
unwanted defects and randomness, it remains limited in its
effectiveness given that some minimal fluctuations will likely
persist in most realizations of solid-state systems for instance.
For this reason solutions based on external control field can
play a unique role in addressing this problem [2,3,20–33].

In earlier studies, we examined the emission and absorp-
tion spectrum of two-level systems when they are driven by
a variety of pulse sequences including a periodic sequence
of πx pulses [34–36]. We showed that for an emitter with

emission frequency ω, the emission spectrum could be made
mostly independent of the constant detuning � with respect
to the pulse carrier frequency ω0. We also showed that the
Hong-Ou-Mandel (HOM) two-photon interference (TPI) [37]
could have its efficiency enhanced for two distant emitters
with different respective emission frequencies when they are
both driven by the same periodic sequence of instantaneous
πx pulses [38].

While we only considered static detuning in single and
pairs of emitters with static detunings with respect to the
pulse carrier frequency in previous work, in the present pa-
per, we examine the situation of emitters in explicitly noisy
environments. In particular, we study the emission spectrum
of a two-level system (TLS) with detuning �(t ) with respect
to a reference frequency ω0 such that �(t ) follows a random
Gaussian distribution with standard deviation σ�, mean value
�0 and correlation time τc. We show that for a periodic se-
quence of finite-width π pulses well away from the ideal pulse
limit, the emission spectrum of the noisy quantum emitter
can be made minimally dependent on the noisy environment
with the bulk of the emission spectrum occurring at the pulse
carrier frequency and satellite peaks at ±π/τ similar to the
static-detuning case. Next, we demonstrate enhancement of
the HOM-type two-photon interference experiment for two
explicitly noisy emitters in different environments such that
their detunings are �1(t ) and �2(t ) with mean values �01

and �02, standard deviations σ�1 and σ�2, correlation times
τc1 and τc2. Finally, we show that for a dilute ensemble
of emitters with randomly distributed emission frequencies

2469-9926/2023/107(2)/023719(7) 023719-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7952-6256
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.023719&domain=pdf&date_stamp=2023-02-21
https://doi.org/10.1103/PhysRevA.107.023719


HERBERT F. FOTSO PHYSICAL REVIEW A 107, 023719 (2023)

among individual emitters, the emission spectrum that would
otherwise be inhomogeneously broadened, can be refocused
by the periodic sequence of finite-width pulses.

The rest of the paper is organized as follows: In Sec. II, we
discuss the model for the emitter in a dynamic environment,
describing the Hamiltonian and the master equation for the
density matrix operator of the two-level system in the radia-
tion bath under the influence of the control field. In Sec. III,
we describe the methods that are used to obtain the emis-
sion spectrum for an individual pulse-driven noisy emitter
subject to spectral diffusion, to characterize the two-photon
interference operation between two such emitters and, finally,
to obtain the emission spectrum of a dilute inhomogeneous
ensemble of two-level systems under the influence of the
control protocol. In Sec. IV, we present the results for the
different situations discussed above before finishing with our
conclusions in Sec. V.

II. MODEL, EMITTER IN DYNAMIC ENVIRONMENT

We consider a quantum emitter represented by a two-level
system (TLS). Its ground state |g〉 and its excited state |e〉
are separated by an energy Ee − Eg = h̄ω1 = h̄(ω0 + �). �

is the detuning with respect to a target frequency ω0. In
what follows, we set h̄ = 1. Because of the fluctuations in
the environment, this detuning can vary randomly in time.
Here, we will specifically consider the situation in which the
fluctuations lead to a time-dependent detuning that follows
a random Gaussian distribution centered around an average
value �0, that has a standard deviation σ� and a correlation
time τc. The TLS is coupled to a bosonic bath represent-
ing the normal modes of the radiation field. The protocol
of interest in the present studies is represented by pulses at
the target frequency ω0 with Rabbi frequency �x(t ) that is
timed so as to impart on the emitter an appropriate π rotation
over a finite time tπ before being switched off, allowing the
system to evolve freely for a subsequent time τ − tπ . The
process is repeated periodically so that the entire sequence
has period τ . Figure 1 illustrates schematically the random
drift in time of the emission frequency of a two level system:
spectral diffusion. As a function of time, the detuning takes
different random values �1, �2, �3, �4, . . . . As a results,
the emission spectrum can be broadly ill defined. Figure 2
shows a sampling of the detuning as a function of time for
a random Gaussian distribution with average value �0 = 4.0,
standard deviation σ� = 4.0 and correlation time τc = 0.03
[Fig. 2(a)]; and an illustration of the sequence of finite-width
pulses [Fig. 2(b)].

In the rotating wave approximation (RWA) and in the rotat-
ing frame, so that all energies are measured with respect to the
target frequency ω0, the Hamiltonian describing this system
can be written as

H =
∑

k

ωka†
kak + �(t )

2
σz − i

∑
k

gk (a†
kσ− − akσ+)

+ �x(t )

2
(σ+ + σ−). (1)

The operators σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, and σ− =
|g〉〈e| = (σ+)† are, respectively, the z-axis Pauli matrix, and

FIG. 1. Schematic representation of spectral diffusion for a quan-
tum emitter in a dynamic environment. The energy levels for the
ground and excited states |g〉 and |e〉, respectively, drift randomly in
time around a target frequency ω0. Thus, at different points in time,
the detuning of the emission with respect to ω0 takes random values
�1, �2, �3, �4, . . . . As a result, the emission spectrum of the system
over time adds up to a broad ill-defined lineshape.

the raising and the lowering operators for the two-level sys-
tem. ak (a†

k) is the annihilation (creation) operator of the kth
photon mode, gk is its coupling strength to the emitter, and
ωk is the detuning from ω0 of mode k. We consider pulses
such that �x(t ) = �x = � during the time tπ of the π pulses
and zero otherwise. �(t ) = ω1(t ) − ω0 is the time-dependent
detuning of the TLS’s transition frequency from the pulse
carrier frequency.

We assume the system to be initially prepared in the excited
state. In the absence of all control [�x(t ) = 0 for all times],
spontaneous decay will occur, and for a static detuning, the
corresponding emission rate is � = 2π

∫
g2

k δ(ωk − �) dk;
We normalize our energy and time units so that this relaxation
rate is � = 2, and the corresponding spontaneous emission
line has a simple Lorentzian shape 1/(ω2 + 1), with half-
width equal to 1. By this process, all frequencies are measured
in units of �/2. Previous studies have only studied the prob-
lem with static detuning and idealized instantaneous pulses
[32,34,36]. In the present treatment of the noisy quantum
emitter, we assume the same relaxation rate � as in the static
detuning problem and focus on the time-dependence of �(t ).

To study the dynamics of the TLS and evaluate its spectral
properties, we analyze the time evolution of the emitter’s
density-matrix operator:

ρ(t ) = ρee(t )|e〉〈e| + ρeg(t )|e〉〈g|
+ ρge(t )|g〉〈e| + ρgg(t )|g〉〈g|, (2)
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FIG. 2. (a) We study the emission spectrum of a TLS for which
the emission spectrum with respect to a target frequency ω0 has a
detuning �(t ) that fluctuates in time following a random Gaussian
distribution pictured here with �0 = 4.0 (dashed blue line), σ�= 4.0,
and correlation time τc = 0.03. (b) We examine the spectral prop-
erties of the system under the influence of a periodic sequence of
finite-width π pulses with interpulse delay τ and Rabbi frequency
�. The driving field is applied for a time tπ that amounts to a πx

rotation.

with the identities ρ∗
ge = ρeg, and ρee + ρgg = 1. Using the

approximation of independent rates of variation, the master
equation governing the time evolution of the density matrix
is obtained by independently adding up, in the time evolution
of the matrix elements of ρ, terms due to the radiation bath,
to the incident field, and the damping terms responsible for
spontaneous emission [39].

For the model described above, the master equations char-
acterizing the dynamics of the density-matrix operator or
optical Bloch equations in the rotating-wave approximation
can then be written as⎡
⎢⎢⎢⎢⎣

ρ̇ee

ρ̇gg

ρ̇ge

ρ̇eg

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

−� 0 −i �x (t )
2 i �x (t )

2

� 0 i �x (t )
2 −i �x (t )

2

−i �x (t )
2 i �x (t )

2 i� − �
2 0

i �x (t )
2 −i �x (t )

2 0 −i� − �
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ρee

ρgg

ρge

ρeg

⎤
⎥⎥⎥⎥⎦.

(3)
For a detailed discussion and derivation of this equation for

a continuously driven TLS we refer the reader to Ref. [39]. In
this representation, the terms with � represents the coupling
to the radiation bath, the terms with � represent the TLS
system with its frequency measured in the frame rotating at
the pulse carrier frequency, the terms in � the coupling of
the driving field with the TLS. Describing the term due to the
radiation independently of the driving field corresponds to
neglecting the effect of the radiation field on the spontaneous
emission. One can show that this assumption is valid when the
Rabbi frequency of the driving field is small compared with
the transition frequency of the driven emitter. Furthermore,
the independent rate approach assumes that the driving Rabbi
frequency and the detuning between the emission frequency
of the TLS and the pulse carrier frequency remain smaller
than the inverse of the characteristic correlation times of the
different relaxation processes that are considered [39].

III. METHODS

A. Emission spectrum

We calculate the emission spectrum of the TLS that cor-
responds to the excitation probability of the detector in the
narrow-band detector approach where the detector is modeled
by a two-level absorber with a very sharp transition frequency
[40]. At a long time T , the emission spectrum can be ex-
pressed as

P(ω) = 2A2Re

{ ∫ T

0
dt

∫ T −t

0
dθ

×〈σ+(t + θ )σ−(t )〉 exp [−iωθ ]

}
. (4)

Here, A is a constant independent of the driving field parame-
ters that does not affect the spectral shape but only affects the
absolute scale of the spectrum. σ−(t ) and σ+(t + θ ) are the
time-dependent operators of the TLS in the Heisenberg rep-
resentation, and the angled brackets represent the expectation
values that are taken with respect to the initial state.

To evaluate the two-time correlation function 〈σ+(t +
θ )σ−(t )〉, it is typically rewritten as a single-time expectation
value [40–42]:

〈σ+(t + θ )σ−(t )〉 = Tr[ρ ′(t + θ )σ+]. (5)

Here, σ+ and σ− are the time-independent operators in the
Schrödinger picture and ρ ′(t + θ ) is obtained from the orig-
inal density-matrix operator by ρ ′(t ) = σ−ρ(t ) at time t and
then evolved under the same master equations (3) from time t
up to time t + θ .

Taking advantage of expression (5), the emission spectrum
is calculated numerically using the following recipe: The time
axis is discretized into equal-time slices of width �t = τ/Nt ,
where Nt is the number of time slices in a pulse interval of
width τ . Starting at time t = 0 where the initial conditions are
known (ρee = 1, ρgg = 0, ρeg = 0, ρge = 0), we integrate the
master equation to obtain the matrix elements ρee, ρeg, ρge, ρgg

from t to t + �t , first for a freely evolving TLS with Rabbi
frequency �x(t ) = 0 until time τ − tπ , then from time τ − tπ
to time τ , in the presence of the driving field [�x(t ) = �]. The
matrix elements of ρ at the end of this pulse interval are then
used as initial values for the next pulse interval and the process
is repeated for a number Np of consecutive pulse intervals,
resulting in the knowledge of ρ(t ) and thus ρ ′(t ) for t ∈ [0, T ]
with T = Npτ . This is then followed of by the integration
of the master equation starting from each time t ∈ [0, T ] to
produce ρ ′(t + θ ) for θ ∈ [0, T − t]. From this, we obtain the
correlation function 〈σ+(t + θ )σ−(t )〉. Finally, we perform
the Fourier transform with respect to θ and the integration over
t to obtain P(ω) which is our emission spectrum. Throughout
this integration process, we use a time-dependent detuning
that is obtained by generating a random Gaussian distribution
with mean value �0, standard deviation σ� and a correlation
time τc.

B. Two-photon interference

After studying the emission spectrum, we next consider
a HOM-type two-photon interference operation between two
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distant independent quantum emitters, each in its own noisy
environment resulting in different inhomogeneously broad-
ened spectral signatures. Photons from emitter E1 with mean
detuning �01 and standard deviation σ�1 and from emitter E2

with mean detuning �02 and standard deviation σ�2, at space-
time locations 1 and 2 respectively, are sent to the input ports
of a 50 : 50 beam splitter and then measured at detectors D1

and D2 at space-time locations 3 and 4 beyond the output ports
of the beam splitter. The emitters can each be independently
modeled by the Hamiltonian (1). We want to evaluate the
second-order coherence equivalent to the intensity correlation
at the detectors D1 and D2 in the presence of the control
protocols made of identical finite-width pulses driving the
respective emitters E1 and E2. This intensity correlation for
times t and t + θ is

G(2)
34 (t, θ ) = 〈a†

3(t )a†
4(t + θ )a4(t + θ )a3(t )〉. (6)

a†
i (t ) [ai(t )] is the creation (destruction) operator of a photon

at detector i. From (6), we extract the intensity correlation cor-
responding to the measured cross-correlation in the Hanbury
Brown and Twiss setup [43,44]:

g(2)
34 (θ ) = lim

T →∞

∫ T

0
G(2)

34 (t, θ ) dt . (7)

Using the equations of the beam splitter, we can replace in
Eq. (6), the bosonic operators for the detectors by those of the
emitters. Namely, for a 50 : 50 beam splitter, we have

a3(t ) = 1√
2

[a1(t ) + ia2(t )], (8)

a4(t ) = 1√
2

[ia1(t ) + a2(t )], (9)

and similarly for the conjugate expressions. a1 and a2 are pho-
ton operators at the respective emitters. k-integrated operators
are used since they correspond to the electric-field operators.

Plugging (8) and (9) into (6), expanding and dropping
negligible two-photon terms, we are left with

G(2)
34 (t, θ ) = 1

4 {g1(t, 0)g2(t + θ, 0) + g2(t, 0)g1(t + θ, 0)

− g∗
1(t, θ )g2(t, θ ) − g∗

2(t, θ )g1(t, θ )}, (10)

where we have defined gi(t, θ ) = 〈a†
i (t )ai(t+θ )〉 with i=1, 2.

The field operators a and a† are related in the far-
field region to the emitter operators σ+ and σ− by simple
proportionality constants independent of time and we can
accordingly write [42]

gi(t, θ ) = 〈σ+i(t )σ−i(t + θ )〉. (11)

These correlators can then be expressed as single-time expec-
tation values similar to (5) [36,38,40–42]. To evaluate gi(t, θ ),
we can then use the same procedure employed in Ref. [38]
where the master equation (3) is integrated on the discretized
time axis following steps similar to those highlighted above
for the emission spectrum [35,36].

C. Ensemble of quantum emitters

Finally, we consider the case of an ensemble of two-
level systems with each emitter sitting in its own specific
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FIG. 3. Emission spectrum for the fluctuating quantum emitter
following a Gaussian random distribution of �(t ) with �0 = 3.0 for
τ = 0.1 (green), τ = 0.2 (blue), τ = 0.3 (magenta) after a total time
t = 2.4 in all cases with Rabbi frequency � = 35. The dashed brown
line shows the emission spectrum of the system in the absence of
the control pulse sequence. Energies are measured in units of the
spontaneous emission rate �, and times in units of 1/�.

environment that sets its emission frequency to be indepen-
dent of other emitters’ in the ensemble. Here, we consider the
case where the ensemble has emitters with static detunings
distributed randomly according to a Gaussian distribution.
The ensemble is assumed to be dilute so that we can neglect
dipole-dipole interactions between member emitters. In this
situation, often encountered in spectroscopy experiments, the
emission frequency of the ensemble can be obtained by adding
up contributions from individual emitters. For a typical en-
semble, this emission spectrum may become broadly spread
out without clearly identifiable spectral features [45]. This
situation can be illustrated in a manner similar to that of Fig. 1
where instead of a time axis to track the individual emitter,
with snapshots at different times, one observes at a given
moment multiple quantum emitters in the ensemble. We con-
sider this system when it is placed under the influence of our
finite-width periodic pulse sequence and we aim to assess the
effect on the emission spectrum of the ensemble. Each emitter
in the ensemble can be described by the Hamiltonian (1) with
its detuning � with respect to the pulse carrier frequency.
The contributions to the emission spectrum of the individual
emitters are obtained following the procedure highlighted in
Sec. III A.

IV. RESULTS

A. Emission spectrum

We consider random Gaussian distributions with a correla-
tion time that is of the order of the interpulse delay or less. We
find that our emission spectra have little dependence on this
parameter and so in what follows our results are presented
for τc ≈ 0.03. Figure 3 presents the emission spectrum for
a TLS with �(t ) such that the average value is �0 = 3.0
and the standard deviation is σ� = 4.0. The solid green line
corresponds to interpulse time delay of τ = 0.1, the blue line
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FIG. 4. Emission spectrum of the noisy TLS under a periodic
pulse sequence with fixed interpulse delay τ = 0.3 and Rabbi fre-
quency � = 35. (a) For fixed variance (σ� = 4.0) with average
detuning values �0 = 1.0 (black), �0 = 2.0 (red), �0 = 3.0 (green),
�0 = 4.0 (blue). (b) For fixed average detuning value �0 = 3.0
with standard deviation σ� = 1.0 (green), σ� = 2.0 (blue), σ� = 3.0
(red), σ� = 4.0 (orange), σ� = 6.0 (brown). Energies are measured
in units of the spontaneous emission rate �, and times in units
of 1/�.

to τ = 0.2, and the pink line to τ = 0.3. The Rabbi frequency
is � = 35 for all pulse sequences.

The dashed brown line shows the emission spectrum of this
system measured over the same duration when the system is
not subject to any control field. Clearly, the pulse sequence
produces on this noisy system, a spectrum similar to that re-
ported in the case of a static detuning. The protocol maintains
nearly 50% of the spectral weight at the pulse carrier fre-
quency. The controlled spectrum also features satellite peaks
at integer multiples of ±π/τ with spectral weights suppressed
away from the central peak. The bulk of the emission spec-
trum is refocused to the pulse carrier frequency even for fairly
broad pulses.

Next, we examine this emission spectrum as a function of
random distributions of detunings (as a function of the mean
value and the standard deviation of the distribution or the typ-
ical width of the distribution). Figure 4(a) shows the emission
spectrum under the same pulse sequence of fixed period τ =
0.3 and Rabbi frequency � = 35 for the same standard devi-
ation σ� = 4.0 with average detuning value �0 = 1.0 (black
line), �0 = 2.0 (red line), �0 = 3.0 (green line), �0 = 4.0
(blue line). Figure 4(b) shows the emission spectrum under the
same pulse sequence (interpulse delay τ = 0.3 and Rabbi fre-
quency � = 35), for fixed average detuning value �0 = 3.0
with standard deviation σ� = 1.0 (green line), σ� = 2.0 (blue
line), σ� = 3.0 (red line), σ� = 4.0 (orange line), σ� = 6.0
(brown line). The lineshape is overall preserved for a broad
range of parameters. For the narrower distribution and for the
smaller average detuning, the central peak contains more of
the spectral weight. The refocusing of the spectral peak is
deteriorated for broader distributions and for large average de-
tuning values. However, we observe that overall, the protocol
remains effective as long as the distribution of detunings is
such that � × τ � 1 for most of the detuning values.

B. Two-photon interference

After studying the control of the emission spectrum of
the isolated quantum emitter in a noisy environment, we

FIG. 5. (a) Schematic representation of the two-photon interfer-
ence operation between two distant emitters at space-time locations
1 and 2 with fluctuating emission frequencies characterized by �1(t )
and �2(t ). Photons from the emitters are sent to a 50:50 beam splitter
and then measured at detectors D1 and D2 at locations 3 and 4.
Cross-correlation function at the detectors as a function of the delay
time for two emitters with Gaussian random detunings with average
values �01 = 4.0 and �02 = −3.0 (blue solid line), �01 = 4.0 and
�02 = −4.0 (red dotted line), �01 = 5.0 and �02 = −4.0 (green
dashed line) in (b) the absence of any control protocol and (c) under a
periodic pulse sequence with interpulse delay τ = 0.3. The standard
deviation is σ�1 = σ�2 = 6.0 in all cases. Energies are measured in
units of the spontaneous emission rate �, and times in units of 1/�.

consider the two-photon interference operation between two
such emitters as depicted schematically in Fig. 5(a). The
cross-correlation function at the detectors g(2)

34 (θ ) as a function
of delay time θ is shown in Figs. 5(b) and 5(c), respec-
tively, without control protocols and when the two emitters
are driven by a pulse sequence of period τ = 0.3 with Rabbi
frequency � = 35. The figures show g(2)

34 (θ ) as a function
of θ for pairs of emitters with average detuning values of
�01 = 4.0 and �02 = 3.0 (blue solid line), �01 = 4.0 and
�02 = −4.0 (red dotted line), �01 = 5.0 and �02 = −4.0
(green dashed line). Note that g(2)

34 (θ ) vanishes in both cases
at θ = 0. However, in the absence of the control protocol it
also vanishes periodically at times that are integer multiples
of ≈π/(�01 − �02) and overall decreases in magnitude with
increasing delay times, while it stays finite for all other times
in the presence of the control protocol including for emitters in
significantly different environments �01 − �02 ∼ 10�, where
� is the free emission lifetime of an individual emitter.

C. Ensemble of two-level systems

We now consider a dilute ensemble of quantum emitters
described by two-level systems. An emitter i in the ensemble
has its own particular environment and its detuning is set to a
value �i. The �i follow a random Gaussian distribution with
average value �ave = 0 and a standard deviation σ� = 15.0.
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FIG. 6. Emission spectrum of an ensemble of quantum emitters
with the emission frequencies of individual emitters spread across a
random Gaussian distribution of detunings with standard deviation
σ� = 15.0 and average value �ave = 0. The dashed red line shows
the emission spectrum of the system in the absence of any control
protocol while the blue solid line shows the emission spectrum when
the system is under the influence of a periodic sequence of π pulses
with interpulse delay τ = 0.2 and with Rabbi frequency � = 50 after
8 pulses. The spectrum with no control has been rescaled to have the
same maximum as the spectrum under the pulse sequence. Energies
are measured in units of the spontaneous emission rate �, and times
in units of 1/�.

Figure 6 shows the emission spectrum of this ensemble when
it is placed under the influence of a pulse sequence of period
τ = 0.2 with Rabbi frequency � = 50. The spectrum is calcu-
lated for 8 pulses but the general lineshape is established after
two to four pulses and further time mostly results in larger
peak amplitudes. Note that the amplitude of the spectrum in
the absence of the control protocol is rescaled to match that
of the spectrum in the presence of the control fields. Overall,
the emission spectrum that has a broad Gaussian lineshape in
the absence of the control protocol is refocused by the control

protocol to result in a lineshape with a central peak at the
pulse carrier frequency (ω = 0 in the rotating frame) that has
the linewidth � of an individual isolated emitter flanked by
satellite peaks at integer multiples of ±π/τ .

V. CONCLUSION

We have examined spectral properties of quantum emit-
ters in noisy environments manifested by a random Gaussian
distribution of detunings, as a function of time for individual
quantum emitters and by a random distribution of detunings
across an ensemble of two-level systems. For individual emit-
ters, we characterized the emission spectrum under the effect
of a periodic sequence of finite-width pulses. Our results
indicate that, for a broad range of parameters, the emission
spectrum of a noisy quantum emitter can be well controlled
by the pulse sequence. When two different such noisy indi-
vidual two-level systems are used in a HOM-type two-photon
interference, we find that the periodic sequence of finite-width
pulses effectively restores two-photon indistinguishability be-
tween two the two spectrally different systems. Finally, for
an ensemble of quantum emitters, with individual emitters
that have randomly distributed emission frequencies so that
the ensemble would produce an inhomogeneously broadened
emission spectrum, we show that the control protocol can
refocus the emission spectrum to a lineshape with a central
peak that has the linewidth of an individual quantum emitters.
These results demonstrate for a model of spectrally noisy
two-level system the ability to optimize spectral properties
with an external control field in the form of a pulse sequence.
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