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Solving the parquet equations for the Hubbard model beyond weak coupling
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We find that imposing crossing symmetry in the iteration process considerably extends the range of convergence
for solutions of the parquet equations for the Hubbard model. When crossing symmetry is not imposed,
the convergence of both simple iteration and more complicated continuous loading (homotopy) methods is
limited to high temperatures and weak interactions. We modify the algorithm to impose the crossing symmetry
without increasing the computational complexity. We also imposed time reversal and a subset of the point
group symmetries, but they did not further improve the convergence. We elaborate the details of the latency
hiding scheme which can significantly improve the performance in the computational implementation. With
these modifications, stable solutions for the parquet equations can be obtained by iteration more quickly even
for values of the interaction that are a significant fraction of the bandwidth and for temperatures that are much
smaller than the bandwidth. This may represent a crucial step towards the solution of two-particle field theories
for correlated electron models.
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I. INTRODUCTION

A natural step to extend most of the existing many-body
single-particle self-consistent methods is to include the full
momentum and energy dependence of the vertex corrections.
Historically, the self-consistent approach for vertex corrections
was first considered by Landau, Abrikosov, and Khalatnikov
in the context of the high-energy behavior of quantum
electrodynamics [1]. The original goal was to develop a
nonperturbative method which encodes the information in
terms of a system of closed integral equations. The parquet
equations, in principle, provide a framework for self-consistent
determination of the self-energy and the vertex corrections.
They were proposed for both boson-boson scattering and
fermion-fermion scattering during the 1950s [2,3]. Methods
similar to the parquet equations were first introduced in the
context of many-body theory by de Dominicis and Martin
[4,5]. One of the early practical applications was on the x-ray
absorption and emission problem by Roulet, Gavoret, and
Nozières [6]. Since then, various problems have been studied
by the parquet summation approach, most notably, the Fermi
liquid in a strong magnetic field [7–9], the disordered electron
gas in a strong transverse magnetic field [10], the Anderson
impurity model [11–14], random potential problems [15–17],
the Hubbard model [18–24], helium-4 [25,26], helium-3 [27],
local moment formation [28,29], the vortex liquid model
[30–33], the matrix models [34,35], and nuclear structure
calculations [36]. While these applications of the parquet
formulation provide a lot of important insights, most of the
calculations are based on various approximated forms of the
parquet equations.

It is obvious that going from a one-particle to a two-particle
self-consistent calculation represents a significant increase in
the computational effort, as each two-particle vertex contains
three independent momentum and frequency indices. From the
point of view of practical calculation, the number of elements
for each index is around a few thousands. Therefore, the

number of elements for the vertices is of the order of tens
of millions to a few billions. Moreover, all the information is
encoded in integral equations with a complicated structure,
in which simplifications do not seem to be immediately
possible. Indeed, in the past, the most successful application
using the full parquet equations was largely limited to the
single-impurity Anderson model [11]. With recent advances
in computational infrastructure where petascale performance
has become available, calculations for lattice models such
as the Hubbard model are now feasible. For example, the
solution of the parquet equations for a 4 × 4 Hubbard cluster
with on-site coupling U = 2t and temperature T = 0.3t was
recently obtained [37].

However, limitations on computer performance and storage
are apparently not the sole obstacle for obtaining the solution
of the parquet equations. Another major barrier is the stability
of the solvers. The simple iteration method, which is widely
adapted for the dynamical mean-field method, often fails to
provide a stable solution for the parquet equations. In most
cases, a damping scheme has to be employed. Even with the
damping scheme, when the temperature is low or the coupling
is large, finding a stable solution still seems to be rather difficult
[37].

Given the large number of variables and the complexity
of the parquet equations, instabilities in their solution may
not be unexpected. Methods based on the local gradient are
not likely to be suitable as the Hessian cannot be readily
calculated. Most of the nonlinear solvers have only local
convergence properties. This may not pose a problem if we
have a reasonable guess which is close enough to the true
solution. Unfortunately, it is not easy to obtain a good initial
guess for the parquet equations. Methods that in principle allow
“global” convergence, for example, the homotopy method or
continuous loading method, have been proposed as possible
ways to improve the calculations [38]. While these tend
to improve convergence, many steps are required for the

013311-11539-3755/2013/87(1)/013311(16) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.013311


KA-MING TAM et al. PHYSICAL REVIEW E 87, 013311 (2013)

solution to move along the homotopy path. Moreover, practical
experience seems to suggest that convergence may still not be
achieved when the temperature is low or the coupling is strong.
It is clear that a better solver is definitely required for the
practical application of the parquet method within the context
of strongly correlated systems.

One of the most prominent differences between the parquet
formulation and most of the other approximation schemes,
such as the random phase approximation (RPA) [39,40],
the self-consistent spin fluctuations approach [41], and the
fluctuation exchange approach [42], is that the so-called
crossing symmetry is obeyed by construction of the parquet
equations. The crossing symmetry [43] implies that a vertex in
one channel can also produce a vertex in all other channels
by pulling or crossing the vertex legs and multiplying by
appropriate constants. It also implies that the Pauli exclusion
principle is automatically satisfied. However, in the course of
the iteration process, as long as the exact solution of the parquet
equations is not obtained, crossing symmetry is violated. The
main point in the present paper is to highlight that crossing
symmetry is crucial for obtaining a stable solution. We devise
a modified iteration scheme which can obtain a stable solution
for the parquet equations at lower temperature and stronger
coupling than in the previous schemes [37]. This is achieved
primarily by restoring the crossing symmetry at each step of
the iteration.

It is important to notice that because of the large number
of vertex functions, for production runs, massively parallel
machines are absolutely necessary. Since the vertex functions
in different channels are mixed in the parquet formulation, an
efficient scheme to transform the vertex function storage in
different nodes is critical to improving the overall efficiency
of the calculations. Some of the computational details have
been explained in a previous publication [37]. We have
further improved the scheme, which allows us to hide the
communication latency across different nodes behind the local
calculations within the nodes, effectively further speeding up
the calculations.

The model used for testing the computational scheme for
solving the parquet equations is the standard Hubbard model
at half filling. The Hamiltonian is

H = −t
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) + U

∑
i

ni,↑ni,↓, (1)

where U is the on-site repulsion and t = 1 is the hopping
matrix which establishes the unit of energy.

The paper is organized as follows. In Sec. II, we reproduce
the parquet equations, which also allows us to fix the notation.
In Sec. III, we describe the iteration scheme for solving the
parquet equations. In Sec. IV, we discuss the violation of
crossing symmetry. In Sec. V, we present a modified iteration
scheme which explicitly restores the crossing symmetry. We
also discuss the limitation of the modified scheme and the
possible directions for further developments. In Sec. VI,
we present the leading eigenvalues of the antiferromagnetic
channel as a function of the temperature and coupling strength
and find that the parameter region of stable solutions is
greatly increased when crossing symmetry is enforced. A brief
summary is contained in Sec. VII. In the Appendix, we present

a latency hiding scheme which allows substantial increase of
the efficiency for solving the parquet equations.

II. PARQUET EQUATIONS

A. Derivation of the parquet equations

The parquet equations have been elaborated in the literature
[19,20,24,37,44,45]. For the completeness of the paper we
outline their derivation in this section. We intend to highlight
the structure of the parquet equations and to fix the notation
needed for the discussion of the numerical implementation.

The parquet equations [1] are essentially a generalization
of the Bethe-Salpeter equation [43,46,47] that was originally
proposed to obtain a bound state solution by summing up
an infinite series of diagrams. From the perspective of an
iterative process, it is similar to finding the bound state solution
by scattering an infinite number of times. The scattering
processes included in the Bethe-Salpeter equation are two-
particle scatterings; therefore, the diagrams generated are
always reducible. Reducible diagrams, in the present context,
are defined as the ones that can be separated into two pieces by
cutting two fermion lines. The first term of the scattering can
be considered as the input, or from an iteration perspective,
the initial condition of the iteration process. This initial term
is called the fully irreducible vertex, and is denoted by �.

The full vertex F contains the sum of the fully irreducible
part, given by the input � and the reducible part from
the repeated scattering terms. For the two-body interaction
there are three different channels for the reducible vertices,
one particle-particle channel, and two particle-hole channels.
These can be understood simply from perturbation theory with
two-body coupling at one-loop level. Consider the action

S =
∫

d(1)�̄(1)G0(1)�(1)

+
∫

d(1)d(2)d(3)d(4)u12
34�̄(1)�̄(2)�(3)�(4), (2)

where � and �̄ are Grassmann fields. The momentum
and Matsubara frequency indices are denoted collectively as
(1,2, . . .). Following the standard perturbation expansion of
the vertex function (see, e.g., Refs. [48,49]), at one-loop level
(second-order expansion with respect to u) the three diagrams
for the vertex corrections are the particle-particle BCS channel;
and the particle-hole zero-sound [50–54] and Peierls channels.
In the literature of parquet formulation they are sometimes
denoted as the particle-particle (PP), “vertical” particle-hole
(PH), and “horizontal” particle-hole (PH) channels [19]. We
reproduce these three one-loop terms here (see Fig. 1 for the
diagrammatic representation):

BCS:

PP1 loop(u,u′) = 1

2

∫
d(5)d(6)u15

26u
′53
64 G(5)G(6); (3)

zero sound:

PH1 loop(u,u′) =
∫

d(5)d(6)u56
13u

′65
24 G(5)G(6); (4)

Peierls:

PH1 loop(u,u′) = −
∫

d(5)d(6)u56
14u

′65
23 G(5)G(6). (5)
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FIG. 1. Feynman diagrams for the second-order vertex correc-
tion: the BCS diagram–particle-particle channel (top), the zero-sound
diagram–vertical particle-hole channel (middle), and the Peierls
diagram–horizontal particle-hole channel (bottom). These diagrams
are reducible in the sense that they can be cut into two pieces by
cutting two fermion lines.

We introduced the functions PP1 loop(u,u′), PH1 loop(u,u′),
and PH1 loop(u,u′) with the kernels u and u′ to facilitate the
following dicussion of the parquet equation. Clearly, at the
one-loop level u′ = u; however, it need not be the case in
general. It is important to note that at the one-loop level the
particle-particle channel itself is crossing symmetric. On the
other hand, the two particle-hole channels are not crossing
symmetric by themselves, although their sum is. The full
vertex, which is defined as the sum of all three channels at
the one-loop level (F1 loop), can be written as

F1 loop = u + PP1 loop(u,u) + PH1 loop(u,u) + PH1 loop(u,u).

(6)

One of the methods to generate higher-order diagrams is
the so-called vertex insertion method. The parquet diagrams
are the diagrams which can be generated by replacing one
of the vertices with the one-loop diagram. For example,

two-loop diagrams can be obtained from PP1 loop(u,u′) (where
u′ contains the one-loop correction), and similarly from
the PH1 loop and PH1 loop one-loop diagrams. (N + 1)th-order
diagrams can be generated iteratively, by replacing one of the
vertices in an N th-order diagram with a one-loop diagram.
The parquet formulation is essentially a systematic way to
sum up all the parquet diagrams that can be generated by
this iterative scheme. Therefore, ultimately all the diagrams
generated within the parquet formulation are two-particle
reducible in at least one of the three channels.

The central idea is to organize the parquet diagrams in
a systematic manner to allow the sum to be calculated. In
principle, the idea is the same as that for deriving the usual
Bethe-Salpeter equation. The difficulty here is that more than
one channel has to be considered. First, it is convenient
to introduce the irreducible vertices � for every channel.
This includes all the parquet diagrams which cannot be cut
into two pieces in their own channel. The reducible bubbles
(�PP ,�PH ,�PH ) (see Fig. 2) are formed by replacing one of
the vertex in the one-loop diagram by � and the other by the
full vertex F (which includes all the parquet diagrams), we
define them as

�PP = PP1 loop(�PP,F ), (7)

�PH = PH1 loop(�PH,F ), (8)

�PH = PH1 loop(�PH,F ). (9)
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FIG. 2. Diagrams for the reducible bubbles for the three different
channels. The BCS diagram–particle-particle channel (top), the
zero-sound diagram–vertical particle-hole channel (middle), and the
Peierls diagram–horizontal particle-hole channel (bottom). These
bubbles are reducible in the sense that they can be cut into two pieces
by cutting two fermion lines.
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FIG. 3. Diagrams for the full vertex containing the fully irre-
ducible vertex and the contribution from all three channels. The
fully irreducible in most practical calculations is choosen as the bare
vertex. It is often said that the above equation for the full vertex is
“exact”, however in practice it is almost never possible to calculate
the fully irreducible vertex. In essence, this equation separates the
total contribution for the full vertex into two parts: parquet diagrams
and non-parquet diagrams.

In principle, we can replace the bare vertices used in the one-
loop perturbation by any corrected vertex obtained by methods
that include nonparquet diagrams, for example the vertex from
the dynamical mean-field approximation. Therefore instead of
the bare u we can have the corrected ucorr. In this sense, it is
appropriate to call ucorr the input of the perturbation. In the
context of parquet formulation, this input is usually denoted as
the fully irreducible vertex �, as it contains diagrams which
cannot be separated into two pieces by cutting any two Green
function lines.

The full vertex F (see Fig. 3) should be given by the sum
of the fully irreducible vertex and the contribution from three
different channels, that is,

F = � + �PP + �PH + �PH. (10)

This is essentially Eq. (6) but the kernel of the bubbles is not
the bare coupling, u.

There is an overcounting due to the reducible bubbles.
Consider the particle-particle bubble �PP = PP1 loop(�PP,F ),
since the full vertex F already contains the diagrams which
are reducible in the particle-particle channel, they should be
subtracted from �PP (see Fig. 4). Similarly, for the other two
particle-hole channels,

�PP = � + �PH + �PH, (11)

�PH = � + �PP + �PH, (12)

�PH = � + �PP + �PH. (13)

These are the parquet equations which take into consid-
eration channel mixing. The parquet equations together with
the Bethe-Salpeter equations complete the closed system of
equations for the vertex functions. The remaining part of
the self-consistent calculation at the two-particle level is
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FIG. 4. Diagrams for the irreducible bubbles for the three dif-
ferent channels. The BCS diagram–particle-particle channel (top),
the zero-sound diagram–vertical particle-hole channel (middle), and
the Peierls diagram–horizontal particle-hole channel (bottom). These
bubbles are reducible in the sense that they can be cut into two pieces
by cutting two fermion lines.

to connect the self-energy with the vertex function via the
Dyson-Schwinger equation [55,56]

�(1) =
∫

d(2)
∫

d(3)
∫

d(4)G(2)G(3)G(4)F 24
13 u42

31. (14)

The self-energy is related to the dressed Green function by the
Dyson equation

G−1 = G−1
0 − �, (15)

where G0 is the bare Green function. The corrected self-
energy or the one-particle Green function can be fed back
into the parquet equations and the Bethe-Salpeter equation
for the fermion lines. Therefore, the self-consistency loop
is completed for the two-particle vertex and one-particle
self-energy.

The Bethe-Salpeter equations, the parquet equations, the
Dyson-Schwinger equation, and the Dyson equation form
a closed set of integral equations which in principle allow
the vertex correction and the self-energy correction to be
calculated in a self-consistent manner given the input of the
fully irreducible vertex. One of the advantages of the parquet
formulation is that the vertex obtained from the solution
of these equations satisfies crossing symmetry exactly. This
is fundamentally due to the channel mixing in the parquet
equations which enforces this symmetry explicitly. Most
of the one-particle approximations and biased two-particle
approximations fail to fulfill this symmetry.
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B. Parquet equations in spin-diagonalized form

Note that the particle-hole channel can be obtained from
either the irreducible vertex �PP or the irreducible vertex �PH,
using the crossing symmetry we can eliminate one of the
irreducible particle-hole channels [19,20]. Since we are mostly
interested in the models which possess SU(2) spin rotation
symmetry, it is convenient to preserve this symmetry, as this
is an exact symmetry for our two-dimensional calculations
at nonzero temperature, by decomposing the vertices in the
so-called spin-diagonalized representation [19,20]. In this
representation the three different channels with the additional
spin degree of freedom can be decomposed into four different
channels; they are the the spin channel, charge channel,
spin-singlet channel, and spin-triplet channel, which we denote
as the m channel, d channel, s channel, and t channel,
respectively.

We reproduce the full set of equations with all the
indices for the parquet formulation in the spin-diagonalized
representation in the following [19,24,37]. First we define the
different channels:

�d = �PH
↑↑;↑↑ + �PH

↑↑;↓↓, (16)

�m = �PH
↑↑;↑↑ − �PH

↑↑;↓↓, (17)

�s = �PP
↑↓;↑↓ − �PP

↑↓;↓↑, (18)

�t = �PP
↑↓;↑↓ + �PP

↑↓;↓↑, (19)

and similarly for F and �.
The Schwinger-Dyson equation is

�(P ) = −UT 2

4N

∑
P ′,Q

{G(P ′)G(P ′ + Q)G(P − Q)

× [Fd (Q)P−Q,P ′ − Fm(Q)P−Q,P ′ ]

+G(−P ′)G(P ′ + Q)G(−P + Q)

× [Fs(Q)P−Q,P ′ + Ft (Q)P−Q,P ′]}, (20)

where G is the single-particle Green function, which itself can
be calculated from the self-energy using the Dyson equation,

G−1(P ) = G−1
0 (P ) − �(P ), (21)

where G0 is the bare Green function. Here, the indices P , P ′,
and Q combine the momentum k and Matsubara frequency
iωn, i.e., P = (k,iωn).

The reducible and the irreducible vertices in a given channel
are related by the Bethe-Salpeter equation,

Fr (Q)P,P ′ = �r (Q)P,P ′ + �r (Q)P,P ′ , (22)

Fr ′(Q)P,P ′ = �r ′(Q)P,P ′ + �r ′ (Q)P,P ′ , (23)

where r = d or m for the density and magnetic channels and
r ′ = s or t for the spin-singlet and spin-triplet channels. The
vertex ladders are defined as

�r (Q)P,P ′ ≡
∑
P ′′

Fr (Q)P,P ′′χPH
0 (Q)P ′′�r (Q)P ′′,P ′ , (24)

�r ′(Q)P,P ′ ≡
∑
P ′′

Fr ′(Q)P,P ′′χPP
0 (Q)P ′′�r ′ (Q)P ′′,P ′ , (25)

where χ0 is the product of two single-particle Green functions.

The parquet equations in the spin-diagonalized representa-
tion are

�d (Q)PP ′ = �d (Q)PP ′ − 1
2�d (P ′ − P )P,P+Q

− 3
2�m(P ′ − P )P,P+Q

+ 1
2�s(P + P ′ + Q)−P−Q,−P

+ 3
2�t (P + P ′ + Q)−P−Q,−P , (26)

�m(Q)PP ′ = �m(Q)PP ′ − 1
2�d (P ′ − P )P,P+Q

+ 1
2�m(P ′ − P )P,P+Q

− 1
2�s(P + P ′ + Q)−P−Q,−P

+ 1
2�t (P + P ′ + Q)−P−Q,−P , (27)

�s(Q)PP ′ = �s(Q)PP ′ + 1
2�d (P ′ − P )−P ′,P+Q

− 3
2�m(P ′ − P )−P ′,P+Q

+ 1
2�d (P + P ′ + Q)−P ′,−P

− 3
2�m(P + P ′ + Q)−P ′,−P , (28)

�t (Q)PP ′ = �t (Q)PP ′ + 1
2�d (P ′ − P )−P ′,P+Q

+ 1
2�m(P ′ − P )−P ′,P+Q

− 1
2�d (P + P ′ + Q)−P ′,−P

− 1
2�m(P + P ′ + Q)−P ′,−P . (29)

It is important to note at this point that if we substitute the
irreducible vertices � [Eqs. (26), (27), (28), and (29)] into
the Bethe-Salpeter equation [Eqs. (22) and (23)] the crossing
symmetry in the full vertex F is automatically satisfied
regardless of the numerical values of the vertex ladders �

and �, assuming that the fully irreducible vertices � are
crossing symmetric. We write all the full vertices explicitly
in the following using only the vertex ladders � and � and the
fully irreducible vertices �:

Fd (Q)P,P ′ = �d (Q)PP ′ − 1
2�d (P ′ − P )P,P+Q

− 3
2�m(P ′ − P )P,P+Q

+ 1
2�s(P + P ′ + Q)−P−Q,−P

+ 3
2�t (P + P ′ + Q)−P−Q,−P

+�d (Q)P,P ′ ; (30)

Fm(Q)P,P ′ = �m(Q)PP ′ − 1
2�d (P ′ − P )P,P+Q

+ 1
2�m(P ′ − P )P,P+Q

− 1
2�s(P + P ′ + Q)−P−Q,−P

+ 1
2�t (P + P ′ + Q)−P−Q,−P

+�m(Q)P,P ′ ; (31)

Fs(Q)P,P ′ = �s(Q)PP ′ + 1
2�d (P ′ − P )−P ′,P+Q

− 3
2�m(P ′ − P )−P ′,P+Q

+ 1
2�d (P + P ′ + Q)−P ′,−P

− 3
2�m(P + P ′ + Q)−P ′,−P

+�s(Q)P,P ′ ; (32)
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Ft (Q)P,P ′ = �t (Q)PP ′ + 1
2�d (P ′ − P )−P ′,P+Q

+ 1
2�m(P ′ − P )−P ′,P+Q

− 1
2�d (P + P ′ + Q)−P ′,−P

− 1
2�m(P + P ′ + Q)−P ′,−P

+�t (Q)P,P ′ . (33)

These relations allow us to restore the crossing symmetry for
the full vertices without heavy computational overhead.

The prominent technical problem at hand is whether or not
we can solve this set of equations efficiently without resorting
to any approximation scheme. An obvious difficulty is to
handle the large number of variables. On going from the one-
particle-level calculation to a two-particle-level calculation,
the number of variables which has to be monitored grows as the
third power of the linear dimension of the system. If Nt is the
number of lattice sites times the number of discrete Matsubara
frequencies, i.e., Nt = Nk × Nω, the largest Nt that can be
handled is in the range 2000–3000, i.e., the number of variables
can be over 1 × 109. One can immediately see that practical
calculations for reasonably large system sizes pose a serious
problem, although not insurmountable with modern computa-
tional facilities where a large number of computer nodes are
accessible. However, in addition to the large number of compu-
tations associated with solving the parquet equations, they also
require a complex communication pattern between the differ-
ent processes, as we discuss in more detail in the Appendix.
Moreover, a numerical instability is not unexpected, especially
when the system is in the proximity of a phase transition.

III. NUMERICAL IMPLEMENTATION

The parquet formulation consists of two sets of equations.
The first set, e of the parquet equations and the Bethe-Salpeter
equation, determines the full vertex F and the irreducible
vertex � given the one-particle self-energy � and the fully
irreducible vertex � as the input. The second set of equations
determines the one-particle quantities given the full vertex
F ; it includes the Schwinger-Dyson equation and the Dyson
equation.

Since the method is iteration based, the initial guess is
crucial for obtaining a converged solution. In principle, the
initial guess can be approximated, for example, by second-
order perturbation theory. However, in practice, this is not
the optimal choice, especially when the self-energy from
second-order perturbation theory is small. In this case the
Green function will quickly destabilize the calculation. This
may relate to the fact that the damping from the imaginary part
of the self-energy is quickly reduced. Since we are supposing
that we know the fully irreducible vertex �, a practical scheme
is to choose the irreducible, �, and full, F , vertices, equal to �,
and a large value (a few times the bandwidth) for the imaginary
part of the self-energy.

Figure 5 is an illustration of the flow diagram of the
algorithm, where the fully irreducible vertices are the initial
input for the calculation. The algorithm can be described as
follows:

(1) Set the initial conditions for the irreducible and full
vertices, and the self-energy.

FIG. 5. (Color online) Flow diagram of the algorithm for solving
the parquet equations. See the text for the description of each step.
The major computational bottleneck is in the self-consistent loop of
step 2. The cross-channel rotations of the vertex ladders from the
form required by the Bethe-Salpeter equations to that in the parquet
equations require expensive communications across different nodes
in the parallel implementation.

(2) Update the Green functions and calculate the bare
susceptibility χ0, which is given by the product of two Green
functions. Solve the parquet and the Bethe-Salpeter equations
for the irreducible vertices �. Simple iteration is used until the
convergence criteria are met for the irreducible vertices.

This completes the update of the vertices. The next step
is to use the irreducible vertices obtained from the parquet
equations to construct the full vertices.

(3) Solve the Bethe-Salpeter equation to obtain the full
vertices F using the irreducible vertices from the previous
step; this is executed exactly by calling the LAPACK routines
for the inverse of the matrices [57].

With the full vertices obtained, we can update the self-
energy.

(4) Solve the Dyson-Schwinger equation to obtain the self-
energy from the full vertices. Simple iteration is used until
certain convergence criteria are met for the self-energy.

(5) Solve the Dyson equation for the fully dressed Green
function from the self-energy.

This completes the iteration loop, and the procedure is
repeated from step 2, until convergence is reached for both
the self-energy and the irreducible vertices.

In practice, step 2 which attempts to obtain the irreducible
vertices needs to be iterated for a few times to get a reasonable
convergence, even in the case where the coupling is weak
and the temperature is high. On the other hand, step 4 which
attempts to obtain the self-energy from the updated full
vertices is not iterated more than once at each cycle of the
loop, so as to avoid instability (we define instability here as
the failure to obtain a converged solution from the iterative
solver). Attempting to solve for the self-energy at the early
stage of the iterative procedure where the full vertices are
not well converged can generally lead to instability. Although
in the present paper we focus only on the Hubbard model,
instabilities in the iteration process have also been observed in
solving the parquet equations for nuclear structure calculations
[36].

A widely used method to avoid the instability in the iterative
process is to introduce a damping factor in the updates of the
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variables. The updates are modified as follows:

� = (α)�new + (1 − α)�old; (34)

� = (α)�new + (1 − α)�old. (35)

With this damping scheme, the solution for the half-filled
Hubbard model on a 4 × 4 cluster has been successfully
obtained for U = 2t and temperature T = 0.3t [37]. However,
in the strong-coupling regime, obtaining a stable solution still
seems to be difficult, even though a rather heavy damping is
employed.

We will demonstrate the instability problem of the simple
iterative process by monitoring the leading eigenvalues λ

defined as

λrφr = �r (P,P
′
)G(P

′
)G(P

′ + (π,π ))φr (36)

for r = d and m; similarly

λr ′φr ′ = (−1/2)�r ′ (P,P
′
)G(−P

′
)G(P

′
)φr ′ (37)

for r ′ = s and t . In principle, these leading eigenvalues signal a
phase transition by going through 1, expressing the divergence
of the susceptibilities in the corresponding channel.

In Fig. 6, we plot the leading eigenvalues of the density,
magnetic, spin-singlet, and spin-triplet channels as functions
of the number of iteration steps calculated with this simple
iteration (SI) method. The calculation is done on a 2 × 2 cluster
with 32 frequencies and temperature T = 0.4t ; the damping
parameter is α = 0.1. A converged solution is obtained for
U = 2t ; however, for U = 4t and 6t the iterative solutions
diverge. Changing the damping or the initial self-energy does
not help in obtaining a converged solution for the larger values
of U . These are illustrative examples which show the problem
of using the simple iteration method for solving the parquet
equations. For weak coupling and not too low temperature,
converged solutions can be obtained. Beyond weak coupling
the iteration becomes divergent.

A. Continuous loading method

The fixed point iteration method is widely used to solve the
self-consistent equations arising in the context of many-body
physics, e.g., from the dynamical mean-field approximation.
Generically the fixed point iteration method can be used
to solve the equation f (x) = x, where f : Rn → Rn. For
example, in the dynamical mean-field approximation, the
function f is the self-consistency equation, x is the self-energy,
and n is equal to 2Nω, where Nω is the number of Matsubara
frequencies.

However, this simple fixed point iteration method provides
a convergent solution for the parquet formulation only in
the weak-coupling and high-temperature regime. A possible
method to alleviate the divergence in the nonlinear solver is
the so-called continuous loading or homotopy method. The
continuous loading method constructs an auxiliary problem,
which is easier to solve than the original one, and then
gradually deforms the auxiliary problem into the original
one. For the purpose of illustration, consider that we want
to solve an equation f (x) = x, where f (x) : R1 → R1 with
a single variable x. Instead of solving the equation f (x) = x,
we devise a function g(x,ν) : R2 → R1 which is defined
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FIG. 6. (Color online) The leading eigenvalues of various chan-
nels [density (d), magnetic (m), spin singlet (s), and spin triplet
(t)] as functions of the number of iteration steps calculated with the
simple iteration (SI) method. The calculations are for the half-filled
Hubbard model on a 2 × 2 cluster at temperature T = 0.4t . The initial
condition for the self-energy is set at 0 + i320t , and that for the
irreducible vertex is set at the bare Hubbard coupling. The damping
factor α is set at 0.1. The solution is well converged for U = 2t .
However, divergence occurs for U = 4t at the 55th iteration step. For
U = 6t , divergence occurs at the 46th iteration step.

as g(x,ν) ≡ νf (x) + (1 − ν)x0, where x0 is the solution for
the equation g(x,ν = 0) = x, and ν is a tuning parameter
used to deform the function g(x,ν). One can easily see that
g(x,ν = 1) = f (x), while the solution of g(x,ν = 0) = x is
trivially given by x = x0. There are a few different methods
to deform the function g. One of the strategies is to first solve
g(x,ν0) = x, where ν0 is small and thus the equation is easy to
solve by the fixed point iteration. The solution obtained is used
as the initial condition to solve g(x,ν1) = x, where ν1 > ν0,
and this process is continued until the g(x,ν) is deformed to
the original function f (x). Therefore, a series of νi is needed
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to gradually deform the auxiliary problem g(x,ν) = x into the
original problem f (x) = x.

When applying the continuous loading method to solve the
parquet formulation, we write down the set of parquet equa-
tions as fparquet({�,�}) = {�,�}, where fparquet : Rn → Rn is a
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FIG. 7. (Color online) The leading eigenvalues obtained by the
continuous loading (CL) method. (See Sec. III A for details.) Symbol-
ically we write the parquet equations as fparquet({�,�}) = {�,�} and
use them to define the auxiliary function as g = νfparquet + (1 − ν)f0,
where f0 is a function with a trivial solution. We choose f0 as a vector
containing all the elements of �0 and �0. The iteration method is
used to solve the function g(ν), instead of fparquet. The solution of
fparquet is recovered when ν = 1. A series of ν values are needed,
which we denote as νi . The function g(νi) is solved by the simple
iteration method with the initial conditions given by the converged
solution of the function g(νi−1). For U = 2t , we can push the value
of ν to 1 to obtain the converged solution for g(ν = 1), and the
solution of the parquet equations is recovered. However, the iteration
procedure diverges for the cases of U = 4t and U = 6t ; they diverge
at ν = 0.9999 and 0.999, respectively. These examples show that for
the cases where the simple iteration method diverges, the continuous
loading method may not eliminate the divergence, even though the
value of ν is pushed fairly close to 1.

large set of equations with dimension n = 2(4N3
t + Nt ), where

the 4N3
t is due to the four different channels of irreducible

vertices (�), Nt is due to the self energy (�), and the factor
of 2 is due to the complex variables. We define the auxiliary
function as g = νfparquet + (1 − ν)f0 : Rn+1 → Rn, where f0

is a function with a trivial solution. In our study we choose
f0 as all the elements of �0 and �0, where �0 and �0

are the initial guesses for the irreducible vertices (bare ver-
tices) and the self-energy (second-order perturbation result),
respectively.

We plot the leading eigenvalues from the continuous
loading method in Fig. 7. The values of ν used are ν =
0.0, 0.5, 0.8, 0.9, 0.95, 0.99, 0.993, 0.996, 0.997, 0.998,

0.999, 0.9999, 1.0. 100 and 200 iterations are performed
for ν � 0.993 and ν � 0.996, respectively. For U = 2t , a
converged solution is obtained for ν = 1. However, for U = 4t

and 6t , the iterative solution diverges. The divergences appear
before the homotopy parameter is pushed to ν = 1. These
examples illustrate the generic behavior when the parquet
equations are solved by the simple iteration method beyond
weak coupling. They also illustrate that the continuous loading
method may not be sufficiently robust to solve the problem.
The damping factor α used in these calculations is 0.1, which
we believe is a fairly small value, although it may still not be
sufficient. A rule of thumb for choosing the damping parameter
is that it should be close to the value of the inverse of the
residual between two consecutive iterations; unfortunately,
with the huge number of variables, this choice will result in a
very small step and may not be a practical option [58].

IV. CROSSING SYMMETRY VIOLATION

The exact solution of the parquet equations automatically
satisfies crossing symmetry. It is one of the most important
differences between the parquet formulation and most other
perturbative methods. However, within the iteration scheme
presented in the last section, the crossing symmetry is not
satisfied unless the iteration converges to an exact solution.
From the above section, we clearly find that the iteration
method, even with the help of the continuous loading scheme,
is not robust enough to obtain a converged solution beyond
weak coupling. It is desirable to quantify the violation of
crossing symmetry. The following six equalities are the con-
sequence of crossing symmetry [see Fig. 8 for a diagrammatic
representation of these crossing symmetry (CS) operations]
[19,24]:

L1 ≡ Ft (Q)P,P
′

= [−(1/2)Fm − (1/2)Fd ](P + P
′ + Q)−P

′
,−P ≡ R1,

(38)
L2 ≡ Fs(Q)P,P

′

= [−(3/2)Fm + (1/2)Fd ](P + P
′ + Q)−P

′
,−P ≡ R2,

(39)

L3 ≡ Fm(Q)P,P
′

= [(1/2)Ft − (1/2)Fs](P + P
′ + Q)−P−Q,−P ≡ R3,

(40)
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FIG. 8. (Color online) Diagrammatic representation of the six
crossing symmetry operations. Note that spin indices are hidden for
the purpose of clarity. For the first two operations (CSs 1 and 2),
we exchange the lower two external legs. For the third and fourth
operations (CSs 3 and 4), we exchange the lower two legs and then
the right two legs. The first four crossing symmetry relationships
(CSs 1–4) relate the particle-particle vertices to the particle-hole
vertices. The last two (CSs 5 and 6) are for the particle-hole
vertices only, where we exchange the lower left and upper right
legs.

L4 ≡ Fd (Q)P,P
′

= [(3/2)Ft + (1/2)Fs](P + P
′ + Q)−P−Q,−P ≡ R4,

(41)
L5 ≡ Fm(Q)P,P

′

= [(1/2)Fm − (1/2)Fd ](P
′ − P )P,P+Q ≡ R5, (42)

L6 ≡ Fd (Q)P,P
′

= [−(3/2)Fm + (1/2)Fd ](P
′ − P )P,P+Q ≡ R6. (43)

In Fig. 9 we plot the violation of crossing symmetry versus
the number of iterations. It can be seen clearly that the crossing
symmetry cannot be perfectly restored; even for the case of
U = 2t , the measures of violation of crossing symmetries
show oscillatory decreasing behavior, and the rate of decrease
is quite slow even though the leading eigenvalues seem to be
well converged. Obviously, for the cases of U = 4t and 6t

the crossing symmetry is severely violated and at the verge
of the divergence there are sharp increases in the crossing
symmetry violation. This may suggest that if the crossing
symmetry can be restored, the divergence may be avoided
beyond weak coupling.

In Fig. 10, we plot the crossing symmetry violation as a
function of iteration steps with the continuous loading method
and the same parameters as in Fig. 7. It is important to note
that the homotopy function g(ν) does not respect the crossing
symmetry except at ν = 1. Therefore, although the solution is
converged, as long as ν 	= 1, the crossing symmetry is violated.
The data for U = 2t,4t , and 6t are shown in the top, the middle,
and the bottom panels, respectively. The data for U = 2t show
a peak at the beginning of the iteration procedure when ν

is increased and gradually converge to a finite value. For ν
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FIG. 9. (Color online) Crossing symmetry violation Ei versus
the number of iterations for the simple iteration (SI) method with
the same parameters as in Fig. 6. The six measures of crossing
symmetry violation are defined as Ei = |Li − Ri |/|Li + Ri |, where
i = 1,2, . . . ,6; Li and Ri are defined respectively as the left- and
the right-hand sides of Eqs. (38)–(43). The data for U = 2t show an
oscillatory but decreasing trend. This is expected for the case where
the iteration provides a well-converged solution. One should note that
although the leading eigenvalues seem to be converged, the crossing
symmetry is not perfectly constructed from the iteration. For U = 4t

and U = 6t , the iteration fails to provide converged solutions, and the
crossing symmetry is strongly violated. In particular, at the verge of
the divergence, there is a sharp increase of the violation of crossing
symmetry.

close to 1, the data show a similar oscillatory behavior as that
from the simple iteration method. Similar behaviors are also
observed for U = 4t and U = 6t ; however, the iterations fail
to converge for ν close to 1; the crossing symmetry is strongly
violated. Just as in the simple iteration method, at the verge
of the divergence, there are sharp increases of the violation of
crossing symmetry.
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FIG. 10. (Color online) Crossing symmetry violation Ei versus
the number of iterations for the continuous loading (CL) method
with the same parameters and the same definition of Ei as in Fig. 9.
The homotopy function g(ν) does not respect the crossing symmetry
except at ν = 1. Therefore, although the solution may be converged
for some values of ν, as long as ν 	= 1, the violation of crossing
symmetry is nonzero. For U = 2t the crossing symmetry violations
peak near the beginning of the iteration procedure where ν is small and
gradually converge to a finite value when ν = 1. Similar behaviors
are also observed for U = 4t and U = 6t ; however, since the iteration
fails to converge for ν close to 1, the crossing symmetry is strongly
violated. Similar to that observed in the simple iteration method, at
the verge of the divergence, there is a sharp increase of the violation
of crossing symmetry.

V. SYMMETRY RESTORATION

A. Crossing symmetry

Although it does not seem to be easy to analyze all
the causes of the instability in the iteration, based on the
discussion in the above section, our conjecture is that one of the
possible reasons for the instability is that certain symmetries
are violated in the course of the iterative process. A possible

FIG. 11. (Color online) Flow diagram of the algorithm for solving
the parquet equations with crossing symmetry restoration. See the
text for the description of each step. The main difference compared
to the previous algorithm is in step 3b where the crossing symmetry
is restored explicitly in the full vertex F . Because of this explicit
restoration of the crossing symmetry, in practice, step 2 is iterated
only once as self-consistency is not required to generate the crossing
symmetry.

strategy to improve the iteration scheme is to impose those
symmetries explicitly in the iteration process, so that at each
step of the iteration these symmetries are not violated. The
full vertices F obtained by the solution of the Bethe-Salpeter
equation cannot guarantee crossing symmetry, unless the exact
solution is attained. Therefore, so as to preserve crossing
symmetry, the simplest method is to use the full vertices
obtained by solving the Bethe-Salpeter equation (that is, the
full vertices obtained from step 3 of the algorithm presented
in Sec. III), and feed them back into the parquet equation
to reconstruct the crossing-symmetric full vertices. Figure 11
illustrates the flow diagram for solving the parquet equations
with explicit restoration of the crossing symmetry in the full
vertices. Here is the algorithm which explicitly preserves the
crossing symmetry:

(1) Set the initial conditions for the irreducible and full
vertices, and the self-energy.

(2) Update the Green functions and calculate the bare
susceptibility χ0. Solve the parquet and the Bethe-Salpeter
equations for the irreducible vertices �. Simple iteration is
used until the convergence criteria are met for the irreducible
vertices.

Since we will restore the crossing symmetry of the full
vertices in the step 3b, we find that it is not necessary to
attain the self-consistency for step 2. In practice, we iterate
the parquet equations only once. The next step is to use the
irreducible vertices obtained from the parquet equations to
construct the full vertices.

(3a) Solve the Bethe-Salpeter equation to obtain the full
vertices F , using the irreducible vertices from the previous
step. This is executed exactly by calling the LAPACK routines
for the inverse of the matrices [57].

(3b) Use the new irreducible vertices obtained in step 2 and
the full vertices obtained in step 3a to form the vertex ladders.
Construct the full vertices from Eqs. (22) and (23) using the
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vertex ladders. Following these steps, the crossing symmetry
is restored in the full vertex F .

With the full vertices obtained, we can update the self-
energy.

(4) Solve the Dyson-Schwinger equation to obtain the self-
energy from the full vertices. Simple iteration is used until the
convergence criteria are met for the self-energy.

(5) Solve the Dyson equation for the fully dressed Green
function from the self-energy.

This completes the iteration loop, and the procedure is
repeated from step 2 until the criteria of convergence are met
for both the self-energy and the irreducible vertices.

The main difference between the current algorithm and the
previous algorithm we present in Sec. III is in step 3 where
the full vertices are constructed. In the previous algorithm
the Bethe-Salpeter equation is solved many times to attain
convergence. When absolute convergence is attained, crossing
symmetry will be satisfied. In the current algorithm, we just ex-
plicitly solve the Bethe-Salpeter equation in step 3a to refresh
the full vertices. Once we obtain the full vertices, in step 3b, we
construct the new vertex ladders and the new full vertices from
the vertex ladders using the Bethe-Salpeter equation. By doing
so, the crossing symmetry of the full vertices is satisfied; see
Eqs. (30), (31), (32), and (33). In Fig. 12 we show the leading
eigenvalues using the same set of parameters used in Fig. 6.
While the simple iteration scheme without crossing symmetry
fails to converge for the case of U = 4 and 6, it provides a
converged solution when the crossing symmetry is explicitly
restored.

B. Time-reversal and point group symmetry

Besides imposing crossing symmetry on the full vertices,
some of the internal symmetries can also be imposed on
the irreducible vertices and the self-energy without much
computational overhead. We illustrate time-reversal symmetry
in the self-energy

�(k,iω) = �∗(k, − iω) (44)

and the vertices (spatial reflection symmetry and parity
invariance are assumed)

F (Q)P,P
′ = F (Q)P ′

,P . (45)

As these symmetry operations do not mix vertices across
different values of Q, and provided that the data is distributed
with one or more Q at each node, the time-reversal symmetry
of the vertices can be imposed without invoking commu-
nications across different nodes. Therefore, enforcing time-
reversal symmetry will cause only a very minor computational
overhead.

Other symmetries, such as the point group symmetry for
the square lattice, can be rather cumbersome. An expensive
scheme involving heavy internode communication would be
required to impose the complete set of point group symmetries.
However, we may impose an important subset of the operations
Rα for which Rα(Q) = Q without expensive communications.
In these cases, the vertices may be symmetrized by performing
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FIG. 12. (Color online) The leading eigenvalues of various
channels [density (d), magnetic (m), spin singlet (s), and spin triplet
(t)] versus the number of iterations with the simple interaction (SI)
method with crossing symmetry (CS). The parameters used are the
same as the data shown in Fig. 6. The only difference is that the
crossing symmetry in the full vertex F is explicitly restored at each
step of the iteration. This is easily achieved by constructing the full
vertex directly from Eqs. (22) and (23). The simple iteration scheme
without crossing symmetry fails for the case of U = 4 and 6. With
the crossing symmetry explicitly restored, converged solutions are
obtained.

the sum

F (Q)P,P
′ = 1

NRα (Q)=Q

∑
Rα (Q)=Q

F (Q)Rα(P ),Rα (P ′ ), (46)

where NRα (Q)=Q is the number of elements in this subset of
operations. For general Q in the cluster Brillouin zone there
would be no α such that Rα(Q) = Q apart from the identity.
However, for the points of high symmetry, Rα(Q) = Q for
all α. Generally, the instabilities first occur here, so imposing
the point group symmetries at these Q values should have the
greatest impact.
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FIG. 13. (Color online) The leading eigenvalues of various
channels [density (d), magnetic (m), spin singlet (s), and spin triplet
(t)] as functions of the iteration. The parameters used are the same as
for the data shown in Fig. 6. Two symmetries are explicitly restored
at each step of the iteration: the crossing symmetry (CS) in the full
vertex F and the time-reversal symmetry (TRS) for the self-energy
� and both the irreducible vertex � and the full vertex F (that
is F (Q)P,P

′ = F (Q)P ′
,P and similarly for �). Notice there is no

substantial gain in the convergent rate compared to the case with only
the crossing symmetry being restored.

In Fig. 13 we show the leading eigenvalues of various
channels when both crossing and time-reversal symmetries
are imposed for the same set of parameters that are used
for the data in Figs. 6 and 12. Spatial reflection symmetry,
parity invariance, and spin rotation invariance are assumed
as appropriate for the two-dimensional Hubbard model at
nonzero temperature. We can see that there is only very
marginal improvement for the convergence compared to the
results without explicit restoration of the time-reversal sym-
metry (see Fig. 12). We also used the scheme described above
to partially impose the point group symmetries. However,
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FIG. 14. (Color online) The leading eigenvalues of the anti-
ferromagnetic magnetic channel λm as functions of the coupling
U calculated with the simple iteration method. Different curves
correspond to different temperatures. The data points enclosed in
a black square correspond to the cases where the simple iteration
without any symmetry restoration can provide a converged solution.

these symmetries resulted in no additional improvements and
therefore no results are shown.

VI. LEADING EIGENVALUE OF THE
ANTIFERROMAGNETIC CHANNEL

With the improved scheme proposed in this paper, we are
able to explore a wider range of temperature and coupling
strength for the half-filled Hubbard model. In Figure 14 we
show the leading eigenvalue for the most singular channel,
the antiferromagnetic channel λm as a function of U for a
range of temperatures as low as T = 0.15t . The data points
enclosed in a black square correspond to the cases where the
simple iteration without any symmetry restoration provides
a converged solution. For all temperatures, the λm values
increase sharply at weak coupling (U ∼ 2t), and they tend to
saturate at strong coupling (U ∼ 6t). They are most sensitive
to temperature at intermediate coupling (2t < U < 4t).
We emphasize that convergence is not possible without the
improved scheme, unless a large number of iterations are used
to attain the crossing symmetry.

VII. SUMMARY AND DISCUSSION

We present improvements of the numerical implementation
of parquet equations for the Hubbard model. The main strategy
is to enforce the symmetries in the iteration process. The most
prominent advantage of the parquet formulation, compared
to most approaches, is that the crossing symmetry is exactly
fulfilled. However, in general, this is true only if the exact
solution is found. With the simple iteration method, crossing
symmetry is strongly violated prior to an instability, suggesting
that the instability is due to these symmetry violations.

The continuous loading or homotopy method does not
improve convergence significantly beyond the simple iteration
method. We note that the solution of the continuous loading
function does not preserve crossing symmetry. This may partly
explain why the continuous loading method does not provide
significant improvement over simple iteration.
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We present a simple method to enforce the crossing
symmetry at each step of the iteration which does not
substantially increase the computational cost. The addition of
these symmetry constraints can greatly improve the stability
of the calculation, so that a wider range of parameters can
be explored by the parquet formulation. Along this line of
thought, one can expect that the stability may be further
improved if other symmetries are also imposed, the obvious
ones being time-reversal and point group symmetries. How-
ever, these additional symmetries did not improve the stability
significantly beyond that obtained with crossing symmetry
alone.

It has been suggested that the one-particle self-consistency
cannot restore the three-peak structure of the spectral function
for the single-impurity problem [12,13]. Therefore, in the
future, it will be worthwhile to study in detail the effect of
one-particle self-consistency for the lattice models. For the
numerical implementation, we find that by keeping the Hartree
propagator only, the iteration is generally more stable.

The main reason that the numerical solution of the parquet
equations is limited to fairly modest system sizes is the
memory allocation, and somewhat also computer cycles. In
the current scheme the memory allocation scales with the
third power of the number of sites (Nk) times the number of
Matsubara frequencies (Nω); this number (NkNω) is practically
limited to around 3000 even in a supercomputer. However, we
are currently investigating a scheme to compress the memory
requirements by employing an inhomogeneous frequency grid.
Once this is finished, we expect that we can study larger
clusters.

The parquet formulation still remains one of the best
approaches for calculating the two-particle vertex functions
in a self-consistent manner. At present, solving the parquet
equations for a large lattice size is still a very challenging
task; however, with the continuous advances of computational
facilities, it should become feasible in the foreseeable future.
A promising direction, which allows immediate application
of the parquet formulation, is to incorporate it as part of the
multiscale many-body approach [59,60].
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APPENDIX: PARALLEL IMPLEMENTATION WITH
LATENCY HIDING

This Appendix describes a highly effective implementation
of the symmetry-enforcing variant of the parquet formulation

described earlier in the paper. The communication bottleneck
in this implementation is caused by the expensive tensor rota-
tions required to rotate the vertex ladders [Eqs. (24) and (25)]
from the forms used in the Bethe-Salpeter equation, Eqs. (22)
and (23), to those used in the parquet equations, Eqs. (26)–(29).
If we distribute the equations between the processes executing
on the compute nodes of a parallel machine using the transfer
momenta Q, the tensor rotations are done with an expensive
all-to-all communication among those processes, in which
every node needs to communicate with all the other nodes.
The message passing interface (MPI) implementation of the
all-to-all communication [61] is a collective operation that
is blocking, i.e., each process has to wait until the message
has been sent out. The key aspect of our implementation
is the decomposition of the required communication so that
nonblocking communication primitives can be effectively
utilized. The nonblocking communication enables latency
hiding by overlapping computations and communications.

Four different forms of tensor rotation are required:

rotation 1:�(Q)P,P ′ ←− �(P ′ − P )P,P+Q, (A1)

rotation 2:�(Q)P,P ′ ←− �(P ′ − P )−P ′,P+Q, (A2)

rotation 3:�(Q)P,P ′ ←− �(P + P ′ + Q)−P ′,−P , (A3)

rotation 4:�(Q)P,P ′ ←− �(P + P ′ + Q)−P−Q,−P . (A4)

Note that the indices in subscripts and those in parentheses are
equivalent, with the latter only distinguished by also labeling
the nodes where data are distributed. The size of the tensors is
Nt × Nt × Nt , where Nt is the number of momentum points
times the number of discrete Matsubara frequencies, i.e., Nt =
Nk × Nω. All indices are in modulo arithmetic at each of the
D + 1 dimensions, where D = 2 (the cluster dimension), and
the “1′′ is for the Matsubara frequency. Because it takes many
iterations (up to a few hundred for low temperatures and strong
coupling) to obtain converged solutions, the total number of
tensor rotations is significant and accounts for a large fraction
of the computational time.

We use the hybrid MPI-OpenMP model for the com-
putations. The rank-3 tensors are decomposed and evenly
distributed into N virtual nodes. Each virtual node consists
of a few cores. The size of a virtual node (i.e., the number
of cores) is less than or equal to the size of a physical
node. Specifically, we slice the rank-3 tensors to a set of
two-dimensional arrays based on the index in parentheses,
e.g., Q and P − P ′ for the left and right sides of Eq. (A1),
respectively. Then, each two-dimensional matrix is assigned
to a virtual node. Since we have Nt layers of two-dimensional
slices, the total number of virtual nodes also becomes N = Nt .
In this scenario, every rotation requires data communications
among all nodes. The following describes the data access
patterns for our implementation of the tensor rotations.

Step 1. This step involves no MPI communication and
is done before any data are sent between nodes. The tensor
elements are locally rearranged in order to collect specific
elements to be grouped and sent to designated destination
nodes. The index in parentheses of the tensors on the right of
Eqs. (A1)–(A4) represents the rank of a sending node in which
a sliced two-dimensional matrix resides. For rotations 1 and 2,
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the rank of the sending node S is

S = P ′ − P. (A5)

For rotations 3 and 4, S is

S = P + P ′ + Q. (A6)

Using Eqs. (A5) and (A6), and applying these to the corre-
sponding rotations, the two-dimensional matrix elements are
grouped based on the rank of the destination node Q from a
given sending node S:

rotation 1:AP,Q = �(S)P,P+Q, (A7)

rotation 2:AP,Q = �(S)−(P+S),P+Q, (A8)

rotation 3:AP,Q = �(S)P+Q−S,−P , (A9)

rotation 4:AP,Q = �(S)−(P+Q),−P . (A10)

Note that, here, S is the node index (the index of the sender)
and P,Q ∈ {0, . . . ,Nt − 1}, so the P and Q are the row and
column indices of the matrix. We assume column-major order
data access in MPI data communications which distribute
columns of matrix A to nodes of rank Q in the next step.

Step 2. The columns of the two-dimensional matrix A
are distributed among all nodes. At the sending nodes,
each column of A is sent to a destination node labeled
by Q. The standard approach is to use MPI_ALLTOALL.
However, as we show later, this task can be done using
different combinations of point-to-point communications [61].
In particular, nonblocking communication protocols can be
applied to overlap communications and local computations.
Overall, this procedure is applied to all the tensor rotations
and can be written as

BP,S at rank-Q node: ← AP,Q at rank-S node. (A11)

As shown in Eq. (A11), the rank of destination nodes is
determined by the column index Q of A in sending nodes.
The rank of the sending nodes becomes column index S of
B in the receiving nodes. The rank of the sending nodes S

must be provided to the receiving nodes in order to assign the
correct column index to the received messages.

Step 3. Once messages have arrived at the destination nodes,
the columns of the two-dimensional matrix B are rearranged
to complete the tensor rotations. The column index of the
rotated received matrix is related to the rank of the sending
and receiving nodes by Eqs. (A5) and (A6).

Then, the rotations are finalized by using the following
relations:

rotation:1,2:�(Q)P,S+P ←− BP,S, (A12)

rotation:3,4:�(Q)P,S−(P+Q) ←− BP,S, (A13)

where Q is the index of a given receiving node and P,S ∈
{0, . . . ,Nt − 1}. This step is a local process, i.e., no internode
communication is necessary.

1. Improving the performance of tensor rotations

While steps 1 and 3 are strictly local processes, step 2 is the
only stage involving nonlocal MPI communications. The na-

ture of the collective communications among all nodes in step 2
makes it suited to the use of MPI_ALLTOALL. In such a case,
step 2 can start only after the completion of step 1. Because
MPI_ALLTOALL is a blocking communication, step 3 must
wait to start until step 2 is finished. Therefore, the total elapsed
time to complete a tensor rotation is the sum of elapsed times of
the three steps. When the problem size is large, the communi-
cation efficiency of MPI_ALLTOALL is reduced significantly
due to the increased network complexity associated with the
bandwidth and latency among all participating nodes. Our ap-
proach to handling these rotations more efficiently is to imple-
ment a latency hiding strategy by overlapping message com-
munications (step 2) and local computations (steps 1 and 3).

To enable this, we have developed our own version of a rou-
tine that performs communications from all nodes to all nodes.
At a basic level, the functionality of this routine is identical
to that of the generic MPI_ALLTOALL routine. However,
our routine allows further data manipulations such that local
computations are embedded between communications in the
following way: On the sending node, the first column of A is
computed from the equations of step 1. Then, MPI_ISEND
sends out the first column of A. While this column is being
sent out, the next column of A is prepared with step 1. This
procedure is repeated until all Nt columns of A, the group
of the selected elements from �, are sent out. This process
overlaps steps 1 and 2. Latency hiding is also implemented
in receiving nodes. We note that the sending nodes are also
receiving nodes. They differ only in whether they are operating
in the sending or the receiving mode. On the receiving nodes,
MPI_IRECV is set to receive messages from arbitrary nodes
by using MPI_ANY_SOURCE as a tag identifying the source
of the message. For efficiency reasons, MPI_IRECV is posted
before MPI_ISEND of the sending process. Then, MPI_TEST
calls are used to check the completion of the arrival of the
message. Once message arrival is confirmed, the rank of the
node that sent this message can be identified by enquiring using
MPI_STATUS. This provides S to assign to a corresponding
column and to be used in step 3. Since the message arrival
is column by column, the processing of each column of B
continues to step 3 while the next column is traveling through
the network. This process is repeated until all columns are
completed. This procedure completely overlaps steps 2 and 3.

Depending on the size of problem, it is desirable to define
a virtual node containing several cores (assuming multicore
hardware architecture) based on the memory availability per
node. Among the cores, MPI communications are assigned
to one core. The other cores are utilized by implementing
OpenMP [62] which parallelizes the local computational tasks
in a node to all cores within the node. Thus, OpenMP thread
depth is set to match with the total number of cores per virtual
node. Specifically, we applied the DO directive of OpenMP
for iterations of index P in the column selection processes of
steps 1 and 3.

2. Experimental results

We test the efficiency of this latency hiding scheme using a
nonblocking protocol against the standard MPI_ALLTOALL.
All the experimental comparisons are conducted on the
Cray XT5 (Jaguar) at the National Center for Computational
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FIG. 15. (Color online) Required minimum buffer size to execute
our all-to-all routine; each node has 12 cores.

Sciences (NCCS) at the Oak Ridge National Laboratory.
Jaguar consists of 12 cores per node, with six cores per
nonuniform memory access (NUMA) node, and two NUMAs
per node. First, we discuss hardware-driven constraints in
implementing latency hiding. The nonblocking MPI_ISEND
does not check for the arrivals of messages. With larger
tensor size, the node usage and the size of individual columns
becomes large. The MPI_ISEND from all participating nodes
tries to dump a large column in each iteration. The next itera-
tion starts regardless of message arrivals in the receiving nodes.
As a consequence, a large amount of data rushes onto the
network faster than the data can be absorbed by the receiving
nodes. Eventually, this causes memory overflow to the system
buffer assigned to the message processing unit. To avoid this
we have allocated more memory space to the system buffer.

For simplicity, we assign one virtual node to a physical
node. On the Jaguar Cray XT5, this means one virtual node
containing 12 cores. To utilize all cores in a node, the value
of OpenMP thread depth is set to 12. We gradually increase
the problem size Nt until jobs end with error indicating buffer
overflow. Then, we set a higher buffer size by controlling
the environmental variable MPICH_UNEX_BUFFER_SIZE.
For every incidence of error, we add 60 Mbytes buffer
size. The default value of MPICH_UNEX_BUFFER_SIZE
is 60 Mbytes on JAGUAR XT5 (the total number of cores is
less than 50 000). The results are shown in Fig. 15. Up to
Nt = 1024, the 60 Mbytes default buffer size is enough to
handle the data traffic. Increasing Nt further forces us to use
a larger buffer size. Overall, the amount of added buffer size
increases for larger problem sizes. We note that the results
presented in Fig. 15 are with the maximum number of cores
per virtual node. Smaller core usage per node alleviates the
buffer restriction. For example, hardware setup with a NUMA
node per virtual node consumes less buffer memory due to

768 1280 1792 2304 2816
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
t
 (= number of nodes) 

el
ap

se
 ti

m
e 

(s
ec

) 

 

 

without latency hiding
with latency hiding

FIG. 16. (Color online) Time spent in data communication as
a function of the number of computer nodes (12 processors per
node). For large data sets each process sends messages to all
the others, and the communication time scales linearly with the
number of processes. Latency hiding techniques that overlap the
interprocessor communication with local computations yields a factor
of 2 speedup when compared with the standard MPI_ALLTOALL
implementations as the number of processors increases beyond
30 000.

the reduced total number of physical nodes participating in
internode communication. We did not observe buffer memory
overflow with the generic blocking MPI_ALLTOALL routine.

The performance of the latency hiding approach is eval-
uated in terms of wall-clock time spent on a single ten-
sor rotation and compared with the case of the standard
MPI_ALLTOALL applied for step 2. For this, the elapsed
time to complete the tensor rotation is averaged over nine
independent runs. Each run contains 40 repetitions of identical
tensor rotations. At the end of each run, the elapsed time is
also averaged for the 40 rotations. For all runs, we choose
rotation 1 and the minimum buffer sizes shown in Fig. 15
are assumed. The comparison results are shown in Fig. 16.
Except for Nt = 768 and 2048, latency hiding outperforms
the case without latency hiding by a significant amount. The
performance differences are even higher for Nt � 2304. For
the MPI_ALLTOALL case, there is a sudden speedup at
Nt = 2048. We are exploring this behavior further. We believe
that it is caused by changes in the data traffic controlled by the
hardware.

Overall, latency hiding provides a higher speedup for larger
tensor sizes and core count. From the general trends, it can be
expected that twofold or more efficiency improvement for Nt

greater than 2816 can be obtained by implementing latency
hiding with our nonblocking adaptation of the all-to-all routine
for tensor rotations.
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