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Abstract
We study the emission spectrum and absorption spectrum of a quantum emitter when it is driven
by various pulse sequences. We consider the Uhrig sequence of nonequidistant πx pulses, the
periodic sequence of πxπy pulses and the periodic sequence of πz pulses (phase kicks). We find
that, similar to the periodic sequence of πx pulses, the Uhrig sequence of πx pulses has emission
and absorption that are, with small variations, analogous to those of the resonance fluorescence
spectrum. In addition, while the periodic sequence of πz pulses produces a spectrum that is
dependent on the detuning between the emitter and the pulse carrier frequency, the Uhrig
sequence of nonequidistant πx pulses and the periodic sequence of πxπy pulses have spectra with
little dependence on the detuning as long as it stays moderate along with the number of pulses.
This implies that they can also, similar to the previously studied periodic sequence of πx pulses,
be used to tune the emission or absorption of quantum emitters to specific frequencies, to
mitigate inhomogeneous broadening and to enhance the production of indistinguishable photons
from emitters in the solid state.

Keywords: emission/absorption spectrum, spectral diffusion, pulse-driven emitter, solid state
emitter

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the dynamics of a quantum emitter coupled to
an electromagnetic field, in addition to being a longstanding
fundamental question [1, 2], is also of significant current
technological interest. In particular, the ability to control the
emission or absorption spectrum of a quantum emitter will be
of great value to the fields of quantum control, quantum
metrology or quantum information processing (QIP) [3–6].

Indeed, many promising quantum systems that are prime
candidates to serve as quantum bits (or qubits) in QIP are
quantum emitters in the solid state [7–20]. As such, their
emission and absorption spectra are subject to fluctuations in
their environment that can lead to the spectrum drifting ran-
domly in time: spectral diffusion [21, 22]. This phenomenon
reduces the efficiency of fundamental operations in QIP such
as the photon-mediated entanglement of distant quantum

nodes or the coupling of quantum nodes to photonic cavities.
It has for this reason received a great deal of attention [10–14,
21, 23–33].

In addition, the absorption spectrum of a quantum emitter
such as a Nitrogen-vacancy (NV) center in diamond can be
used to probe weak electromagnetic fields, temperatures or
forces with very high spatial resolutions. Because of inho-
mogeneous broadening from the ensemble of emitters in the
probe, the sensitivity is limited by T1 2* instead of 1/T2
[34–36].

Recent work has explored the possibility of using ade-
quate pulse sequences to control the spectrum of a quantum
emitter [23, 37, 38]. In particular, it was shown that a periodic
sequence of πx pulses can be used to suppress spectral dif-
fusion from photons produced by a quantum emitter in a
diffusion-inducing environment thus enhancing photon
indistinguishability [23]. The absorption spectrum of quantum
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emitters subjected to the same pulse sequence was also stu-
died theoretically [39] and experimentally shown to enhance
the sensitivity of NV centers used in magnetometry to the
1/T2 limit [40].

These early studies focused on a periodic sequence of πx
pulses. The underlying mechanism for modifying the spectral
lineshapes is clearly different from that of coherence protec-
tion with dynamical decoupling protocols. In the context of
dynamical decoupling, the objective is to decouple the emitter
from the decoherence inducing bath. In the current problem,
our goal is not to decouple the emitter from the radiation bath,
but rather to ensure emission/absorption at specific fre-
quencies independent of the environment. However, in light
of the similarities with dynamical decoupling where different
pulse sequences are used with widely varying degrees of
success, it is natural to inquire about the fate of the emission
and absorption spectra of quantum emitters if they are driven
by other pulse sequences. In this paper, we analyze the
emission and absorption spectra of quantum emitters when
they are driven by different other pulse sequences. We study
the Uhrig sequence [41] of nonequidistant πx pulses, the
periodic sequence of πx πy pulses and the periodic sequence
of πz pulses.

We find that the Uhrig sequence of πx pulses has emis-
sion and absorption spectra that are analogous to those of the
resonance fluorescence spectrum. In particular, the emission
spectrum, has a lineshape analogous to the Mollow triplet of a
resonantly driven two-level system (TLS) [42–44] with most
of the spectral weight at a central peak flanked with two
satellite peaks; similarly, the absorption spectrum is similar to
that of a TLS continuously driven on resonance and displays a
local maximum at the pulse carrier frequency unlike that of
the periodic sequence of πx pulses that has a local minimum at
the pulse carrier frequency. The periodic sequence of πxπy
pulses has emission and absorption spectra that are qualita-
tively different from those of πx pulse protocols. They have
their main peak at π/2τ and satellite peaks at −π/2τ and π/
2τ+π/τ, where τ is the time interval between successive
pulses. The periodic sequence of πz pulses has a similar
lineshape in both its emission and its absorption spectrum
with two peaks of equal spectral weight at Δ−π/τ and
Δ+π/τ. Where Δ is the detuning between the emitter and
the pulse carrier frequency. The Uhrig sequence of πx pulses
and the periodic sequence of πxπy pulses have spectra with
little dependence on the detuning of the emitter with respect
to the pulse carrier frequency as long as it stays moderate
along with the number of pulses. This implies that they can
also be used to tailor the emission or absorption of quantum
emitters, to mitigate inhomogeneous broadening and to
enhance the production of indistinguishable photons from
emitters in dynamic environments.

The rest of the paper is organized as follows. In section 2,
we describe the model of the quantum emitter coupled to the
radiation field and controlled by various pulse sequences, and
the master equations governing the system dynamics. In
section 3, we describe the methods used to obtain the emis-
sion and absorption spectra. In section 4 we present results
that show the ability to tune the emission and absorption

spectra with appropriate pulse sequences. Section 5 presents
our conclusions.

2. Modeling the driven emitter + radiation system

The quantum emitter can be modeled as a TLS with ground
state gñ∣ and excited state eñ∣ , separated in energy by
E Ee g 1 0 w w- = = + D( ) (figure 1(a)). Below we set
ÿ=1. The TLS is coupled to normal modes of the electro-
magnetic radiation field, and is, at appropriate times, driven
by pulses of the laser field with the Rabi frequency Ω. Initi-
ally, at time t=0, the excited state is assumed to be occupied
and the ground state to be empty; additionally, all bosonic
modes are initially assumed to be empty. The Hamiltonian
describing this system can be written as [45]:

H a a i g a a

d E

2

. 1

z
k

k k k
k

k k k

e

1 å åw
s w s s= + - -

-

- +

 

( )

· ( )

† †

The first term corresponds to the TLS, the second term to the
radiation bath, the third term to the coupling between the TLS
and the radiation bath written in the rotating-wave approx-
imation (RWA). The last term corresponds to the coupling of
the TLS with the external driving field. d


is the electric dipole

moment of the TLS and Ee


is the external driving field that is

applied at times prescribed by the pulse sequence. It has
amplitude E


such that the Rabi frequency is di iEW =

 
· . We

have introduced the standard pseudo-spin Pauli operators for
the TLS: e e g gzs = ñá - ñá∣ ∣ ∣ ∣, e gs = ñá+ ∣ ∣ and

Figure 1. (a) Schematic representation of a two-level system with
ground state gñ∣ and excited state eñ∣ separated by energy
ω1=ω0+Δ. (b) In the absence of any driving field, the emission
and absorption spectra have a Lorentzian lineshape centered around
ω1. (c) Uhrig Sequence of πx pulses. (d) Periodic sequence of πxπy
pulses. (e) Periodic sequence of πz pulses.
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g es s= ñá =- +∣ ∣ ( )†. ak
† and ak are respectively the creation

and the annihilation operator for a photon of mode k with the
frequency ωk, and gk is the coupling strength for this mode to
the TLS.

For a given driving sequence, the last term of (1) can be
expanded and written in the RWA. For πx rotations, the
relevant Hamiltonian is thus, in the frame rotating at fre-
quency ω0:

H a a i g a a

t

2

2
,

2k
k k k z

k
k k k

x

å åw s s s

s s

= +
D

- -

+
W

+

- +

+ -

( )

( ) ( )
( )

† †

where all energies are now measured with respect to ω0 and

1 0w wD = - is the detuning of the TLS’s transition fre-
quency from the pulse carrier frequency. The time-depend-
ence Ωx(t) is determined by the pulse sequence. We consider
pulses such that Ωi(t)=Ωi during the pulses and zero
otherwise. We will assume Ωi to be much larger than all other
relevant energy scales so that the pulses are essentially
instantaneous (i.e. g, ,i kW D G ). Previous studies have
shown that imperfect or finite width pulses do not sig-
nificantly change the spectral lineshapes [23]. While the last
term in (1), written in the form of (2), amounts to treating the
incident field as a classical time-dependent field, it can be
shown to be equivalent to the treatment of an initially
coherent incident field via a unitary transformation
[42, 45, 46].

In the absence of all control (Ωi(t)=0 for all times), the
system exhibits spontaneous decay, and the corresponding
emission rate is g dk2 ;k k

2òp d wG = - D( ) We normalize
our energy and time units so that Γ=2, and the corresp-
onding spontaneous emission line has a simple Lorentzian
shape 1 12w +( ), with the half-width equal to 1. This way,
all frequencies are measured in units of Γ/2.

To characterize the dynamics of the system and obtain
the emission and absorption spectrum, we analyze the time-
evolution of the density matrix of the emitter, which is written
as

t t e e t e g

t g e t g g , 3
ee eg

ge gg

r r r

r r

= ñá + ñá

+ ñá + ñá

( ) ( )∣ ∣ ( )∣ ∣
( )∣ ∣ ( )∣ ∣ ( )

with ge eg*r r= . The master equations governing the time-

evolution of the density matrix operator can be obtained from
the Hamiltonian (2) by using the approximation of indepen-
dent rate of variations whereby we independently add to the
time-evolution of each matrix element of ρ, terms due to the
radiation bath, the incident field and the damping terms
responsible for spontaneous emission [45]. For πx pulses and
for the TLS described by the above Hamiltonian (2), the

master equations in the rotating-wave approximation are:
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Each πx pulse inverts the populations of the excited and
ground state and swaps the values of ρeg and ρge.

Similarly, each πy pulse inverts the populations of the
excited and ground states and swaps the values of ρeg with
−ρge and vice versa. We will also consider πz pulses that are
equivalent to π phase kicks leaving ρee and ρgg unchanged
and replacing ρeg by −ρeg and ρge by −ρge. In general, the
effect of a πi pulse can be summarized as:

0 0 , 5n
i

n
ir s r s=+ -( ) ( ) ( )( ) ( )

where 0nr -( )( ) and 0nr +( )( ) are the density matrices imme-
diately before and immediately after the n th pulse. σi is the
pseudo-spin Pauli matrix in the i-direction in which the pulse
applies the rotation.

The emission spectrum can be obtained using a narrow-
band detector that can be modeled as a two-level absorber
with a very sharp transition frequency [47]. The excitation
probability of this detector then corresponds to the emission
spectrum. At long times T, it can be expressed as:

P A

dt d t t i
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q s q s wq
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´ á + ñ -
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⎫⎬⎭

( )

( ) ( ) [ ]
( )

ts-( ) and ts q++( ) are the time-dependent operators in the
Heisenberg representation, and the angled brackets represent
the expectation values that are taken with respect to the initial
state of the TLS (in our case, fully occupied excited state and
empty ground state). The constant A is independent of the
pulse parameters, does not affect the spectral shape and only
affects the absolute scale of the spectrum.

On the other hand, the absorption spectrum considered
here is measured by determining the energy absorbed from a
weak probing field by the TLS while it is simultaneously
being driven by the relevant pulse sequence. Since the
probing field is assumed to be weak enough that its effects on
the populations of the states can be neglected, the absorption
spectrum can be calculated within the linear response theory.
The absorption as a function of frequency, Q(ω), is given by
[48, 49]

Q A

dt d t t

2

Re , e ,

7

T T t
i

2

0 0ò ò

w

q s s q

=

´ á + ñ wq
-

- +
-

⎧⎨⎩
⎫⎬⎭

( )

[ ( ) ( )]
( )

[O1, O2] is the commutator of the operators O1 and O2. For
the absorption spectrum, the expectation value is evaluated in
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the absence of the probing field. The expression (7) can be
rewritten as

Q A

P P

2 Re
, 8

2
2 1 w w w

w w
= -
= ¢ -

( ) { ( ) ( )}
( ) ( ) ( )

where

dt d t t e 9
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- +
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dt d t t e . 10
T T t

i
1

0 0
 ò òw q s q s= á + ñ wq

-

+ -
-( ) ( ) ( ) ( )

The term P A2 Re2
1w w=( ) { ( )} can be recognized to be the

emission spectrum of equation (6). P A2 Re2
2w w¢ =( ) { ( )}

can be viewed as the direct absorption so that the difference
yields the net absorption [42]. To obtain the absorption
spectrum, both terms are evaluated independently before then
taking the difference to obtain Q(ω).

In the absence of any pulses, as illustrated in figure 1(b),
the emission spectrum and absorption spectrum have Lor-
entzian-shaped profiles centered at the emitter’s frequency
that is equal to the detuning Δ (in the frame rotating at ω0).

The two-time correlation function t ts q sá + ñ+ -( ) ( ) that
appears in the expression for the emission spectrum P(ω) is
usually expressed as a single-time expectation value
[2, 42, 47] following:

t t

U t U t U t U tTr 0 0, 0, 0, 0,

11

s q s

r q s q s

á + ñ
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† †

t U t t U t tTr , , 12s r q s q= + +- +[ ( ) ( ) ( )] ( )†

tTr 13r q s= ¢ + +[ ( ) ] ( )

where t tr s r¢ = -( ) ( ), and where σ+ and σ−are the time-
independent operators in the Schrödinger picture. U t t, ¢( ) is
the time-evolution operator for the system described by
equations (4). Similarly, to evaluate P w¢( ), we rewrite the
involved two-time correlation function as:

t t tTr 14s s q s r qá + ñ =  +- + +( ) ( ) [ ( )] ( )

with t tr r s = -( ) ( ) .

3. Analytical and numerical solutions

The expectation values (13) and (14), and the emission and
absorption spectra, can be evaluated numerically, or for
simple pulse sequences, analytically. Both methods, as
demonstrated previously [39], are in perfect agreement.

While the analytical solution of the master equation is in
general rather tedious, for a periodic sequence of instanta-
neous pulses, one obtains a set of decoupled first order diff-
erential equations that can be solved in a procedure similar to
that of [39] where the obtained analytical solution was also
shown to overlap with the numerical solution. Alternatively,
one can also, in this case of periodic instantaneous pulses,
integrate the Heisenberg equations of motion in a toggling

frame. We outline this solution here for the calculation of the
emission spectrum of a quantum emitter driven by a periodic
sequence of πxπy pulses. In this situation, the Hamiltonian
after the nth pulse can be rewritten as:

H t a a

i g a a a a
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15
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where t t t1 1 3c x x= -( ) ( ) ( ) and t t t2 2 4c x x= -( ) ( ) ( ) with
ξ1,2,3,4 periodic functions defined in the interval [0, 4τ] by:

t t tfor 0 ; 1, 0, 161 2,3,4t x x< < = =( ) ( ) ( )

t t tfor 2 ; 1, 0, 172 1,3,4t t x x< < = =( ) ( ) ( )

t t tfor 2 3 ; 1, 0, 183 1,2,4t t x x< < = =( ) ( ) ( )

t t tfor 3 4 ; 1, 0. 194 1,2,3t t x x< < = =( ) ( ) ( )

From the above Hamiltonian, one obtains after the nth pulse
the equations of motion:
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Starting from an initial configuration at t=0 in which all
bosonic modes are empty and the emitter has its excited state
fully occupied and its ground state empty, we want to eval-
uate the number N a t a tk k k= á ñ( ) ( )† of bosons in bosonic
mode k at time t Nt d= + where N is a multiple of 4 and

0,d tÎ [ ]. To this end, we will recursively integrate the
above equations of motion for the annihilation operator ak
after successive pulses. After N pulses, employing the Mar-
kovian approximation, we will get:
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To be able to utilize this expression, we now need to obtain
,s- + after each pulse interval. Within the Markovian

approximation, integrating for s t-( ) gives:
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integrating for 2s t-( ) will give:
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Here, one immediately notices the cancellation of Δ

between (26) and (27). This is the aforementioned phase
cancellation that is responsible for the spectrum not depend-
ing on the detuning with respect to the pulse-carrier fre-
quency. This cancellation is due to the change of sign in the
first term of the Hamiltonian of equation (15) between con-
secutive pulses.

By proceeding in this iterative integration, one obtains,
for an integer n<N/2:

n2 e 0 , 28i n2 Im 0s t s= g
- -( ) ( ) ( ){ }( )

n2 1 e 0 . 29i n i2 Im 0 0s t s+ = g g t
-

+ - D
-(( ) ) ( ) ( ){ }( ) ( )

We also get after the Nth pulse:

t 0 e e 30N iN i t N i t NIm 0s s= g t t f t
- -

- D - + -( ) ( ) ( )( ) ( ( )) ( ( ) ( ))( )

with t gk k
t N

i
2 e 1

k

i k t N

k
2f = å -t

w w
-
-D

-
-D

w t- -D -⎡⎣ ⎤⎦( )
( ) ( )

( )( )
.

These expressions, along with the corresponding
expressions for σ+ can then be plugged into equation (23)
allowing for the evaluation of the emission spectrum in terms
of expectation values at time t=0. Making use of

I 2zs s s= -- + ( ) and I 2zs s s= ++ - ( ) and of the van-
ishing of expectation values of s s- - and s s+ +, the nonzero
terms can be collected into a straightforward but lengthy
expression that will not be displayed here. These nonzero
terms can then be evaluated numerically and summed up to
produce the spectrum. The resulting spectrum has a lineshape
that is, with respect to peak positions and relative spectral
weights, consistent with that obtained by either analytical or
numerical solution of the master equation.

For the numerical solution of the master equation (4), the
time axis is divided in finite pulse intervals separated by
consecutive pulses, and each pulse interval is discretized in
smaller steps of length Δt. Starting at t=0, with the known
initial conditions, 1, 0, 0, 0ee gg eg ger r r r= = = = , we
integrate equation (4) to evolve the matrix elements

, , ,ee eg ge ggr r r r from time t to t+Δt and iterate this inte-
gration up to the first pulse time T1. We then apply the pulse
to the system (i.e equation (5) to the density matrix operator)
before resuming the iterative integration starting from time T1
and up to T2, the time at which the next pulse is applied. This
process is repeated until time T TNp = where Np is the total
number of pulses. It allows us to obtain, tr¢( ) and ρ″(t) for
t T0,Î [ ]. We can then proceed, once again, with the inte-
gration of equation (4) starting at t T0,Î [ ] to obtain

tr q¢ +( ) and tr q +( ) for T t0,q Î -[ ]. It is thereon
straightforward to obtain t ts q sá + ñ+ -( ) ( ) and

t ts s qá + ñ- +( ) ( ) from equations(13) and (14) respectively.
We finally get the emission spectrum and the absorption
spectrum by performing the relevant Fourier transforms with
respect to θ and integration over t to get 1 w( ) and 2 w( ). The
real part of 1 w( ) gives the emission spectrum and the dif-
ference between the real parts of 2 w( ) and 1 w( ) gives the
absorption spectrum. The results that we present next are
obtained using this numerical approach that treats all pulse
sequences on the same footing.

4. Results

4.1. Uhrig pulse sequence

The Uhrig pulse sequence was recently suggested as a
sequence of nonequidistant pulses that is optimal in pre-
venting decoherence due to low frequency noise in the
environment [41]. A cycle of the Nth order Uhrig pulse
sequence is made of N pulses applied at times given by:

T T
j

N
j Nsin

2 1
, with 1, 2, , . 31j

2 p
=

+
= 

( )
( )

The (N+1)th pulse is applied at TN+1=T and the time
sequence is repeated. The Uhrig pulse sequence is illustrated
in figure 1(c). Considering the importance of this pulse
sequence in the dynamical decoupling context, it is is useful
to study how it affects the emission or absorption spectrum of
a quantum emitter in a diffusion-inducing bath. In figure 2,
we present results for a quantum emitter driven by a Uhrig
sequence of πx pulses. The emission spectrum is found to
have a central peak at the pulse carrier frequency, flanked by
two satellite peaks the position of which is dependent on the
number of pulses. The emission and absorption spectra do not
depend much on the detuning Δ as long as it remains mod-
erate (figures 2(a)–(c)). For the same detuning Δ and fixed

Figure 2. Emission and absorption spectra of TLS driven by a Uhrig
sequence of πx pulses. (a) Emission for different values of the
detuning Δ between the transition frequency and the pulse carrier
frequency (Δ=3.0 (red), Δ=4.0 (green), Δ=5.0 (magenta),
Δ=6.0 (blue)) after 12 pulses applied during time T=2.0. (b)
Emission for fixed detuning (Δ=3.0) with 6 pulses (doted magenta
line), 8 pulses (dashed blue line), 10 pulses (dashed green line), 12
pulses (red line) after time T=2.0. (c) Emission for fixed detuning
(Δ=3.0) with 12 pulses applied during a total time T=1.0 (red
circles), T=1.2 (green diamonds), T=1.6 (magenta stars),
T=2.0 (blue triangles). (d) Absorption for fixed detuning
(Δ=3.0) with 12 pulses applied during a total time T=1.0 (red
circles), T=1.2 (green diamonds), T=1.6 (magenta stars),
T=2.0 (blue triangles).
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time T, the central peak is of similar spectral weight and
satellite peaks move further away from it as the number of
pulses increases (figure 2(b)). We note a strong analogy with
the spectrum of the resonance fluorescence problem. The
absorption spectrum has both positive and negative parts with
the former often interpreted as true absorption and the latter as
stimulated emission in the direction of the probing field
[48, 50, 51]. Markedly, the absorption spectrum has a local
maximum at the pulse carrier frequency (figure 2(d)) unlike
that of a periodic sequence of πx pulses that has a local
minimum at the pulse carrier frequency.

4.2. πx πy pulse sequence

In figure 3, we present the results for an emitter driven by a
periodic sequence of πxπy pulses. The emission spectrum has
its main peak located at π/2τ with additional peaks at −π/2τ
and π/2τ+π/τ (figure 3(c)) unlike the periodic sequence of
πx pulses for which the main peak is at the pulse carrier
frequency (ω=0 in the frame rotating at the pulse carrier
frequency). For fixed detuning, the τ-dependence of the
emission spectrum is shown in figure 3(b). The lineshape is
established early and the peaks grow in amplitude with time
(figure 3(c)). The absorption spectrum has its main dip at π/
2τ and two additional dips at −π/2τ and π/2τ+π/τ

(figure 3(d)). Both the emission and the absorption spectra
show little dependence on Δ for moderate values of the pulse
spacing time τ as long as Δ  1/τ (figure 3(a)).

4.3. πz pulse sequence

Contrary to the πx and the πxπy pulse sequences, a sequence
of πz pulses (or π phase kicks), produces a spectrum that
depends on the detuning between the pulse carrier frequency
and the TLS frequency (4(a)). This can be related to the fact
that the toggling frame Hamiltnian in this case does not dis-
play a sign change between consecutive pulses such as that of
πx or πy pulses that is seen in equation (15). Both the
absorption spectrum and the emission spectrum have similar
lineshapes. Thus we only present in figure 4 the emission
spectrum for πz pulses. The emission spectrum is split in two
peaks of equal weight located at Δ−π/τ and Δ+π/τ
(4(b)–(c)). Thus, for the same pulse sequence, it depends
strongly on the values of Δ (figure 4(a)). These results are in
agreement with those of [37] where a model of the atom +
radiation system was solved using direct diagonalization for a
finite but large number of bosonic modes.

5. Conclusions

We have studied the emission and absorption spectra of a
quantum emitter when it is driven by a pulse sequence.

Figure 3. Emission and absorption spectra of TLS driven by a
periodic sequence of πx πy pulses. (a) Emission for different values
of the detuning Δ between the transition frequency and the pulse
carrier frequency (Δ=3.0 (red), Δ=4.0 (green), Δ=5.0
(magenta), Δ=6.0 (blue)) after 12 pulses with a time spacing
τ=0.2 between successive pulses. (b) Emission for fixed detuning
(Δ=3.0) with 6 pulses and τ=0.4 (red line), 8 pulses and τ=0.3
(dashed blue line), 12 pulses and τ=0.2 (dashed green line). (c)
Emission for fixed detuning (Δ=3.0) and τ=0.2 after 6 pulses
(red circles), 8 pulses (green diamonds), 10 pulses (magenta stars),
12 pulses (blue triangles). (d) Absorption for fixed detuning
(Δ=3.0) after 6 pulses (red circles), 8 pulses (green diamonds), 10
pulses (magenta stars), 12 pulses (blue triangles).

Figure 4. Emission spectrum of TLS driven by a periodic sequence
of πz pulses (phase kicks). (a) For different values of the detuning Δ
between the transition frequency and the pulse carrier frequency
(Δ=3.0 (red), Δ=4.0 (green), Δ=5.0 (magenta), Δ=6.0
(blue)) after 12 pulses with a time spacing τ=0.2 between
successive pulses. (b) For fixed detuning (Δ=3.0) with 6 pulses
and τ=0.4 (doted magenta line), 8 pulses and τ=0.3 (dashed blue
line), 12 pulses and τ=0.2 (dashed green line), 24 pulses and
τ=0.1 (red line). (c) For fixed detuning (Δ=3.0) and τ=0.2
after 6 pulses (red circles), 8 pulses (green diamonds), 10 pulses
(magenta stars), 12 pulses (blue triangles).
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Representing the quantum emitter as a TLS, we have used the
master equation governing the time-evolution of the density
matrix operator of the pulse-driven system to obtain the
spectrum for the different protocols. We have considered the
case of the Uhrig sequence of πx pulses, a periodic sequence
of πx πy pulses and a periodic sequence of πz phase kicks. In
the absence of any driving protocol, the emission and
absorption spectra have Lorentzian lineshapes centered
around the frequency Δ=Ee−Eg (measured in the frame
rotating at the target frequency ω0). The periodic sequence of
πz phase kicks splits the emission spectrum in two peaks of
equal weight at Δ+π/τ and Δ−π/τ. It also modifies the
absorption spectrum in a similar manner. The Uhrig sequence
of πx pulses has an emission and absorption spectrums similar
to that of a periodic sequence of πx pulses where a central
peak with the bulk of the emission/absorption appears at the
pulse carrier frequency with satellite peaks at positive and
negative frequencies dependent on the number of pulses. In
addition, its absorption spectrum displays a strong analogy
with that of the resonance fluorescence with a peak (a max-
imum) at the pulse carrier frequency as opposed to the
minimum that is observed for the periodic sequence of πx
pulses. The periodic sequence of πx πy pulses produces an
emission spectrum with the main peak located at π/2τ and
satellite peaks at −π/2τ and π/2τ+π/τ. Similarly, for the
Uhrig sequence of πx pulses, the spectra show little depend-
ence on the detuning for a moderate number of pulses over
the emission time. These results provide a detailed picture for
the emission and absorption spectra of a quantum emitter
when it is driven by different pulse sequences. They also
indicate that the Uhrig pulse sequence and the periodic
sequence of πxπy pulses can be used to control the effect of
the environment on the emission and absorption spectrum. As
highlighted in the analytical solution, the phase cancellation
responsible for the limited dependence of the spectrum on the
environment will occur as long as the detuning with respect to
the pulse carrier frequency and the time between consecutive
pulses remain moderate (for periodic pulses: Δ·τ∼1).
Most importantly, this phase cancellation argument is made
with no additional regard to the underlying mechanism
responsible for the fluctuations in Δ. This suggests that these
results can be observed in a variety on quantum emitters. For
instance, 3 to 4 pulses per free emission time should suffice
for NV centers in diamond.
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