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Simulating quantum many-body systems is believed to be one of the most promising applica-
tions of near-term noisy quantum computers. However, in the near term, system size limitation
will remain a severe barrier for applications in materials science or strongly correlated systems. A
promising avenue of research is to combine many-body physics with machine learning for the classifi-
cation of distinct phases. In this paper, we propose a workflow that synergizes quantum computing,
many-body theory, and quantum machine learning(QML) for studying strongly correlated systems.
In particular, it can capture a putative quantum phase transition of the stereotypical strongly cor-
related system, the Hubbard model. Following the recent proposal of the hybrid classical-quantum
algorithm for the two-site dynamical mean-field theory(DMFT), we present a modification that al-
lows the self-consistent solution of the single bath site DMFT. The modified algorithm can easily be
generalized for multiple bath sites. This approach is used to generate a database of zero-temperature
wavefunctions of the Hubbard model within the DMFT approximation. We then use a QML algo-
rithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-
to-Mott insulator phase transition. We train a quantum convolutional neural network(QCNN) and
then utilize the QCNN as a quantum classifier to capture the phase transition region. This work pro-
vides a recipe for application to other phase transitions in strongly correlated systems and represents
an exciting application of small-scale quantum devices realizable with near-term technology.

I. INTRODUCTION

Strong electronic interactions in quantum materials
give rise to many physical phenomena of technological
interest. Some notable effects include the Mott metal-
insulator transition, heavy fermions, fractional quantum
effects, frustrated magnetism, and non-Fermi liquid met-
als [1–3]. It is notoriously difficult to study strongly
correlated systems, as there is usually no good start-
ing point for perturbative methods. For example, the
superconducting cuprates have been studied intensively
for over three decades, and there is still no consensus on
the mechanism for their superconducting property [4, 5].
A plethora of classical numerical methods has been em-
ployed to solve simplified models of strongly correlated
systems such as the Hubbard model[6, 7]. However, these
methods are often constrained by the minus sign problem
for Quantum Monte Carlo (QMC), or by the exponential
scaling of the Hilbert space with the system sizes for exact
diagonalization. This prevents simulations from attain-
ing low temperatures where sought-after properties are
believed to occur.

Embedding schemes are viable alternatives for the
treatment of many-body problems in the thermodynamic

limit. The dynamical mean field theory (DMFT) [8–
13], which maps the lattice problem onto a simple im-
purity problem, is a frequently used embedding scheme.
This method solves some of the important problems in
strongly correlated systems in the high dimensional limit.
Particularly, it captures the metal-insulator transition
without biased approximation [9].

The DMFT mapping is exact in the limit of infinite
spatial dimensions but is approximate for finite dimen-
sions. The approximation can be improved by system-
atically incorporating corrections due to the spatial de-
pendence of the model. There are two major methods
to include spatial correlations: perturbative approaches
[14–19], and impurity cluster approaches using more than
one impurity [20–22]. The latter, in principle, provides
an exact calculation up to the finite cluster size. Thanks
to the new formulation of various numerical algorithms
and advances in computing power, the single impurity
problem can be solved numerically with high accuracy.
Over the past few years, a new approach based on tech-
niques from data science and machine learning has also
been proposed for the single impurity problem[23–27].
In contrast with the single impurity case, when dealing
with problems involving multiple impurity sites, more ad-
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vanced versions of DMFT like dynamical cluster approx-
imation (DCA) [20, 21] and Cellular DMFT (CDMFT)
[22] are needed. These methods, which partially restore
spatial fluctuations, require solving systems that explic-
itly involve multiple impurity sites. Solving such prob-
lems remains a major bottleneck for numerical studies.

Classical computing approaches for numerically accu-
rate solutions of strongly correlated systems suffer from
the exponential scaling of either computing time (minus
sign problem in QMC) or of the storage (e.g for exact
diagonalization and other Hamiltonian based real space
renormalization methods). This poor scaling leads to the
inability to make predictions for large systems. This has
always been an important issue for numerical methods
on strongly correlated systems and it is unlikely to be
resolved by a breakthrough on classical hardware or al-
gorithm.

The advancement of quantum computing hardware
and algorithm provides a new avenue for the study of
strongly correlated systems. It has been shown that
the DMFT approach can be implemented as a hybrid
quantum-classical scheme [28–30]. In this context, quan-
tum hardware is used to solve the effective impurity prob-
lem from the DMFT algorithm. The result is then post-
processed by a classical computer to extract the value of
hybridization parameters.

While the direct simulation of a model with explicit
electron-electron interaction, such as the Hubbard model,

near the thermodynamic limit would require presently
out-of-reach qubit resources. However, performing
DMFT simulations on a noisy intermediate-scale quan-
tum (NISQ) device is feasible because the impurity prob-
lem can be approximated using only a few lattice sites.
A major hurdle for the DMFT solution in the quantum-
classical hybrid scheme is the requirement to compute
excited states or Green’s functions, which presents a chal-
lenge for quantum computers [31].

There is a unique problem when using a quantum com-
puting approach to solve the DMFT. The number of
sites/qubits available is still rather limited. The DMFT
requires the calculation of the excited state. In fact, for-
mally, the DMFT requires the full excitation spectrum.
In the infinite dimension limit, the excitation spectrum
is obviously a continuous function of energy in a metal-
lic phase. Unfortunately, with the very limited number
of sites, that is the limited Hilbert space dimension, the
continuous spectrum is represented by a set of discrete
delta functions. In order to make the calculations possi-
ble, some kind of arbitrary smoothing process needs to
be employed to transform the set of delta functions into a
continuous function. The problem is particularly severe
for extracting physical quantities. For a generic fermionic
system, the equilibrium physical properties are largely
determined by the degrees of freedom around the Fermi
level. In this context, it is valuable to devise a procedure
to interpret the results, e.g. drawing the phase bound-
aries, without directly calculating quantities on the Fermi
level.

Given the above motivation, we propose to intersect
many-body physics, via DMFT, and machine learning
(ML) for the classification of different phases. This amal-
gamation has become an emergent area of research with
great success [32–34]. Many different formulations of ML
methods have been applied to the study of phase transi-
tions of both classical and quantum-interacting systems.
A natural data input for ML applied to a quantum sys-
tem is the quantum wavefunction. Unfortunately, classi-
cal ML is not originally formulated for quantum systems.
Therefore one has to preprocess the data either by col-
lapsing the wavefunction onto some other quantities such
as density matrix or entanglement entropy [35], or formu-
late the quantum systems in terms of path integral and
treat it as an effective classical system [36–38].

There is an extensive number of studies on using the
classical ML approach to locate phase transition both for
classical and quantum systems [36–50]. Quantum ma-
chine learning (QML) is a new paradigm that allows in-
put to be represented in terms of wavefunctions. Over the
past couple of years, QML has been applied to studies of
phase transitions in many-body systems [51–53]. Simi-
lar to the idea in classical ML applications, the quantum
states are thought to match data instances of particular
parameters with a label to the corresponding phase. The
task here is to discriminate data instances with different
labels, similar to classical ML approaches.

The exploration of quantum circuits as a classifier be-
gan a decade ago [54–57]. The concept of quantum clas-
sifiers has been infused with the principles of classical
neural networks in the past few years[36, 58–72]. Convo-
lutional neural network (CNN) [73] is designed to acquire
a broad range of features from the correlation functions
of complex systems with many interacting components,
allowing for the identification of different phases of mat-
ter and their corresponding phase transitions. This tech-
nique involves compressing and reducing the degrees of
freedom, which has led to the proposal that the concept
of the renormalization group may be applicable in some
neural networks [74–80].

The application of CNNs in physics has been extensive,
ranging from learning patterns from statistical models to
strongly correlated systems [33, 81]. The incorporation
of convolutional layers in each layer of activation func-
tions in a dense neural network allows for the extraction
of hidden information by combining local data, a fea-
ture lacking in the standard dense neural network [82].
In quantum circuits, this can be achieved by replacing
links and activation functions with quantum links and
gates, respectively, resulting in a quantum neural net-
work classifier with convolutional layers that can process
convolution between nearby qubits [83].

QCNN is a quantum circuit model which extends the
key properties of the classical CNN to the quantum do-
main. The circuit’s input is a quantum state. The Quan-
tum Convolutional Layer consists of a series of two-qubit
unitary operators, which establishes correlations between
the qubits in the circuit. In the Quantum Pooling Layer,
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the number of qubits is reduced by performing operations
upon each until a specific point and then we disregard
some of the qubits in a specific layer. We define a ’pool-
ing layer’ where we stop performing operations on certain
qubits. The convolution and pooling layers are added to
the circuit until the system size (the remaining number of
qubits) is sufficiently small, after which a fully connected
layer is applied as a unitary function on the remaining
qubits. The outcome is determined by measuring a fixed
number of output qubits, with hyperparameters such as
the number of convolution and pooling layers fixed.

Recent studies have shown that quantum-enhanced
ML is a promising approach for recognizing phases of
matter [84]. Using the QCNN method, it may be possi-
ble to identify different phases of a quantum many-body
system, representing a significant step toward detecting
quantum phase transitions. The advantage of using the
QCNN approach is that the input is naturally quantum
mechanical, eliminating the need to represent the wave-
function as a classical vector whose dimension grows ex-
ponentially with respect to the system size [85]. The re-
quired input should consist of a quantum circuit and the
most effective approach for obtaining the wavefunction
through the DMFT solution of the two-site single impu-
rity Anderson Model (SIAM) is the variational quantum
eigensolver (VQE) method executed on NISQ comput-
ers. The present study aims to use the QCNN to identify
the VQE wavefunction corresponding to different phases
of the model and provide a possible framework for ex-
tracting quantum critical points in a many-body quan-
tum system solved by VQE.

This paper presents a viable recipe for the study of
strongly correlated systems. Specifically, we focus on
drawing the phase diagram. The idea combines DMFT,
VQE, and QML. The entire process can be implemented
on NISQ computers except that the optimization of the
parameters is done by classical algorithms. The paper is
organized as follows. In Section II, we briefly describe
the DMFT approach and its relation to the SIAM. In
Section III, the methods and procedure of the two-site
DMFT are presented. The quantum simulation of the
two-site Hubbard model is described in Section IV. The
results for the impurity Green’s function, quasi-particle
weight, and entanglement entropy are presented in sec-
tion V

In section VI, we use the wave function from the
DMFT solution to train a QCNN for the detection of
the metal-to-insulator phase transition. The results af-
ter training the QCNN for the classification of different
phases are shown in section VII. We conclude and pro-
pose possible future directions of using VQE and QML
methods via DMFT for the study of strongly correlated
systems.

II. DYNAMICAL MEAN FIELD THEORY

Our starting point for strongly correlated electrons is
the Hubbard model defined by the Hamiltonian:

H = −
∑
⟨i,j⟩σ

tij(ĉ
†
i,σ ĉj,σ + h.c) + U

∑
j

n̂j,↓n̂j,↑ (1)

where the electrons hop between adjacent lattice sites i

and j, denoted by ⟨i, j⟩, with amplitude tij = t. ĉ†i,σ
and ĉi,σ respectively denote the creation and annihila-
tion operators for an electron of spin σ at site i. n̂j,σ is
the number of particles with spin σ at the site j. The
interaction between electrons is governed by the on-site
Coulomb repulsion, of strength U .
DMFT is a generalization of the usual mean-field the-

ory for classical systems to the quantum fermionic sys-
tems on a lattice. As in conventional mean-field theory,
it neglects spatial fluctuations however it explicitly ad-
dresses temporal fluctuations.
The action of the Hubbard model on a lattice in d

dimension can be written as

S = −
∑

ri,rj ,σ

∫ β

0

∫ β

0

dτidτjψ
†
σ(ri, τi)

G−1
0 (ri, τi, rj , τj)ψσ(rj , τj)

+ U
∑
ri

∫ β

0

dτiψ
†
↑(ri, τi)ψ↑(ri, τi)ψ

†
↓(ri, τi)ψ↓(ri, τi)

(2)

where ψ(ri, ti) and ψ
†(ri, ti) are Grassmann variables at

space-time point (ri, ti). The first part of the action cor-
responds to the kinetic energy, characterized by the bare
Green’s function G0 which is obtained from the bare dis-
persion of the Hubbard model. The second term corre-
sponds to the interaction characterized by the coulomb
repulsion U , which is local.
The exact Green’s function for this action is character-

ized by the self-energy Σ . In the frequency-momentum
space, the relation between the bare Green’s function and
the exact Green’s function G is given by the Dyson equa-
tion:

G(k, ω) =
1

G−1
0 (k, ω)− Σ(k, ω)

(3)

The idea of DMFT is to relate the full lattice problem,
with spatial dependence, to a single-site problem. The
concept of the “cavity method” justifies this approach
in the infinite-dimension limit where all the degrees of
freedom are integrated out except for one central site as
shown in Fig.( 1(a)) and Fig.( 1(b)) [9]. In the limit of
d→ ∞, we rescale the hopping amplitude, tij =

t√
2d
, so

that the kinetic energy and the interaction energy remain
of the same order. The effective action Seff is defined in
the frequency domain by:
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Seff = −
∫
dω

∑
σ

ψ†
σ(ω)G−1(ω)ψσ(ω)

+ U

∫
ω1+ω3=ω2+ω4

dω1dω2dω3dω4ψ
†
↑(ω1)ψ↑(ω2)

ψ†
↓(ω3)ψ↓(ω4). (4)

Where, in the quadratic part of the impurity action, G
can be written on the Bethe lattice in terms of the lattice
Green’s function as [8–11, 86]:

G−1(iωn) = iωn + µ− t2G(iωn) (5)

Eq.(5) is the self-consistency equation for the DMFT.
The Green’s function from this action is G(iωn) which

is then fed into the Eq.(5) until the dynamical mean-field,
that is the bath Green’s function, G(iωn), is converged
[9].

The key step of the DMFT algorithm is, given this
effective action of the system, to find Green’s function.
There are two major types of methods to address this
challenge: QMC methods based on sampling the parti-
tion function directly or Hamiltonian methods based on
the discretization of the electron bath into a finite num-
ber of so-called bath sites. For the latter, the DMFT im-
purity problem can be described by the Anderson impu-
rity model (AIM) or the single impurity Anderson model
(SIAM) defined by the Hamiltonian:

HAIM = Un̂↓n̂↑ − µ
∑
σ

n̂σ

+
∑
jσ

ϵj f̂
†
j,σ f̂j,σ +

∑
jσ

Vj(ĉ
†
σ f̂j,σ + h.c). (6)

Here, ĉ†σ and ĉσ are creation and annihilation operators

for impurity electrons, while f̂†jσ and f̂jσ are those of

conduction electrons. The action of the Hamiltonian (6)
can be written as that of Eq.(4), with G as the non-
interacting Anderson impurity model green’s function,
if the number of bath electrons goes to infinity. From
now on, without specification, we consider single-particle
quantities in real-time or frequency. The frequency ω,
should be understood as ω+iδ. The connection between
the lattice Hubbard model and the single impurity model
is when we get the self-energy as:

Σ(k, ω) = Σimp(ω) (7)

This is fulfilled when we reach the DMFT self-consistency
condition :

G(k, ω) = Gimp(ω) (8)

The hybridization and hopping of conduction electrons
on a finite lattice is related to those of the continuum
bath via the bare Green’s function as[9–11],

G−1(iωn) = iωn + µ−∆(iωn) (9)

FIG. 1. (a) DMFT neglects spatial fluctuations around a sin-
gle site and replaces the rest of the lattice with an effective
mean-field subject to the self-consistency condition. (b) The
non-interacting bath sites are connected to the central, inter-
acting impurity site. (c) Minimal representation of two-site
DMFT.

with

∆(iωn) =

∫ +∞

−∞
dω

1

(iωn − ω)

∑
jσ

V 2
j δ(ω − ϵj). (10)

This Hamiltonian formulation is more convenient for
impurity solvers that are based on matrix diagonaliza-
tion. Such solvers include exact diagonalization [87–89],
numerical renormalization group [90, 91], and other more
elaborate methods such as density matrix renormaliza-
tion group and matrix product state[92, 93] and Fock
tensor product state [94, 95].

A. Two site DMFT

The two-site representation of the SIAM [96] as shown
in Fig.(1(c)) involves one fermionic site corresponding to
the impurity and only one fermionic site corresponding
to the bath. The SIAM Hamiltonian for one bath site is
as follows.

HSIAM = Un̂1,↓n̂1,↑ − µ
∑
σ

n̂1,σ +
∑
σ

ϵcĉ
†
2,σ ĉ2,σ

+
∑
σ

V (ĉ†1,σ ĉ2,σ + h.c) (11)

Here, U is the on-site Hubbard interaction at the impu-
rity site 1, and µ is the chemical potential that controls
the electron filling. ϵc and V denotes the on-site energy
of the non-interacting bath site 2 and the hybridization
between the impurity and the bath site, respectively. For
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a mapping of the DMFT to the two-site SIAM, the pa-
rameters ϵc and V are initially unknown and must be
determined iteratively so that the two self-consistency
conditions below are satisfied.

In the high-frequency limit, the self-energy of the im-
purity problem can be expanded in powers of 1/ω [96]

Σ(ω) = Unc +
U2nc(1− nc)

ω
+O(1/ω2) (12)

where nc = ncσ is the average occupancy of the impurity
orbital:

nc = ⟨ĉ†σ ĉσ⟩ = − 1

π

∫ 0

−∞
ImGimp(ω + iδ)dω (13)

Inserting the expansion (12) into (13), one finds the fol-
lowing expansion of the on-site lattice Green’s function:

G(ω) =
1

ω
+
t0 − µ+ Un2c

ω2
+
M

(0)
2 + ...

ω3
+O(1/ω4) (14)

Here M
(0)
2 = Σj ̸=it

2
ij =

∫
dxx2ρ0(x) is the variance of

the non-interacting density of states (ρ0).
The first condition is that the electron filling nimp =

2nc of the impurity site can be identified with the filling
n = nj↓ + nj↑ of the lattice model, i.e.,

nimp ≡ n (15)

where the band filling is calculated via

n = − 2

π

∫ 0

−∞
ImG(ω + iδ)dω (16)

with G = Gimp and a broadening of δ.
Consider now the low-frequency limit, the self-energy

of the impurity problem can be expanded in powers of ω,

Σ(ω) = a+ bω +O(ω2) (17)

with a and b as constants. The quasi-particle weight is

Z =
1

1− b
= [1− dRe[Σimp(ω + iδ)]

dω
|ω=0]

−1 (18)

Neglecting terms of order ω2, yields G(ω) = G(coh)(ω) for
small ω whereG(coh)(ω) is the coherent part of the on-site
Green’s function [96]. Comparing the high-frequency
expansions of the respective coherent Green’s functions
leads to the second self-consistency condition:

V 2 = ZM (0)
2 = Z

∫ +∞

−∞
dϵϵ2ρ0(ϵ) ≡ Zt⋆2. (19)

In Eq.(19), M
(0)
2 is the second moment of the non-

interacting density of states, and the final equality follows
from the semicircular density of states of the Bethe lattice
[97].

Thereby, the original self-consistency condition is ful-
filled at low frequencies up to O(ω2), by referring to

the weight, the center, and the variance of the coher-
ent quasi-particle peak. Eq.(15) and Eq.(19) reformulate
the DMFT self-consistency equation. Instead of requir-
ing the self-energy as a function of frequency, it now in-
volves two equations for fixing ϵc and V as these are the
only parameters in the effective two-site model. This is
much simplified compared to the full DMFT in which the
Green’s function for each frequency point from the lattice
is mapped to that of the impurity.

III. METHODS AND PROCEDURE

After the formulation of the two sites DMFT, the next
step is to transform the problem from fermionic operators
into spin- 12 operators for the quantum algorithms. The
ground state of the Hamiltonian is obtained by the varia-
tional quantum eigensolver (VQE) and the Green’s func-
tions are then calculated via the Trotter-Suzuki approx-
imation. With the Green’s function, the quasi-particle
weight can be calculated and the self-consistency equa-
tions can be solved. The procedure is repeated until the
desired convergence of the quasi-particle weight is at-
tained. We only consider the half-filled case in this study,
so that the chemical potential can be fixed by hand ex-
actly by explicitly enforcing the particle-hole symmetry.
We explain the details of the above step in the following.
The procedure largely follows that of Kreula et al. [30]
and modified by Keen et al. [32]

A. Jordan-Wigner Transformation

We follow the standard Jordan-Wigner transformation
to transform the fermionic creation and annihilation op-
erators into spin operators for representation on a quan-
tum computer [98]. In a two-site SIAM, a four-qubit sys-
tem (excluding the ancilla qubit used for measurement)
is required. The first two qubits encode the spin-down
information for sites one and two, while the third and
fourth qubits encode the corresponding information for
the spin-up occupation. This process leads to the trans-
formed operators [30]:

c†1↓ = σ−
1 =

X1 − iY1
2

(20)

c†2↓ = Z1σ
−
2 =

Z1(X2 − iY2)

2
(21)

c†1↑ = Z1Z2σ
−
3 =

Z1Z2(X3 − iY3)

2
(22)

c†2↑ = Z1Z2Z3σ
−
4 =

Z1Z2Z3(X4 − iY4)

2
(23)

Here, Xi, Yi, or Zi denote operators on the ith qubit,
while identity operators act on the remaining qubits. In
this representation, the two-site SIAM Hamiltonian is
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given by

HSIAM =
U

4
(Z1Z3 − Z1 − Z3)

+
µ

2
(Z1 + Z3)−

ϵc
2
(Z2 + Z4)

+
V

2
(X1X2 + Y1Y2 +X3X4 + Y3Y4). (24)

VQE is employed to find the ground state of the Hamil-
tonian. Details about the variational wavefunction used
are explained in the next section.

We use the first-order Trotter-Suzuki expansion of the
time evolution operator with the ground state wavefunc-
tion to calculate the Green’s function in real-time. The
Trotter-Suzuki transformation is given as

Û(t) = e−iHAIM t

∼ (e−iV2 (X1X2+Y1Y2)∆te−iV2 (X3X4+Y3Y4)∆t

× e−iU4 (Z1Z3)∆tei
U−2µ

4 (Z1)∆tei
U−2µ

4 (Z3)∆t

× ei
ϵc
2 (Z2)∆tei

ϵc
2 (Z4)∆t +O((∆t)2))N (25)

where t is the total time, N is the number of time steps
and ∆t = t

N [99–101].
We only focus on the case σ =↓. As we only con-

sider the paramagnetic solution of the DMFT, it does
not break the spin rotational symmetry. The retarded
zero temperature impurity Green’s function in the time
domain is given by

GR
imp(t) = θ(t)(G>

imp(t)−G<
imp(t)) (26)

= −iθ(t)(< ĉ1σ(t)ĉ
†
1σ(0) > − < ĉ†1σ(0)ĉ1σ(t) >)

The above equation is recast into spin operators via the
Jordan-Wigner transformation. The Green’s functions
G> and G< can be written in terms of the spin operators.

G>
imp(t) = − i

4
[< Û†(t)X1Û(t)X1 >

− i < Û†(t)X1Û(t)Y1 >

+ i < Û†(t)Y1Û(t)X1 >

+ < Û†(t)Y1Û(t)Y1 >] (27)

G<
imp(t) =

i

4
[< X1Û

†(t)X1Û(t) >

+ i < X1Û
†(t)Y1Û(t) >

− i < Y1Û
†(t)X1Û(t) >

+ < Y1Û
†(t)Y1Û(t) >] (28)

After measuring the retarded impurity Green’s function
Gimp(t) at each Trotter step, iGimp(t) is least-squares
fitted on a classical computer. In the two-site DMFT,
the interacting Green’s function is a four-pole function,
and, due to the presence of particle-hole symmetry, we
have

iGimp(t) = 2(α1 cos(ω1t) + α2 cos(ω2t)). (29)

where α2 = 0.5− α1 at half filling. Fourier transform-
ing the above equation leads to

GR
imp(ω + iδ) = α1(

1

ω + iδ − ω1
+

1

ω + iδ + ω1
)

+ α2(
1

ω + iδ − ω2
+

1

ω + iδ + ω2
),(30)

where δ is an artificial broadening parameter. As the
self-consistency is reached, the optimal parameters are
obtained, the Dyson equation is used to calculate the self-
energy and, subsequently, the spectral function A(ω) =
− 1

π Im[Gimp(ω + iδ)].
A common practice for calculating the self-energy is

to employ the Dyson equation in the frequency domain.
Since G0(ω) is given as the input of the impurity problem
and Gimp(ω) is obtained by the above fitting procedure
via Fourier transform. The self-energy can be seemingly
easy to obtain by

Σ(ω) = G−1
0 (ω)−G−1

imp(ω) (31)

where the bare Green’s function is

G0(ω + iδ) =
1

(ω + iδ) + µ− V 2/(ω + iδ)
(32)

Since the quasi-particle weight is given by the derivative
of the real part of the self-energy at zero frequency, we
need to solve the Eq.(31) at zero frequency. Unfortu-
nately, it is not easy to calculate the self-energy accu-
rately, as the number of states in the two-sites system
is very limited, the subtraction of the two Green’s func-
tions in the Dyson equation is essentially a subtraction
of a set of delta functions. This does not pose a serious
issue when the bath is in the continuum and is actually
done routinely in most numerical DMFT calculations [9].
However, the limited number of states available in the
present problem makes the results highly sensitive to the
choice of the damping parameter in the Fourier trans-
form of Green’s function from the real-time domain to
the frequency domain. Strictly speaking, there is also a
damping factor associated with time, however, the avail-
able time in the present calculation is always limited to
a finite number.
A remedy has been proposed by Keen et al. in Ref.

[32]. The idea is, instead of calculating the self-energy at
zero energy by subtracting the inverse of the bath and
the interacting Green’s function at zero, to consider the
sum over a window of energy. This clearly provides more
stable and consistent results which are less dependent on
the damping factors [32].
This is a viable method for achieving better stability

in the iteration step of finding the self-consistent solution
of the DMFT. As far as the two-site DMFT is concerned,
this integration method is applicable. However, for more
general settings such as the cases for multiple bath sites,
the self-consistency is more involved. Instead of just the
quasi-particle weight, the full self-energy needs to be ob-
tained and the integration method cannot be readily gen-
eralized for those situations. Moreover, the integration
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method also brings an additional parameter that cannot
be fixed simply.

Therefore, it is desirable to have a method that has
minimal dependence on arbitrary parameters, specifically
the damping and the integration range, but is sufficiently
stable for the iterative solution of the DMFT equations.
We observe that the system is a finite-size cluster, there-
fore the self-energy of the two-site impurity problem is a
two-pole function of the form [96],

Σ(ω) = γ0 +
γ1

ω − ωs
1

+
γ2

ω − ωs
2

. (33)

The self-energy is completely determined by five pa-
rameters, γ0, γ1, γ2, ω

s
1 and ωs

2, where γ1 = γ2 and
ωs
1 + ωs

2 = 0 at half filling. We can Fourier transform
the self-energy back to the time domain with the explicit
form of it. The functional form will be the same as that
of the Green’s function. Instead of calculating the self-
energy in the frequency domain, we can use the Dyson
equation in the time domain to calculate the self-energy.
Both the inverse of the bath and interacting Green’s func-
tion are well-behaved. The parameters, γ0, γ1, and γ2
are then obtained by fitting the self-energy as the differ-
ence between the inverse of the bath and the interacting
Green’s functions in the time domain. After the fitting,
the full self-energy is obtained and can be used to extract
quasi-particle weight and any other physical quantities.

The self-energy obtained in this way has a minimal
number of arbitrary parameters. The remaining arbi-
trary parameters are the upper limit of the time and
the time step in the Trotter-Suzuki approximation, which
are both intrinsic limitations of the quantum algorithm.
Therefore, no additional arbitrary parameter is intro-
duced except those limited by the quantum algorithm.

B. Flowchart

The hybrid quantum-classical simulation of the two-
site DMFT consists of a few qubit digital quantum sim-
ulators to calculate the impurity Green’s function and a
classical feedback loop where the parameters of the two-
site SIAM are updated [29]. The algorithm, depicted in
Fig.(2), proceeds as follows:

1. Fix U and µ to the desired values in the SIAM and
set the unknown parameters ϵc = 0 for half-filling,
and V to an initial guess.

2. Measure the interacting Green’s function iGimp(t).
This is done using single-qubit interferometry.

3. Fourier transform the impurity Green’s function by
fitting it according to Eq.(29).

4. Calculate the coefficients for the self-energy by us-
ing the Dyson equation in the time domain.

5. Measure the quasi-particle weight Z by using the
self energy.

FIG. 2. Flowchart for the two-site DMFT calculation imple-
mented on a hybrid quantum-classical system. For the half-
filled case, the only external parameter is the Hubbard U . The
iteration for the self-consistent solution for the quasi-particle
weight Z starts from a given U and an initial guess for V .
With these values of U and V , the two sites impurity prob-
lem is solved by finding the ground state by the variational
quantum eigensolver(VQE) and then the Green’s function in
real-time is obtained by propagating the ground state using
the evolution operator exp(−iHt). The above procedure can
be done in quantum hardware except for the minimization
process for the VQE. Once the Green’s function in real-time,
G(t), is obtained, we find the Fourier transformed Green’s
function G(ω) by a fitting procedure as explained in section
III-A. With the G(ω), the quasi-particle weight, Z, can be
calculated by using Eq. 18. With the obtained Z, we can up-
date the hybridization V , using the relation V =

√
Z. Then,

the V is checked for convergence. The fitting process is done
in the classical hardware.

6. Update the hopping parameter V .

7. Repeat steps 2-6 until the self-energy is converged.

IV. IMPLEMENTATION

A. Ground state Ansatz

The variational ansatz is prepared by a circuit with
three CNOTs and eight single qubit rotations, see
Fig.(3). The VQE then optimizes the single qubit rota-
tion parameters to minimize the expectation value of the
target Hamiltonian HSIAM for given values of V,U, ϵc, µ
to obtain the ground state of the system. We note that
the choice of a variational state is not unique. Choosing
an optimized variational ansatz has been an important
but largely unsolved problem, even in the context of the
classical variational method as routinely performed by
VMC. We do not attempt to find the ‘best’ possible wave
function in the present study [29, 30].
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q1 Ry(θ1) • Ry(θ7) •

q2 Ry(θ2)

q3 Ry(θ3) • Ry(θ5) Ry(θ8)

q4 Ry(θ4) Ry(θ6)

FIG. 3. Quantum circuit for the ground state ansatz.

q0 σ̂H • σ̂H σ̂z, σ̂y

q1 σ̂α
1

Û(t)

σ̂β
1

q2

q3

q4

FIG. 4. Quantum circuit for measuring the individual compo-
nents of Gimp(t). Û(t) is composed of quantum gates. σ̂H is
the Hadamard gate. σ̂1

α and σ̂1
β can be X1 and Y1 according

to the components in Eqs. (27) and (28) that we measure.

The ‘best’ wavefunction is model and even parameter-
dependent [102]. We fix the functional form of the
wavefunction for the entire range of on-site interaction
strength, which likely is not the ‘best’ optimized wave-
function.

B. Retarded Impurity Green’s Function

The measurement of the impurity Green’s function
Gimp(t) is done by single-qubit Ramsey interferometer,
shown in Fig.( 4) [30, 103], which is used in the more gen-
eral non-equilibrium case. An ancilla qubit is introduced
in addition to the ‘system’ qubits, raising the total num-
ber of qubits needed to implement the two-site DMFT
scheme to five.

V. RESULTS

We start by examining the procedure of obtaining the
impurity Green’s function in the DMFT routine. Fig.(5)
shows the impurity Green’s function in the time domain
for two different sets of parameters, V = t (top) and V =
0 (bottom) with U = 8t for both cases. We superimpose
the data in Fig.(5) to the fit obtained according to the
exact result of Eq.(29). The calculated Green’s function
data is obtained with a modest number of time steps (18
in this case).

The impurity Green’s function in the frequency domain
Gimp(ω) obtained after self-consistency is achieved, ex-
tracted from the fit parameters following Eq.(30). Some
of the additional results calculated from the ground state

FIG. 5. Top: Impurity Green’s function for U = 8t and V = t.
The parameters for the fit shown are α1 = 0.002, α2 = 0.496,
ω1 = 3.874, ω2 = 1.999. Bottom: Impurity Green’s function
for U = 8t and V = 0. The parameters for the fit shown are
α1 = 0.295, α2 = 0.055, ω1 = 3.143, and ω2 = 5.014. We fit
the impurity Green’s function to Eq. (29)

obtained from the VQE are presented in Appendix A.

We obtain the energies ω1 and ω2 from fitting the
Green’s function to Eq.(29) for half-filling. We then
Fourier transform the impurity Green’s Function accord-
ing to Eq.(30) to the frequency domain. We use the
Dyson equation to calculate the self-energy in the fre-
quency domain from Eq.(31). We obtain the parame-
ters γ0, γ1, and γ2, by fitting the self-energy to Eq.(33).
Fig.(6) shows the quasi-particle weight at self-consistency
using Eq(18) for U values ranging from 0.01 to 10.0. All
of the data in Fig.(6) was calculated on a classical com-
puter.

In addition to the quasi-particle weight, another quan-
tity that may indicate a phase transition is the entangle-
ment entropy. It has been tested extensively on fermionic
lattice models that the entanglement, combined with the
finite size scaling, can be used to determine the critical
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FIG. 6. Quasi-particle weight at self-consistency as a function
of U from self-energy calculation using Eq.(18). The analyt-
ical expression of the quasi-particle weight for the half-filling
case is obtained from Eq.(31) of Potthoff [96]

point [104–106]. The idea of using entanglement entropy
within DMFT has not previously been explored in de-
tail. There is a clear choice of dividing the system into
two parts here, as the effective problem that is being
solved in DMFT is the SIAM. We can define the entan-
glement entropy between the impurity site and the bath
sites naturally, that is

Ev = −Tr[ρimp log(ρimp)], (34)

where ρimp is the reduced density matrix for the impu-
rity site. It is obtained by tracing out the degree of free-
dom from the bath sites in the density matrix for the
ground state (|GS⟩). That is ρimp = Trbath(ρ), where
ρ = |GS⟩⟨GS|. The behavior of the local entanglement
for the half-filling case is shown in Fig.(7).

In the large U limit, |U | → ∞, all sites are singly
occupied , one gets Ev(|U | → ∞) = 0.
For finite |U |, the hopping process enhances Ev, and

hence reaches its maximum value, 2 at U = 0.

VI. CLASSIFICATION USING QUANTUM
MACHINE LEARNING

In the previous section, we obtain the Green’s function
of the Hubbard model under the DMFT approximation.
In addition, we also have the wavefunction for the effec-
tive impurity problem from the DMFT, which contains
all the information about the system. Instead of directly
calculating an “order parameter”, we try to identify the
different phases from the wavefunction. It is worthwhile
to note that, unlike the DMFT with a continuum bath,
the system here is a finite-size system, therefore, there is
no true phase transition as that of the thermodynamic

FIG. 7. Local entanglement Ev of the two-site SIAM at half-
filling versus the on-site coupling U calculated using Eq.( 34).

limit. Notwithstanding this noteworthy deficit, it has
been shown that classical ML methods can locate phase
transitions as well as crossovers rather accurately from
finite-size classical and even quantum systems [34, 107].

A. QML as a Classifier of Wavefunctions

Since our data is inherently quantum, it is natural to
involve a QML approach to try to identify the phase tran-
sition. In the present study, we focus only on supervised
learning. Exactly as that in classical ML, the first step is
to label input objects [107]. The input object here is the
wavefunction, and the label is whether the wavefunction
corresponds to a metal or insulator.

The major conceptual difference between the QML and
the classical ML is in the input data and the function
which generates the output label. A popular choice for
classical ML is to treat the input data as an array of
numbers, and the function is usually chosen as a form
of neural network. For supervised learning, a data set
consists of input objects, and their corresponding labels
are then used to optimize the parameters in the neural
network during the training.

Most applications of QML are focused on using classi-
cal datasets [108]. It is possible to cast the wavefunction
expressed as a classical vector into quantum data. This is
precisely what needs to be done using a quantum classi-
fier for classical data, such as to identify classical images.
For the present study, the input is wavefunctions from the
converged DMFT solution, a genuinely quantum dataset,
represented in quantum circuits from the VQE.
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B. Implentation of the QCNN to Classify the
Wavefunctions from the DMFT

Our objective is to showcase the effectiveness of the
QCNN in identifying wavefunctions at different phases.
From the converged DMFT solution, we obtain the input
wavefunction, and the output label determines whether
the wavefunction corresponds to a metal or an insulator.

The quantum neural network [108, 109] is a direct
conceptual generalization of the classical neural net-
work; the main difference is that the activation functions
[108, 110, 111] are replaced by quantum gates and the in-
put and output are replaced by quantum states instead
of an array of classical variables. The quantum neural
network we employed in the present study is denoted as
QCNN [83]. A QCNN primarily consists of two distinct
layer types: the pooling layer and the convolution layer.
The pooling layer reduces the number of degrees of free-
dom and can be substituted by multi-qubit gates, the
CNOT gate being the simplest option [83]. On the other
hand, the convolution layer in a conventional CNN can
be substituted by multi-qubit quantum gates among ad-
jacent qubits.

The QCNN is constructed using an alternating se-
quence of convolutional and pooling layers until the num-
ber of pooling layers is reduced to a single qubit. The
goal is for the QCNN to extract important information
from the input quantum data and correctly identify the
“phase” of each wavefunction, specifically for the detec-
tion of the quantum critical point of the SIAM. We train
the QCNN in a supervised environment, where the cor-
rect phase identification for each data point is already
known. For a given on-site potential U , we have either
a metallic or Mott-insulator phase. The system is in a
metallic phase below 6 and a Mott-insulator phase above
6 when U is in the [0.0−10.0] range. We revisit the phase
transition at U = 6. The reader may refer to Appendix
B for the details of the QCNN circuit.

VII. CLASSIFIER RESULTS USING A QCNN

The QCNN was trained using two different selections
of training data. 200 data points are generated for dif-
ferent U uniformly distributed over 0 < U ≤ 10. In the
first set, the QCNN was trained by randomly selecting
80% of the wavefunctions with labels to designate their
corresponding phases as the training data set. In the sec-
ond set, only the data points corresponding to small and
large on-site potential, U were used for training. The
label for the metallic phase was defined as −1, while the
Mott insulating phase was defined as +1. To benchmark
the accuracy of the predictions, the output was bound to
−1 if the QCNN output measurement was smaller than
0 and similarly bound to +1 if the measurement was
greater than 0.

A. Training QCNN with data for randomly picked
data for 0.0 < U ≤ 10.0

We evaluate the performance of our trained QCNN
by using the remaining 20% of available samples as a
benchmark and track the loss and accuracy during each
iteration of the training process. We plot the loss and ac-
curacy as a function of epoch in Fig.(8). The accuracy is
calculated by taking the mean of the tensor which is ob-
tained after checking element-wise equality between the
true labels and the predictions. We find the loss from cal-
culating the mean of squares of errors between the true
labels and the predictions [108]. It is defined as :

L(f(x), y) =
(f(x)− y)2

N
(35)

where y are the true labels, x are the input feature vec-
tors which are wavefunctions, and f(x) are the output
predictions. N is the total number of input samples.
By randomly selecting wavefunctions for training, our

QCNN is able to learn from the entire dataset, includ-
ing samples with values of U both close and far from the
quantum critical point. This enables the QCNN to be-
come familiar with the wavefunctions and provide accu-
rate predictions for the trained data. We achieve an accu-
racy of approximately 75% for both training and testing
data, demonstrating that randomized training data al-
lows the QCNN to adjust to variations in wavefunctions
during training and generalize well to testing data. The
QCNN exhibits the ability to predict the phase of wave-
functions, and we observe the training process through
the loss values of the network. Despite the high loss val-
ues, we can visualize the QCNN’s training phase and ob-
serve its improvement in making correct predictions for
the phase corresponding to the wavefunctions. In Fig.
(9) we plot the average value of the predicted label as a
function of U . We average over 10 data points to find
the average label, we find that the label passes through
zero around U = 6.

B. Training QCNN with data for 4.0 ≤ U and
U ≥ 7.0

After considering the aforementioned findings, we
opted to assess the performance of the QCNN using se-
lected training and testing data. During training, we
used wavefunctions that had U values below 4.0 and
above 7.0, while the test data were within the range of
[4.0−7.0]. This approach allowed us to determine how ef-
fectively the QCNN can classify data close to the known
quantum critical point (U = 6.0) after training it with
data away from it. During training, we obtained an ac-
curacy rate of approximately 75− 80%, which is not sur-
prising given that the two sets of data with very large
and very small values of U are quite different from each
other.
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FIG. 8. Accuracy and Loss for the training and validation
data set for the QCNN as a function of the number of epochs.
Accuracy is the mean of the tensor calculated after checking
element-wise equality between the true and predicted labels.
Loss is the mean-squared error between the true and predicted
labels calculated using Eq.( 35).

We present the results in Fig.(10) and Fig.(11). We ob-
served that the testing data consistently exhibited a lower
accuracy rate than a randomized dataset. The QCNN is
capable of classifying data points that are far from the
quantum critical point. However, as we approached the
putative quantum phase transition, the network faced
greater difficulty with predictions. The average predicted
label shows the crossing from negative to positive values
for U between 5 and 6. The unfamiliarity with data
points in this range hindered the accuracy of the test-
ing data. The loss showed only slight changes during the
training phase compared to using randomized data, and
although we still observed a decrease, it was minimal.
This indicates that the QCNN does not have much room
for improvement when the testing data are isolated from
the quantum critical point.

The exclusive use of high and low values of U during
QCNN training has important implications for the iden-

FIG. 9. Predicted test labels vs U . The predicted labels show
a jump from a negative to a positive value around U = 6.0.

tification of quantum critical points. In classical ML,
a common technique for detecting phase transitions in-
volves training a supervised model (e.g., a CNN) using
control parameters (such as temperature in thermal tran-
sitions or external parameters in quantum phase transi-
tions) away from the hypothesized critical point. Our
findings indicate that the QCNN can also achieve high
accuracy by training on data outside of the hypothesized
critical point to predict phases near the critical point
[112]. Although the predicted label is clearly worse than
the case for which the training data span the entire range
of U . Nevertheless, the average predicted label still indi-
cates that the quantum phase transition happens around
5 ≤ U ≤ 6.

VIII. DISCUSSION

In this work, we present a hybrid quantum-classical al-
gorithm for calculating the phase transition of the Hub-
bard model under the DMFT approximation. From a
practical standpoint, the primary concern is addressing
the noise generated by the deep circuit in the Trotter
approximation, which affects phase estimation. We did
not include the contributions from noise and dissipation
in the present study. Recent proposals, in particular,
the variational quantum simulation may provide a solu-
tion for this problem [113, 114]. The major difficulty of
the method from a theoretical point of view is how to
properly interpret the DMFT approximation realized in
a very limited system size for the bath. If the bath is
restricted to just one or a handful of sites, it may not be
clear whether employing the formulation that presumes a
continuous distribution of bath sites is either numerically
feasible or physically meaningful.
The key quantity for the DMFT, particularly in the

two-site approximation, is the quasi-particle weight. The
quasi-particle weight can be defined as the measure of
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FIG. 10. Accuracy and Loss for the training and validation
data set the QCNN as a function of the number of epochs.
Accuracy is the mean of the tensor calculated after checking
element-wise equality between the true and predicted labels.
Loss is the mean-squared error between the true and predicted
labels calculated using Eq.( 35).

damping experienced by the quasi-particle at the Fermi
level. It is usually calculated using the relation Z =
(1 − (∂Re(Σ (ω)) /∂ω)|ω = 0 )−1 . However, the cal-
culation of self-energy is problematic for a small num-
ber of bath sites. This is due to the challenge encoun-
tered in solving the Dyson equation for the self-energy
Σ(ω) = G−1

0 (ω) − G−1
imp(ω). The retarded Green’s func-

tion is sensitive to the choice of the imaginary part in-
cluded in the Fourier transform from time to frequency
domains. While this may hold true in general, it is of-
ten not a significant factor for systems with a continuous
bath - i.e., an infinite number of bath sites. In such sys-
tems, the choice of imaginary part typically does not play
a substantial impact on the results, as they remain con-
sistent across a range of choices. The focus of the imagi-
nary part is how to distribute the few delta functions for
a limited number of sites [96]. The self-energy obtained
from the subtraction of the inverse of the full impurity

FIG. 11. Predicted test labels vs U . The predicted labels are
hovering around zero for 5.0 ≤ U ≤ 6.0.

Green’s function from the inverse of the bare impurity
Green’s function cannot be estimated very accurately.
One method suggested is to replace the calculation of

Z from the Dyson equation at the Fermi energy with an
averaging of the integration over an energy window cen-
tered around the Fermi level [32]. In a way, this approach
shifts the problem from selecting the imaginary compo-
nent in the frequency domain to selecting the integration
range over an energy window around the Fermi level.
Despite the somewhat arbitrary choice of this range of
integration, this method has demonstrated good results
[32].
In contrast to many other classical methods used for

solving impurity problems, the impurity Green’s function
obtained through the VQE and Suzuki-Trotter approxi-
mation is expressed in real-time and the computation is
limited to ’zero temperature’. This is an inherent advan-
tage of this hybrid quantum-classical approach compared
to conventional Monte Carlo-based approaches. This al-
lows us to estimate the self-energy directly from the dif-
ference of the inverse of the interacting Green’s function
and the bath Green’s function without going to the fre-
quency space. The inverse of Green’s function is more
well-behaved and less prone to error in numerical calcu-
lations.
This approach of calculating the quasi-particle weight

directly in the time domain not only avoids the possible
ambiguity of choosing the windows of integration but is
also more adaptable to a bath with multiple sites. This
aligns more broadly with the objective of using hybrid
quantum-classical algorithms. The advantage of this ap-
proach lies in the fact that we have the information for
the self-energy for the full range of the data in the time
domain. All the coefficients in the self-energy are calcu-
lated and in principle, a full DMFT can be used instead of
just the single bath site approximation. In practice, cal-
culations with a large number of bath sites may remain
challenging in the near future due to the possibility of



13

increasing errors with larger system sizes. Nevertheless,
the formulation presented here can easily be generalized
to calculations with many bath sites.

Besides presenting a modification of the hybrid
quantum-classical algorithm for the DMFT, we also
tested a new quantity that has not been explored ex-
tensively in the context of DMFT [115]. Conventional
DMFT is almost always being studied at a finite temper-
ature, that may be rather low, but almost never at a true
zero temperature for the Hubbard model. This is down
to the fact that most existing methods for solving the
impurity problems are practically feasible at low though
non-zero temperatures. As the wavefunction is explic-
itly calculated, it is technically at the zero temperature
and thus we can meaningfully define the entanglement
entropy. The use of entanglement entropy as a witness
to phase transition has been studied over the past two
decades [116–118]. The general feature is that the en-
tanglement entropy increase as the system is tuned close
to a phase transition [104]. In the case of the half-filled
Hubbard model in the two-site DMFT approach, it is
observed that the entanglement entropy reaches its max-
imum value in the non-interacting limit, but gradually
decreases until it saturates once the system enters the
Mott insulating phase. A physical interpretation is that
in the Mott insulating phase, the bath and the impurity
are essentially decoupled, which minimizes the entangle-
ment entropy between them.

For the present problem, the entanglement entropy
may not provide much additional insight. However, there
are important problems in condensed matter physics for
which there is no obvious order parameter. This has been
widely discussed in the context of some heavy fermion
materials [119]. A method that can detect a putative
transition without explicitly constructing an order pa-
rameter could be a useful technique.

For capturing the phase transition, we also elaborated
on the application of a QML approach to identify phase
transitions. The use of ML to locate phase transitions
has been well-studied. However, using it for the quan-
tum models requires some manipulations of the data, for
example, the wavefunctions from exact diagonalization
or the Feynman path integral from QMC are inherent
quantum data represented in a classical dataset. Various
approaches have been proposed and they are quite suc-
cessful in finding phase transition [107]. Since the data
from the VQE is true quantum data, it is natural to use
QML. The data can be fed into the quantum classifiers
without further manipulation of the data. This is an ob-
vious advantage compared to using the classical ML ap-
proach for quantum data. The calculations done here uti-
lizing the wavefunction derived from DMFT’s converged
solution show promising although imperfect results.

Since using the ML approach to study phase transi-
tions doesn’t require an explicit order parameter, this is
advantageous in dealing with crossover problems, where
there may not be an explicit order parameter or when
the order parameter is unknown. One of them is the

crossover between the Fermi liquid and the marginal
Fermi liquid [120–122]. A thorough study of the en-
tanglement entropy may provide more insight into this
crossover. Perhaps the major difficulty in studying phase
transitions using NISQ computers is the rather limited
system size. It’s reasonable to imagine that even if one
can figure out and calculate an order parameter, a proper
finite size scaling as done in conventional numerical simu-
lations may remain out of reach. An ML-based approach
could somehow bypass such difficulties and interpret the
finite-size results directly.

IX. CONCLUSION

In summary, we provide a complete workflow for using
NISQ to study phase transitions of strongly correlated
systems in the thermodynamic limit using the dynamical
mean field theory (DMFT). We devise a modification of
the hybrid quantum-classical method to solve the DMFT
using quantum hardware. Our modification provides re-
sults without arbitrary choices of parameters in estimat-
ing the quasi-particle weight. More importantly, it can
be readily generalized for the DMFT with multiple bath
sites. With the ground state wavefunction from DMFT,
we proposed two approaches to capture phase transitions.
The first one is based on calculating the entanglement en-
tropy between the bath sites and the impurity sites. The
second one is based on using the wavefunction from the
converged solution of DMFT. We believe that there are
many exciting prospects for these two approaches which
have been enabled by the advance of quantum hardware.
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Appendix A: Additional Results obtained for the
Model

Fig.(12) shows the impurity Green’s function in the
frequency domain. Analytically the exact expression for
the impurity Green’s function for two-site SIAM for the
half-filled case is obtained from Eq.(10) of Potthoff [96]
and then we apply the Dyson equation using Eq.(30) from
Potthoff [96]. Fig.(13) displays the self-energy of the sys-
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FIG. 12. The impurity Green’s function with different U val-
ues and V = 0 in the frequency domain.Analytically the exact
expression for the impurity Green’s function is obtained from
Eq. (10) of Potthoff [96]

FIG. 13. The real part of the self-energy with U = 8t, V = 0,
and a broadening of δ = 0.1

tem at self-consistency, calculated using the Dyson equa-
tion Eq.(31).

Fig.(14) shows the spectral function, A(ω) =

− 1
π Im[Gimp(ω+ iδ)] obtained from the Green’s function

for both the simulation and the exact result. The Trotter
error gives rise to the noise
that results in shifts in the fit frequencies ω1 and ω2.

Appendix B: QCNN Circuit

QCNN consists of two main elements, the pooling
layer, and the convolution layers, shown in Fig.( 17) [83].
To achieve the pooling, we employ a pooling unit that
combines two qubits into one qubit, as shown in Fig.(16).

FIG. 14. The calculated spectral function from the Green’s
function with different U values, and V = 0, and a broadening
of δ = 0.1 for both the simulation and exact result.

The pooling unit includes local rotation gates on each
qubit, followed by a controlled X-gate and the inverse
rotation on the controlled bit. There are six parameters
in each pooling unit.
The convolutional layer is made up of multiple two-

qubit convolution units as shown in Fig.(15). A convo-
lution unit consists of local rotation gates on each qubit,
sandwiched between the ZZ coupling gates between the
two qubits. There are 15 parameters for each convolu-
tional unit between two qubits.
We implement the QCNN using Cirq and train it using

the TensorFlow Quantum package [123].

FIG. 15. Convolution between two qubits. A convolutional layer of N qubits is composed of N/2 convolutional units acting on
the qubits. x[0], x[1], ..., x[14] are the parameters.
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FIG. 16. Pooling between two qubits. A pooling layer from N qubits to N/2 qubits is composed of N/2 of pooling units.
x[0], x[1], ..., x[5] are the parameters.

  

q0
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q2

q3
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Pooling
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FIG. 17. The QCNN circuit for 4 qubits, two convolutional (Conv.) units act on the pairs of qubits. A pooling unit that
reduces the 4 input qubits into 2 output qubits. Another layer of convolutional units on the pair of qubits and the pair of
qubits is then fed into another pooling unit with one output qubit. The qubit from the last pooling unit is measured. Note
that the parameters in each convolutional unit can be different from the others, and so does the pooling unit.
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