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In the era of big data, an important weapon in a machine learning researcher’s arsenal is a scalable Support

Vector Machine (SVM) algorithm. Traditional algorithms for learning SVMs scale super linearly with training

set size which becomes infeasible quickly for large data sets. In recent years, scalable algorithms have been

designed which study the primal or dual formulations of the problem. This often suggests a way to decompose

the problem and facilitate development of distributed algorithms. In this paper, we present a distributed

algorithm for learning linear SVMs in the primal form for binary classification called Gossip-bAseD sub-

GradiEnT (GADGET) SVM. The algorithm is designed such that it can be executed locally on sites of a

distributed system; each site processes its local homogeneously partitioned data and learns a primal SVM

model; it then gossips with random neighbors about the classifier learnt and uses this information to update

the model. To learn the model, the SVM optimization problem is solved using several techniques including

a gradient estimation procedure, stochastic gradient descent (SGD) method and several variants including

mini-batches of varying sizes. Our theoretical results indicate that the rate at which the GADGET SVM

algorithm converges to the global optima at each site is dominated by an O( 1√
λ

) term, where λ measures

the degree of convexity of the function at the site. Empirical results suggest that this anytime algorithm –

where the quality of results improve gradually as computation time increases – has performance comparable

to its centralized, pseudo-distributed and other state-of-the-art gossip based SVM solvers. It is at least 1.5

times (often several orders of magnitude) faster than other gossip-based SVM solvers known in literature

and has a message complexity of O(d) per iteration, where d represents the number of features of the data

set. Finally, a large scale case study is presented wherein the consensus based SVM algorithm is used to

predict failures of advanced mechanical components in a chocolate manufacturing process using more than

a million data points.

Key words : distributed support vector machine, primal SVM, consensus based learning, gossip, anytime

algorithm

1. Introduction

Predictive models play an important role in business intelligence tasks. Such models can

be learnt from historical data and may be used to predict customer behavior or fraudulent
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activity. One such predictive model used extensively by businesses is the Support Vector

Machine (SVM) (Cecchini et al. (2010), Simester et al. (2019), Li et al. (2017)). Quoting

Provost and Fawcett (2013), “If you’re even on the periphery of the world of data science

these days, you eventually will run into the Support Vector Machine or “SVM”. This is

a notion that can strike fear into the hearts even of people quite knowledgeable in data

science. Not only is the name itself opaque, but the method often is imbued with the sort

of magic that derives from perceived effectiveness without understanding”.

However, in recent years, businesses are forced to deal with large and complex collec-

tions of digital data (Zadorojniy et al. (2017), Fadda et al. (2018)). This has necessitated

the development of scalable predictive models (Rajaraman and Ullman (2011), Bottou

et al. (2007), Bekkerman et al. (2011)) in general, and not surprisingly, therefore, scal-

able SVM algorithms. Scalable SVMs rely fundamentally on well established techniques

of parallelization and distributed computing (Kargupta and Chan (2000), Zaki and Ho

(2000), Tanenbaum and Steen (2006), Lynch (1996), Bertsekas and Tsitsiklis (1997)). Par-

allel algorithms for learning predictive models are often tightly coupled including shared

memory systems (SMP), distributed memory machines (DMM) or clusters of SMP work-

stations (CLUMPS) with fast interconnection between them. Distributed systems, on the

other hand, are loosely-coupled – for example, mobile ad-hoc networks or sensor networks

(Bliman and Ferrari-Trecate (2008), Blondel et al. (2005), Boyd et al. (2005)). They can

function without a central server for co-ordination and are often subject to abrupt changes

in topology due to sites joining or leaving, and are susceptible to link failures. An important

characteristic of these distributed systems is that they are collectively capable of storing

large amounts of data of different modalities (such as text, audio, video). Often, distributed

predictive modeling tasks are designed by executing them on data distributed in a network

– for example, distributed sensor networks for co-ordination and control of Unmanned

Aerial Vehicles (UAVs), fleet, self-driving cars (Tortonesi et al. (2012), Kargupta et al.

(2010)), automated products and parts in transportation, life science and energy markets.

In this paper, we present a scalable consensus based linear SVM algorithm for binary

classification called Gossip-bAseD sub-GradiEnT solver (GADGET SVM). Such an algo-

rithm can be used by businesses deploying large clusters to store data or those which

collect streaming data from Internet Of Things (IoT) devices. In the large cluster setting,

the underlying topology of the sites is usually fixed apriori while mobile and adhoc sensor
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networks have varying topologies. In this work, we assume that there is a network of com-

putational units arranged in a fixed topology, each containing samples from the training

data such that all sites have the same set of features or attributes. Sites are capable of

building support vector machine models from local data i.e. data available to or sensed by

the site. They can update local models by exchanging information with their neighbors.

This is important, since the local model by itself is not sufficient to provide a global pic-

ture. The overall goal, is to learn at each site, a close approximation of the global function.

Communication between sites is permitted by use of a gossip-based protocol i.e. each site

contacts a neighbor at random and exchanges information. The process continues until

there are no significant changes in performance of the local model. This gossip-based com-

munication protocol used to design a predictive model gives it the much needed scalability

including resilience to sites joining or leaving the network. Finally, it must be noted that

the GADGET SVM algorithm is an anytime algorithm (Zilberstein (1996), Mouaddib and

Zilberstein (1995), Zilberstein (1993)) without any predefined termination criteria. Any-

time algorithms are those whose quality of results improve gradually as computation time

increases. They extend the traditional notion of a computational procedure by allowing it

to return many possible approximate answers to any given input. These notions of approx-

imate processing (Lesser et al. (1988)) and the use of principles of bounded rationality

(Simon (1982)) have proved useful in many applications. What is special about anytime

algorithms is the use of well-defined quality measures to monitor the progress in problem

solving and allocate computational resources effectively.

Summary of main contributions This work has three main contributions. First, we

develop a consensus algorithm for learning a SVM in the primal with non-differentiable

hinge loss and a squared regularization term. The choice of this formulation is motivated

by the state-of-the-art Pegasos solver (Singer and Srebro (2007)). The optimization prob-

lem that arises in this setting is solved in a network using stochastic sub-gradient descent

algorithm and its mini-batch variant. This is accomplished by resorting to the use of a con-

sensus based averaging protocol – the Push Sum protocol (Kempe et al. (2003a)). Second,

we empirically study the performance of the algorithm using standard stochastic gradient

descent (SGD) method in the network setting. The presence of noise in the gradients aris-

ing both from local sub-gradient estimates and gossip averages in the network does not
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necessarily hinder the performance of the algorithm which is comparable to state-of-the-

art gossip based distributed SVMs. This is achieved by communicating only the weight

vectors in the network which provides significant benefits in terms of time and message

complexity unlike the state-of-the-art gossip based solvers which typically resort to sending

data samples to neighbors. Third, analytical results reveal that the consensus algorithm at

each site converges to the global optima at a rate O( 1√
λ
), where λ refers to the degree of

convexity of the function at the site. Finally, we present a case study to predict failures of

advanced mechanical components in a chocolate manufacturing process using more than a

million data points.

Organization of the paper The rest of this paper is organized as follows: Section 2

motivates the need for consensus based learning; Section 3 provides the background and

related work; Section 4 presents the GADGET SVM algorithm; Section 5 presents empirical

results on real world data; Section 6 presents a case-study on a Bosch manufacturing

process and Section 7 discusses directions of future work and concludes the paper. The

analytical results for the GADGET SVM algorithm are presented in the Appendix.

2. Why consensus based learning?

We posit that a consensus based SVM algorithm takes a step towards addressing concerns

identified by a recent McKinsey Global Institute Report (Manyika et al. (2015)):

“Most IoT data are not used currently ... The data that are used today are mostly

for anomaly detection and control, not optimization and prediction which provide the

greatest value.”

For example, in the manufacturing industry – with increasing automation in production

processes, combining sensor signals and product inspections is common (Gong et al. (1997),

Wardell et al. (1992)). Gong et al. (1997) present a two phase procedure for combining

readings from online sensors and control charts to improve statistical process control deci-

sions. In the first phase, the production process is monitored continually with sensors and

warnings are issued when there are process shifts; in the second phase, samples are drawn

from the process and inspected. The sensors and IoT devices here are primarily used for

anomaly detection and control.

In the consumer, enterprise and societal IoT world, including predictive maintenance,

intelligent healthcare, smart cities and housing, etc the dominant paradigm has been IoT
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just senses its environment and transmits the sensor readings to the cloud where all the

decision making happens. For instance, in recent work (Zhang et al. (2019)) that studies

the value of pop-up stores (temporal sales spaces designed to offer a direct and experiential

consumer–brand interaction), on both retailers and retailing platforms, consumers’ pop-up

store visits were tracked with Alibaba’s WiFi tracking modem. When the Wi-Fi modem

probes a phone, it usually returns a message with its unique Media Access Control (MAC)

address. The strength of the message returned by the phone signals its distance to the

modem. The MAC address is also recorded when a phone is used to log on to Alibaba’s

mobile app which all consumers in the experiment must use. This allowed Alibaba to

match phones detected within the pop-up store with consumers, enabling linkage between

consumers’ offline presence at the pop-up store with their online behavior. In this setting,

the dependence is on the cloud for matching data from the IoT device while the device

itself is not participating in predictive analytics.

In the context of healthcare, Staats et al. (2017) resort to electronic monitoring of

individuals using a Radio Frequency IDentification (RFID)-based system deployed in 71

hospital units to test hand hygiene compliance. RFID badges are distributed to hospital

caregivers who wear personalized badges along with their hospital identification. The RFID

readers are also installed throughout the hospital unit. These badges then communicate

wirelessly with a network of sensors connected throughout the monitored area. In addition,

communication units are installed on hand hygiene dispensers within a focal hospital unit.

As a result, both the date and time when a caregiver enters the area monitored by a

given sensor as well as whether or not the caregiver uses a dispenser are recorded. The

information is then transmitted to central servers for further processing. This is yet another

example where the IoT data collected is first centralized before algorithms for predictive

analytics can be run on them.

While the above examples provide options to deal with streaming data collected at

sites, the dependence on the cloud or large scale centralized storage makes the IoT device

“dumb”. What happens to decision making when connection to the cloud fails? The consen-

sus based predictive algorithms proposed here fundamentally address this issue by allowing

the sites or computational units to communicate with one another and therefore are robust

to network failures which prohibit interaction with the cloud.
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Finally, it must be noted that these consensus based predictive modeling algorithms (Datta

et al. (2006)) build on the seminal work of Tsitsiklis (Tsitsiklis (1984), Bertsekas and

Tsitsiklis (1997)). They are completely decentralized (without a central server for coordi-

nation), asynchronous, resilient to changes in underlying topology, and scalable in size of

the network. They are capable of learning cooperatively and when in agreement, can reach

a consensus. At that time, the sites have a good approximation (measured by ε tolerance,

where ε is usually user-defined parameter) of the global solution.

Having motivated the need for consensus based learning for businesses dealing with large

complex data, we provide a brief review of the popular support vector machine algorithm

which can be learnt in a consensus based framework.

3. Background
3.1. Support Vector Machines - A brief review

Formally, given a training set S comprising of feature vectors xi ∈ Rd, i= 1,2, · · · ,N and

binary labels yi ∈ {−1,+1}, the goal is to find a linear classifier of the form f(x) =wTx,w ∈
Rd. More generally, in the primal SVM formulation the goal is to find the minimizer of the

problem

min
w

λ

2
‖w ‖2 +

1

N

N∑
j=1

l(w; (xj, yj)), (1)

where l is the loss function defined as l(w; (x, y)) = max{0,1− y〈w,x〉} for hinge loss

and λ is the SVM regularization parameter.

From a risk minimization perspective, the model shown in Equation 1 can also be written

as

min
w,ξ

1

2
‖w ‖2 +C

N∑
i=1

ξi,

subject to ξi ≥ 0

yi(w
Txi)≥ 1− ξi, i= 1,2, · · · ,N

(2)

where ξi = |yi− f(xi)| measures the training error.

3.2. Related Work

The problem of scaling SVM algorithms have been studied extensively (Osuna et al.

(1997b,a), Joachims (1998), Menon (2009)) with a majority of the algorithms develop-

ing faster variants of the primal, dual or primal-dual formulations. In this section, we
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present related work for solving the SVM optimization in primal form. Following this,

we present scalable SVM algorithms including parallel and distributed variants which are

closely related to the current work.

3.2.1. Primal Formulations. Optimizations of the primal formulation of linear SVMs

have been studied extensively (Mangasarian (2002), Keerthi and DeCoste (2005), Keerthi

et al. (2006)). Mangasarian (2002) presents finitely terminating Newton methods with

Armijo method while Keerthi and DeCoste (2005) extend this work by performing exact

line searches to determine the step size for L2
1 loss functions. They also suggest methods to

solve the primal SVM formulations using L1 loss by approximating the loss using modified

Huber and logistic regression (Zhang et al. (2003)). Chapelle (2007) complements the

literature by extending the above techniques to the non-linear case.

Other large scale primal SVM formulations have been solved by using SGD, (Menon

(2009)) methods. Bottou proposed the SVM-SGD (Bottou and Bousquet (2011), SVM-

SGD) algorithm which builds a model by solving Equation 1 on benchmark datasets. Zhang

(2004) studied SGD algorithms on regularized forms of linear prediction methods such

as least squares for regression, logistic regression and SVMs for classification. One of the

popular SGD algorithms, Pegasos (Shalev-Shwartz et al. (2007)), operates by choosing a

random subset of k training examples, evaluating the sub-gradient of the objective func-

tion on these examples and updating the weight vector accordingly. The weight vector is

then projected on a ball of radius 1√
λ
. The parameter k does not affect the run time or its

convergence to the optimal solution. Duchi and Singer (2009) present the FOrward Back-

ward Splitting algorithm (FOBOS) which alternates between two phases - in the first, an

unconstrained gradient is estimated. This is followed by solving an instantaneous optimiza-

tion problem that trades off minimization of the regularization term while keeping close

proximity to the result of the first phase. Finally, Chang et al. (2008) propose a coordinate

descent method for solving primal L2-SVM which does not work for the L1 SVM due to its

non-differentiability. To the best of our knowledge, none of the primal SVM formulations

discussed above have been used in the context of distributed consensus based learning.

1 SVMs with linear sum of slack variables, which are commonly used, are called L1-SVMs, and SVMs with the square
sum of slack variables are called L2-SVMs.
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3.2.2. Distributed Optimization. Distributed optimization algorithms which can be

used to solve the primal SVM formulation and its variants are relevant to this discussion.

Nedić and Ozdaglar (2009) propose a generic distributed computation framework for opti-

mizing a sum of convex objective functions for multiple agents. In this framework, every

agent maintains estimates of the solution of the global objective which are communicated

to other agents directly or indirectly using asynchronous communication (Jadbabaie et al.

(2003), Tsitsiklis et al. (1986)). Each agent updates it’s estimates based on local infor-

mation concerning the estimates received from it’s immediate neighbors and it’s own cost

function using a sub-gradient method. This work, however, was not used to solve a regu-

larized SVM formulation and did not deal with stochastic sub-gradient descent methods.

Duchi et al. (2012) develop and analyze algorithms for dual sub-gradient averaging which

is based on the availability of a proximal function. Their analysis enables separation of the

convergence of the optimization algorithm and the effects of communication dependent on

the network structure. Sundhar et al. (2010) present an algorithm for a distributed multi-

agent system where the goal is to minimize a sum of convex objective functions of the

agents subject to a common convex constraint set. While the formulation of the problems

studied in these papers are interesting and relevant, they have not been studied in the

context of SVMs. Block minimization, a classical technique used in optimization literature

has been used to train linear SVMs by Yu et al. (2012). Under this framework, a solver

splits data into blocks and stores them as separate files. Then, every time the solver trains

a data block it is loaded from disk. This setting is different from the one studied in this

paper where data is stored in a distributed environment.

3.2.3. Distributed and Parallel SVMs. Algorithms for scaling SVMs using distributed

and parallel learning have been studied by Stolpe et al. (2016). Two different kinds of

algorithms are popular (a) methods designed to run in high performance compute clusters,

assuming high bandwidth connections and an unlimited amount of available energy (b)

pervasive computing systems (e.g. wireless sensor networks) consisting of battery-powered

devices, which usually require algorithms whose primary focus is the preservation of energy.

Syed et al. (1999) proposed a Distributed SVM (DSVM) algorithm which finds support

vectors locally at each site and then sends them to a central server for processing. However,

it produces globally sub-optimal solutions and the communication cost depends on the

total size of the dataset. The algorithm is improved in Caragea et al. (2005) by allowing



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-0001-1922.65 9

the centralized server to send the support vectors back to the distributed sites and then

repeating the process until a global optimum is achieved. Despite reaching optimality, this

approach is slow. Cascade SVMs (Graf et al. (2005)) work by eliminating non-support vec-

tors early from the optimization and generating a filtering process that can be parallelized

effectively. A number of small, independent partitions are explored at a time to generate

partial results, which are eventually combined in a hierarchical fashion. Lu et al. (2008)

propose an algorithm similar to Cascade SVM suited for Kurtowski graphs.

Hazan et al. (2008) present a parallel algorithm for solving large scale SVMs by dividing

the training set amongst a number of sites each running an SVM sub-problem associated

with that training set. The algorithm uses a parallel (Jacobi) block-update scheme derived

from the convex conjugate (Fenchel Duality) form of the original SVM problem. Each

update step consists of a modified SVM solver running in parallel over the sub-problems

followed by a simple global update. The algorithm has a linear convergence rate and takes

O(log(1
ε
)) iterations to get ε-close to the optimal solution. Sai et al. (2016) describe a

Budgeted Parallel Pack Gradient Descent algorithm (BPPGD) that can improve the primal

SVM optimization problem with Gaussian Radial Basis Function (RBF) kernels for large-

scale data. This method has been shown to run efficiently on Apache Spark with high

degree of parallelization.

A distributed SVM resilient to Byzantine failures has been proposed by Yang and Bajwa

(2016). The premise of this work is that in the distributed setting an SVM can have

arbitrarily bad performance if there are Byzantine nodes in the network. If this happens,

it is possible for a node to ignore some values received from its neighbors, assuming that

these values were erroneous and tends to push the node away incorrectly from its local

solution. Consequently, the solution is to identify such error prone values and treat them

as outliers that can be filtered out.

Finally, Lee et al. (2012) present a framework for training SVMs over distributed sensor

networks by making use of multiple local kernels and explicit approximations to feature

mappings induced by them.

3.2.4. Gossip based Distributed SVM In this section we present several algorithms

that use gossip based protocols for the design of distributed SVMs. The algorithms pre-

sented here primarily differ in what is sent (training data, extrema of the convex hull,

weight vectors, etc.) to the neighbors during gossip.
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Flouri et al. (2009) present a gossip-based SVM algorithm which uses a selection func-

tion to rank training vectors in order of importance in the learning process. Their Adaptive

Selective Gossip (ASG) algorithm begins by training an SVM on the local data, determin-

ing an optimal hyperplane and ranking based on local data. The ranking function selects

data points from both classes and defines a Selected Set which is exchanged with neighbors.

Unlike the algorithm proposed here, this algorithm resorts to sending actual data in the

network, significantly increasing the communication cost incurred during its execution and

possibly compromising privacy concerns. Prior work of Flouri et al. (2006) also presents

two other algorithms for selectively picking data points for gossiping – (a) Minimum Selec-

tive Gossip (MSG-SVM) algorithm where-in only the support vectors obtained locally are

communicated to the neighbors and (b) Sufficient Selective Gossip (SSG-SVM) where the

convex hull of the two classes is constructed and the extremum points are communicated

to the neighbors. According to the authors, MSG-SVM is not guaranteed to converge and

produces sub-optimal results, while SSG-SVM requires communication of a large amount

of data and incurs additional power cost in sensor networks.

Wang et al. (2010) propose a gossip-based SVM algorithm whose objective is to gossip

the labels learnt after local learning at each node. The local nodes learn a non-linear SVM

and obtain a set of Lagrange multipliers. Once the training converges at a node, the local

prediction value for a given instance is estimated and communicated to its neighbors.

The global prediction value is updated based on the values predicted by neighbors. It is

interesting to note, that the gossip protocol is never used during the training phase of the

algorithm, which is strikingly different from the other algorithms discussed in this section.

The algorithm to learn linear models presented by Ormandi et al. (2013) consists of a

gossip based peer sampling procedure which helps to generate a local random sample at

the peer. Each peer periodically checks on incoming models and potentially combines it

with the previous incoming model. This newly created model is stored in a cache of a fixed

size and when full, the model stored for the longest time is replaced. The cache provides a

pool of recent models that can be combined using voting based prediction.

Kim et al. (2015) (similar to Flouri et al. (2006)) show that a data set can be represented

using geometric convex hulls, and the classification problem can be converted to a nearest

point problem which leads to an efficient solution to SVM classification. For the separable

case, this amounts to finding the closest points between the convex hulls generated by the
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positive and negative classes. For the non-separable case, the above procedure does not

make sense, because there are the infinite number of the points in the over-lapped area and

all these points are the closest points to the convex hulls with zero distance. In this case,

the notion of a reduced convex hull is examined wherein the coefficients of the convex hull

are upper bounded by a non-negative number. In the distributed setting, they propose to

gossip the set of extreme points of the convex hull of local data set with neighboring nodes.

Specifically, each local node generates the extreme point sets which are then communicated

to one-hop neighbors. On receiving the extreme points, the neighbors add these to their

existing extreme point sets and the process continues. It has been theoretically shown that

this process is equivalent to finding the convex hull of the union of two (or more) convex

sets. While the above algorithm operates both in linear and non-linear settings, the sending

of extremum points amounts to significant increase in communication cost in the network

(Flouri et al. (2006)), hindering scalability of the solution.

The algorithm closest in spirit to ours is the consensus based SVM algorithm proposed by

Forero et al. (2010). The fundamental differences are (1) the Alternating Direction Method

of Multipliers DSVM (MoM-DSVM) solves the dual of the linear SVM formulation (given

by Equation 2) whereas, GADGET SVM solves the primal formulation similar to the

Pegasos algorithm (Shalev-Shwartz et al. (2007)) with modifications due to the distributed

nature of the problem. (2) GADGET uses SGD for solving the optimization problem while

MoM-DSVM relies on the Alternating Direction Method of Multipliers (Bertsekas and

Tsitsiklis (1997), Boyd et al. (2011)). (3) The underlying protocol used for communication

in GADGET is a randomized gossip algorithm whereby each site exchanges information

with only one randomly chosen immediate neighbor within a one-hop distance from itself.

In contrast, MoM-DSVM broadcasts its current augmented vector vj = [wT
j ; bj]

T thereby

having a higher communication cost than the algorithm described here.

Finally, it must be noted that Hensel and Dutta (2009) present a consensus based SVM

algorithm with two calls to the Push-Sum protocol at each site. Our algorithm is different

from the one presented in Hensel and Dutta (2009) for the following reasons: (1) The two

calls to Push-Sum in Hensel and Dutta (2009) makes synchronization amongst sites a diffi-

cult problem. GADGET SVM uses only a single Push-Sum call. (2) Theoretical results on

convergence of GADGET SVM have been presented in this paper (refer to the Appendix).

(3) The current manuscript presents a detailed study of the effect of stochastic optimization
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techniques such as SGD and its variants including Mini-Batch SGD on convergence proper-

ties of the algorithm (4) The empirical results presented in the paper compares GADGET

SVM to state-of-the-art variants including LIBSVM, LIBLINEAR, SVMPerf and a pseudo

distributed solver using Alternating Direction Method of Multipliers (ADMM). (5) It also

compares GADGET SVM with state-of-the-art gossip based SVM solvers. (6)The utility of

developing a large scale SVM algorithm, given the existence of other scalable classification

algorithms such as adaptions of (penalized) regression, boosting and random forests has

been studied empirically. (7) A real world case study on an imbalanced classification prob-

lem involving failures of advanced mechanical components in a chocolate manufacturing

process with more than a million data points has been presented.

3.3. Communication protocols - Gossip

Gossip based protocols are popular in distributed systems because of their fault tolerant

information dissemination (Boyd et al. (2006), Shah (2009), Dimakis et al. (2010, 2006),

Narayanan (2007)). Dating back to early work in the database community (Demers et al.

(1987)), they provide a simple and effective information spreading strategy, in which every

site selects one of its neighbors uniformly at random for message exchange during the

process of spread of information. They are more efficient than widely adopted information

exchange protocols such as broadcasting and flooding. Gossip can be used for computation

of sums, averages, quantiles, random samples and other aggregate functions and proba-

bilistic guarantees of convergence are ascertained for such computations. The problem of

aggregation was first proposed by Bawa et al. (2003) wherein it is assumed that there is a

network of m sites, each containing a value qi ∈R. The goal is to compute the aggregate

functions in a decentralized fault tolerant fashion. Kempe et al. (2003b) extend this work

further by demonstrating that these protocols converge exponentially fast to the correct

answer when using uniform gossip. They present the Push-Sum algorithm (also presented

in Algorithm 1 for completeness) an n-dimensional extension of which is used in this work

for communication amongst sites in the distributed setting for the GADGET SVM algo-

rithm (presented in Section 4). It operates as follows – at all times t, each site i maintains

a sum st,i, initialized to s0,i = qi, and a weight rt,i, initialized to r0,i = 1. In addition, a

site also maintains αt,i,j (The αt,i,j should not be confused with the α values arising from

the dual formulation of the SVM.), a non-negative value for site j which indicates how

much information can be shared between sites i and j in iteration t of the Push-Sum
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Push-Sum (PS)

Input: A graph G(V,E) with m vertices (or nodes/sites) i.e. |V |=m and |E| edges;

Each site stores a single value qi ∈R,1≤ i≤m; t : Number of iterations of the

algorithm; αt,i,j.

Each site maintains a sum st,i = qi and weight rt,i = 1.

1. Let {(ŝp,i, r̂p,i)} be all the pairs sent to site i in round t− 1 (p is the index of pairs

sent to site i in round t− 1).

2. Let rt,i =
∑

p r̂p,i i.e. perform a sum of all weights received by site i in round t− 1.

3. Let st,i =
∑

p,i ŝp,i i.e. perform a sum of ŝp,i received by site i in round t− 1.

4. Choose shares αt,i,j for each j that site i wishes to communicate with.

5. Send (αt,i,j × st,i, αt,i,j × rt,i) to the site j and update the same for i

Output:
st,i
rt,i

, this is the current estimate of the average at site i at time t.

Algorithm 1: Push-Sum (PS), as proposed by Kempe et al. (2003b). Presented here for

the sake of completeness.

algorithm (Note that
∑

j αt,i,j = 1). At time 0, it sends the pair (s0,i, r0,i) to itself and in

each subsequent time step t, each site i follows the protocol given as Algorithm 1 and

updates the weight and sum. The algorithm, as presented, helps to estimate the average

in the network. A simple extension to protocol Push-Sum, called Push-Vector, wherein

each site holds a vector vt,i (instead of the real-valued sum st,i) has also been presented in

Kempe et al. (2003b). The primitive of estimating the average in the network forms the

crux of GADGET SVM, wherein each site has a weight vector learnt on local data; then it

participates in exchange of information with neighbors by averaging weights. The details

of the GADGET SVM algorithm is presented in the following section.

4. The GADGET SVM Algorithm

The Gossip bAseD sub-GradiEnT solver for linear SVMs aims to solve Equation 1 in a

decentralized setting. Let M denote an N ×d matrix with real-valued entries. This matrix

represents a dataset of N tuples of the form xi ∈ Rd,1≤ i≤N . Assume this dataset has

been horizontally distributed over m sites S1, S2, · · · , Sm such that site Si has a data set

Mi ⊂M,Mi : ni× d and each xj ∈Mi is in Rd. Thus, M =M1 ∪M2 ∪ · · · ∪Mm denotes the

concatenation of the local datasets. The goal is to learn a linear SVM on the global data
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set M , by learning local models at the sites and allowing exchange of information among

them using a gossip based protocol.

Pegasos

Input: Number of instances in the dataset: M , Learning Rate: λ, Number of

Iterations: T

Initialize: Set w1 = 0

1. For t= 1,2, · · · , T

2. Choose it ∈ {1, · · · , |M |} uniformly at random

3. Set ηt = 1
λt

{ . Set the learning rate.}

4. If yi〈wt, xi〉< 1, then { . Test if instance has non-zero loss..}

5. Set wt+1← (1− ηtλ)wt + ηtyixi

6. Else (if yi〈wt, xi〉 ≥ 1) { . If no loss incurred, no changes required.}

7. Set wt+1← (1− ηtλ)wt

8. [Optional: wt+1←min{1,
1√
λ

||wt+1||}wt+1 ] { . Projection Step}

Output: wT+1

Algorithm 2: Primal Estimated sub-GrAdient SOlver for SVM (Pegasos), as proposed

by Shalev-Shwartz et al. (2007) – presented here for ease of readability.

In this work, the local models are constructed using the Pegasos algorithm (Shalev-

Shwartz et al. (2007)) (presented in Algorithm 2). The implicit assumption is that

updating a local model with insight from neighbors is likely to be cheaper than transferring

data from all the sites to a central server and also prevents creation of a single point

of failure in the distributed setting. We note that algorithms with this flavor have been

studied in multi-agent systems (Nedic and Ozdaglar (2009), Nedić et al. (2010)) and

optimization literature (Ram et al. (2010)), for general convex optimization problems using

gradient descent and projection style optimization algorithms. Our algorithm extends this

literature, by explicitly studying the linear SVM in the horizontally partitioned setting

with theoretical and empirical analysis.

Model of Distributed Computation. The distributed algorithm evolves over discrete

time with respect to a “global” clock. Each site may have access to a local clock or
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Table 1 Summary of Notation

ŵ
(t)
i site i’s weight vector at iteration t

ŵ
(t+ 1

2
)

i site i’s approximate network average update at time t

w̃
(t+ 1

2
)

i site i’s update of the local weight vector in the direction of descent

w(t) Network average weight vector

L̂
(t)
i Loss at site i using weight vector ŵ

(t)
i

L(t) Loss estimated using weight vector w(t)

λ Learning parameter

α(t) Learning parameter

B Doubly stochastic transition probability matrix

ni Number of training examples at site i

N Total number of training examples in the network

m Total number of sites

d The dimension of weight vector

no clock at all. When the global clock “ticks”, each node randomly selects a neighbor

and gossips with it. In this formulation, denoting the probability that node i chooses

a neighbor j by Pij conditions for convergence can be expressed directly as properties

of these probabilities. Furthermore, each site has its own memory and can perform

local computation (such as estimating the local weight vector). It stores fi, which is the

estimated local function. Besides its own computation, sites may receive messages from

their neighbors which will help in evaluation of the next estimate for the local function.

Communication Protocols. Sites Si are connected to one another via an under-

lying communication framework represented by a graph G(V,E), such that each site

Si ∈ {S1, S2, · · · , Sm} is a vertex and an edge eij ∈E connects sites Si and Sj. Communi-

cation delays on the edges in the graph are assumed to be zero. It must be noted that

the communication framework is usually expected to be application dependent. In cases

where no intuitive framework exists, it may be possible to simply rely on the physical

connectivity of the machines, for example, if the sites Si are part of a large cluster.
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GADGET (λ,T,B)

Input: Mi : ni× d matrix with real valued inputs at each site Si; a graph G(V,E) which encapsulates

the underlying communication framework ;

Parameters: λ; T ; B

Initialization: ŵ
(1)
i = 0 ;

for t = 1 to T do
(a) Choose an instance uniformly at random from the local dataset Mi.

(b) Set M+
i =

{
(x, y)∈Mi : y〈ŵ(t)

i ,x〉<1
}

{ . Identify the instances with non-zero loss.}

(c) Set L̂i
(t)

= yx

(d) Set α(t) = 1
λt

{ . Set the learning rate.}

(e) Set w̃
t+ 1

2
i = (1−λα(t))ŵ

(t)
i +α(t)L̂i

(t)
{ . Learn the local loss}

(f) [Optional] Set w̃
(t+ 1

2
)

i =min

{
1,

1√
λ

||w̃
(t+1

2
)

i
||

}
w̃

(t+ 1
2

)

i

(g) Set ŵ
(t+ 1

2
)

i ←PS(B, w̃t+ 1
2 ) { . Execute Push Sum with local weight vector }

(h) [Optional] Set ŵ
(t+1)
i =min

{
1,

1√
λ

||ŵ
(t+1

2
)

i
||

}
ŵ

(t+ 1
2

)

i ;

end

Output: ŵ
(t+1)
i , the weight vector at site Si.

Algorithm 3: GADGET SVM Algorithm

Algorithm Description. The distributed SVM algorithm (described in Algorithm 3)

takes as input the following parameters: λ – the learning rate, T - the number of iterations

to perform, and B – a doubly stochastic transition probability matrix. It proceeds as

follows: each site Si builds a linear SVM model on its local data Mi by learning a weight

vector ŵ
(t)
i at iteration t of the algorithm. At the beginning, ŵ

(t)
i is set to the zero vector.

On iteration, t of the algorithm, a random training example (xi, yi) is chosen by picking an

index i∈ {1,2, · · · |Mi|} uniformly at random. The approximate local loss L̂
(t)
i corresponding

to the current weight vector ŵ
(t)
i is estimated. This is done by replacing the objective in

Equation 1 with an approximation based on the training example (xi, yi) as follows:

min
ˆ

w
(t)
i

λ

2
‖ ŵ

(t)
i ‖2 +l(ŵ

(t)
i ; (xi, yi)), (3)

The sub-gradient of the above objective is given by:

∇t = λŵ
(t)
i + I[yi〈ŵ(t)

i xi〉< 1]yixi (4)

where I[yi〈ŵ(t)
i xi〉< 1] is an indicator function that takes a value 1 if the argument is true

and 0 otherwise. The replacement of the gradient estimation over all examples (Equation 1)
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with the above mentioned approximation (Equation 3) based on a single training example

is referred to in literature as SGD. At iteration t+ 1, the local weight vector is updated as

follows: ŵ
(t+1)
i ← ŵ

(t)
i − ηt∇t, using the step-size ηt = 1

λt
. The update can be written as

ŵ
(t)
i ← (1− 1

t
)ŵ

(t)
i + ηtI[yi〈ŵ(t)

i xi〉< 1]yixi (5)

This is also called the intermediate weight vector, w̃
(t+ 1

2
)

i .

Site Si then gossips the learnt w̃
(t+ 1

2
)

i with a randomly chosen neighbor using protocol

Push-Sum (PS). Protocol Push-Sum takes as input the doubly stochastic m×m matrix B

that stores the transition probability between sites, in addition to the approximate weight

vector w̃
(t+ 1

2
)

i . On termination of the network wide Push-Sum protocol, the local weight

vector at site i, ŵ
(t+ 1

2
)

i is updated by projecting ŵ
(t+ 1

2
)

i onto the ball of radius 1/
√
λ in order

to bound the maximum sub-gradient, in the same spirit as in the Pegasos algorithm (Singer

and Srebro (2007)). The projection steps are optional and the algorithms proceeds correctly

even without this step being explicitly implemented. The following theorem provides a

bound on the rate of convergence at each site.

Theorem 1 Assume that the local function learnt at each site is λ-strongly convex. Then

it can be shown that

f(w̄i)− f(w?)≤ 2c√
λ

+
c2log(T )

2Tλ
+

2√
λ

(
γR√
λ

+ γR

)
where c is the maximum sub-gradient, T the number of iterations, γ the radius of the ball

in which the global loss resides and R is the Lipschitz constant.

�

The proof is presented in the Appendix.

The Push-Sum protocol (Kempe et al. (2003b)) deterministically simulates a random

walk across G and estimates network sums. If an arbitrary stochastic matrix B = (bi,j) is

created for the network ensuring that if there is no edge from i to j in G, then bi,j = 0,

and otherwise B is ergodic and reversible, then Push-Sum converges to a ε-relative error

solution in O(τmix log 1
ε
), where τmix is the mixing speed of the Markov Chain defined by

B (Dutta and Srinivasan (2018)). Informally, τmix is the the time until B is “close” to

its steady state distribution. An obvious choice for B is to use the random walk on the

underlying topology, i.e. bi,j = 1
deg i

. In general, the sites are not expected to know τmix,
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and a simple technique with multiplicative overhead for the sites to calculate a stopping

time for Push-Sum (assuming an upper bound on network diameter) has been proposed

in work done by Kempe et al. (2003b).

Variants of GADGET SVM. The approximation described in Equation 3 can be imple-

mented in several ways. SGD as described above is a popular technique – however, the

processing of one training example in each iteration makes it susceptible to noise. A work

around is to use mini-batch training (Li et al. (2014), Takáč et al. (2013)) which aggre-

gates multiple examples at each iteration. Assume that |Mi| is divisible by the number of

mini-batches m. Then we partition the examples into m mini-batches, each of size b= |Mi|
m

.

Given a random mini-batch of size b, the stochastic update procedure can be implemented

on each batch using Equation 1.

Using Mercer Kernels. SVMs can be used with kernels instead of directly accessing

the feature vectors x. This is possible due to the Representer Theorem (Kimeldorf and

Wahba (1971)), which indicates that the optimal solution of Equation 1 can be expressed

as a linear combination of training instances. However, instead of considering the fea-

tures themselves, it is possible to consider implicit mappings of them φ(x) and use linear

functions of these mappings to solve the minimization problem described in Equation 1.

Thus, xj in Equation 1 is simply replaced with φ(xj) and l is the loss function defined

as l(w; (φ(x), y)) = max{0,1− y〈w, φ(x)〉} for hinge loss and λ is the SVM regularization

parameter. The mapping φ(.) is never expressed explicitly, but only using a kernel oper-

ator K(x,x
′
) = 〈φ(x), φ(x

′〉, producing inner products after the mapping φ(.). The above

problem can be solved in the primal while still using kernels (Chapelle (2007), Freund and

Schapire (1998)). The kernelized version of the Pegasos Algorithm (Shalev-Shwartz et al.

(2007)) can be solved using only kernel evaluations without direct access to the feature

vectors. It must be noted that developing a kernelized version of the GADGET algorithm

is more involved for the following reasons: (a) Kernel evaluations are required between an

example at the site under consideration and all other available examples in the graph G.

One way to achieve this is by sending the example to all other sites, computing the kernel

evaluation and sending the evaluations back to the site that initiated the process. This

process greatly increases the communication cost in the network. (b) One possibility could

be to compute kernel evaluations only amongst examples available at site. This would
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introduce additional approximations to the kernel evaluation process. We leave the design

of kernelized version of the GADGET algorithm for future work.

On Using Sophisticated Gossip Protocols. In recent years, gossip protocols such as

Push-Sum and its variants have been used for solving decentralized convex and non-convex

(Blot et al. (2019), Daily et al. (2018), Scardapane et al. (2016)) problems. Would it be

useful to use a more sophisticated gossip protocol to design a decentralized SVM algorithm?

One line of research has explored the use of communication compression such as gradient

compression (Lin et al. (2017), Alistarh et al. (2017)) and sparsification (Wangni et al.

(2018), Konecny and Richatrik (2018)) for reducing the amount of data transferred in the

network. Tang et al. (2018) propose two strategies for gradient compression – the first called

difference compression, involves compressing the difference of local models between two

successive iterations and the other an improvement based on extrapolation. However, their

analysis only covers unbiased compression operators with very (unreasonably) high accu-

racy constraints. Low accuracy and biased compression operators are studied in Koloskova

et al. (2019b), Alistarh et al. (2017), Wen et al. (2017), Zhang et al. (2017). We advocate

that careful choice be made of such algorithms since reduction in communication comes at

the cost of accuracy. Clearly, techniques that introduce noise and do not preserve averages

over successive iterations will distract from the objective of learning a distributed SVM.

Another line of research studies convergence of gossip protocols with delays (Carli et al.

(2007), Agarwal and Duchi (2011)). Carli et al. (2007) provide a bound on the time required

to reach consensus, which is a function of system parameters (such as the delay bound) and

bound on intercommunication intervals. Agarwal and Duchi (2011) show that for smooth

stochastic problems, the delays are asymptotically negligible. The function studied in this

work is non-smooth and to the best of our knowledge, we are not aware of any work that

studies the effects of delays from gossiping on non-smooth objectives.

5. Experimental Results
5.1. Aims

Our objective is to investigate empirically the utility of the consensus based SVM algorithm

(and its variants) we have described. We intend to examine if there is empirical support

for the conjecture that the performance of the Distributed model is better than that of the

Centralized – our centralized model is based on the execution of the Pegasos algorithm

(Shalev-Shwartz et al. (2007)) on the entire dataset at a single site. We are assuming that
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the performance of a model-construction method is given by the pair (A,T ) where A is

an unbiased estimate of the predictive accuracy of the classifier, and T is an unbiased

estimate of the time taken to construct a model. In all cases, the time taken to construct

a model does not include the time to read the dataset into local memory. Comparison

of pairs (A1, T1) and (A2, T2) will simply be lexicographic comparisons. Furthermore, we

compare the time taken by the distributed algorithm to “converge” on all sites against a

centralized execution on a single site by estimating Speed-up. Speed-up is defined as:

Speed-up =
Time taken by the centralized algorithm to converge

Time taken by the distributed algorithm to converge on all sites
(6)

As explained later in this section, GADGET SVM is an anytime algorithm and therefore

the definition of convergence is relative to the time when the algorithm was interrupted.

In addition to analyzing the effectiveness of the distributed algorithm against a central-

ized one, we study its performance (along with its variants) by comparing it to state-of-

the-art scalable SVM algorithms – SVMPerf , LIBLINEAR, LIBSVM and an Alternating

Direction Method of Multipliers (ADMM) algorithm for SVMs. None of the state-of-the-art

algorithms are inherently distributed. To enable meaningful comparisons with GADGET

SVM, we execute them on horizontally partitioned data and average the performance on

each partition. We refer to this as a pseudo distributed implementation, since no exchange

/ sharing of information amongst partitions is possible in this setting unlike GADGET

SVM which learns from other partitions. We also study the performance of GADGET

SVM relative to other gossip-based SVMs (such as ASG, Dist-Eval and CHOCO-SGD).

Finally, the utility of using a scalable SVM algorithm (GADGET SVM) for classification

is studied in comparison to other techniques well known in literature such as thresholded

(penalized) regression models, decision tree based learning by construction of random

forests, boosting based methods and multilayer perceptrons. A comparison of this kind

is aimed at providing end users with knowledge of the performance of the distributed

algorithm against other scalable algorithms, not necessarily SVM-based.

In the following sections, we first describe the data set, algorithms and methodology of

empirical evaluation before presenting extensive results along the lines indicated above.

5.2. Materials

Data The real world datasets used for experiments reported in this paper are organized

into two groups – small and large. The first three (described below) are small datasets

while the remaining are large.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-0001-1922.65 21

• Gisette: This dataset was obtained from the LibSVM binary data collection https:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html. There are 6000

labeled examples of which 5000 are used for training. The training data is oversampled to

compensate for under-representation of one class label. It has 5000 features.

• Sido: This dataset was obtained from the first causality challenge http://www.

causality.inf.ethz.ch/repository.php, the goal of which was to make predictions

under manipulations. SIDO (SImple Drug Operation mechanisms) contains descriptors of

molecules, which have been tested against the AIDS HIV virus. The target values indicate

the molecular activity (+1 active, -1 inactive). The task is to uncover causes of molecular

activity among the molecule descriptors. This would help chemists in the design of new

compounds, retaining activity, but having perhaps other desirable properties (less toxic,

easier to administer). This dataset is semi-artificial: it contains both real variables and

artificial variables (probes) – there are 4932 molecular descriptors. Of the 12678 labeled

examples, 11000 are used for training the model and the rest are used for testing.

• Quantum: This dataset has been obtained from the 2004 KDD Cup website http:

//osmot.cs.cornell.edu/kddcup/. The task is to learn a classification rule that differ-

entiates between two types of particles generated in high energy collider experiments. It is

a binary classification problem with 78 attributes and has several attributes with missing

values. There are 50000 labeled examples of which 40000 are used for training.

• Protein: This dataset was obtained from the 2004 KDD Cup website http://osmot.

cs.cornell.edu/kddcup/. The goal is to predict which proteins are homologous to a

native sequence. There are 145,751 labeled examples each with 74 features. 100000 exam-

ples are used for training and the rest for testing.

• Adult: This dataset has been extracted from the census bureau database found

at http://www.census.gov/ftp/pub/DES/www/welcome.html. The task is to predict

whether a person makes above $50000 a year using 123 attributes that include race, sex,

occupation and others. This dataset comprises of 32562 labeled examples of which 25000

were used for training.

• Covertype: The task is to predict forest cover type (spruce or fir) in the dataset http:

//archive.ics.uci.edu/ml/datasets/Covertype of Blackard, Jock and Dean, which

has 54 features and a sparsity of 22.22%. There are 581,012 labeled examples of which

500,000 examples were used for training.
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• Real-Sim: This dataset was obtained from UseNet articles from four discussion groups

for simulated and real auto-racing and aviation. It is available from https://www.csie.

ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html. The task is to differentiate

between real and simulated data. Of the 72309 labeled examples, 60000 are used for training

the distributed model. The number of attributes is 20958.

5.3. Algorithms and Machines

The consensus algorithm (GADGET SVM) has been implemented on Peersim (http:

//peersim.sourceforge.net/), a peer-to-peer network(P2P) simulator. This software2

allows simulation of the P2P network by initializing sites and the communication protocols

to be used by them. GADGET implements a cycle driven protocol that has periodic activity

in approximately regular time intervals. Sites are able to communicate with others using

the Push-Sum protocol (described in Section 3.3). The experiments are performed on a

single site, on a DELL E7-4830 architecture, equipped with 32 x 2.13GHz Intel Xeon CPU

E7-4830 Processor Cores; instruction and data cache sizes of 24576 KB; a main memory size

of 512 GB and 128 GB RAM. The computational resources were provided by (REMOVED

FOR BLIND REVIEW).

5.4. Method

The following method was executed on each of the datasets mentioned above (Section 5.2):

1. A network of k sites is setup using the Peersim simulator.

2. The train and test sets are split into k different files, containing approximately equal

number of instances and distributed amongst the sites.

3. The GADGET algorithm (Section 4) is executed on each site independently until the

local weight vectors converge i.e. they do not change more than an user-defined parameter

ε. The local models are then used to determine the primal objective and the test error on

the corresponding test sets. The results are averaged over all the sites in the network. This

entire process is executed several times, and an average value of primal objective and test

error is obtained.

4. The optimization problem (posed in Equation 1) is solved using three different tech-

niques: (a) Full Gradient Descent (GD) (b) SGD (c) Mini-Batch SGD with varying batch

sizes.

2 The code is available from (REMOVED FOR BLIND REVIEW)
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5. The Pegasos algorithm is executed on the entire dataset – this is called the centralized

setting and serves as a baseline against which the performance of GADGET is evaluated.

All three optimization methods (GD, SGD and Mini-Batch) are studied in the context of

the centralized setting also.

The following details are relevant:

1. k= 10 in the experiments reported in this paper.

2. The accuracy and time reported in Table 2 are averages (and corresponding standard

deviations) over all the sites in the network.

3. The user-defined ε parameter is set to be 0.001.

4. For Mini-Batch training, the batch size is varied as follows: b= 10,100,1000.

5.5. Results

5.5.1. Comparison between distributed and centralized algorithms Table 2 summa-

rizes the performance of the distributed primal SVM algorithm (GADGET) against its

centralized counterpart. To compute the centralized scores, it is assumed that the entire

data set can fit into main memory. For each of the settings – distributed and centralized,

we solve the optimization problem using the standard SGD along with its variants – Mini-

Batch with varying batch sizes (these are set to 10, 100 and 1000) and a full Gradient

Descent (GD). The average accuracy obtained on the test data distributed among sites is

reported for the distributed algorithm.

It is observed that in four datasets (Sido, Quantum, Adult, and Protein), the SGD

converges the fastest and also has the best accuracy amongst the competing techniques –

the only exception being the Protein dataset, wherein the accuracy is much lower. For the

Gisette, Covertype and Real-Sim datasets the mini-batch variants with different batch sizes

(10 or 100) enables fast convergence with comparable accuracy as that of the centralized

algorithm. The performance of the Mini-Batch with small batch size (b= 10) closely mimics

the performance of SGD, albeit with a smoothing effect while the Mini-Batch with large

batch size (b= 1000) resembles the performance of GD being fundamentally much slower

than the SGD method.

A more detailed discussion of the performance of the distributed algorithm is in order.

As briefly introduced in Section 1, the GADGET SVM algorithm is an anytime algorithm

(Zilberstein (1993)). An implementation of an anytime algorithm typically has a mapping

from a set of inputs onto a set of outputs. For each input that specifies the problem instance,
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Figure 1 Variation in accuracy of classification at sites until convergence for Gisette, Sido, Quantum, Protein,

Adult, Covertype and Real-Sim datasets. The box plot is replaced with a redline if there is no variance to report.

Convergence at a site is reported if the norm of the weight vector falls below ε= 0.001 in successive iterations.

there is a particular element in the output set that can be regarded as the correct solution.

For example, in the context of an anytime SVM algorithm, the input can be samples from

a dataset of choice; the set of outputs could be the accuracy obtained depending on what

part of the data it has seen so far. The utility of the set of outputs comes from the fact that

the algorithm can be interrupted at any time and still produce results of a certain quality

(Hence giving it the name “anytime” algorithm.). In our context, interruption refers to

halting the execution of an algorithm when the results are deemed good enough by the end

user of the system. In the consensus based SVM algorithm, the interruption is provided to

a site when the norm of the weight vector in successive iterations falls below a user-defined

tolerance. This implies, different sites can “converge” to a solution at different iterations.

After convergence, a site can continue to receive examples if so desired. The graph of all
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sites is said to have converged when all the sites in it have converged at least once (We

estimate the maximum number of iterations required for all sites to converge.). A question

that remains unanswered in our discussion so far is “How many successive iterations should

be examined (wherein the norm of the weight vector falls below ε) for “convergence”?”.

The results provided in Table 2 consider three successive iterations as this is typically seen

to be sufficiently stable in our empirical analysis.

To allow for efficient control of anytime algorithms, the change in performance over

time has to be characterized quantitatively. Performance profiles (PPs) (Boddy and Dean

(1994), Horvitz (1987), Zilberstein (1996)) are used to describe the expected output quality

as a function of execution time T . PPs are constructed empirically by collecting statistics

on the performance of an algorithm over many input examples which then forms the quality

map of the algorithm. Each point (A,T ) represents a situation/instance for which quality

A was achieved for runtime T . In this context, a statistical performance profile records both

upper and lower bounds and expected output quality at time T . The statistical performance

profile for GADGET SVM comprising of the minimum, average and maximum accuracy of

classification at a given time T is reported in Figures 1 at the time when sites “converge”

to a solution. Our results reveal that the statistical performance profile of the Protein data

set remains constant (high accuracy) at all sites in the network. For the Gisette, Quantum,

Adult and Covertype data sets the accuracy remains between 30− 70%, with the average

performance being above 50% in all cases. Sido and Real-Sim show a large variability in

performance with the maximum reaching close to 90%, but the lower bound could be close

to zero if the sites have examples that do not help to learn the classification boundary at all.

The results emphasize the need to tune and interrupt the anytime algorithm appropriately

to collect performance statistics depending on the application requirements.

5.5.2. Comparison of GADGET SVM with state-of-the-art Gossip-based SVM

algorithms We compare the performance of GADGET SVM to three state-of-the-art

gossip-based distributed SVM algorithms: (a) ASG SVM (Flouri et al. (2009)) (b) Dis-

tributed evaluation (Dist-Eval) using gossip (Wang et al. (2010)) and (c) CHOCO-SGD

Koloskova et al. (2019b,a). All of these algorithms along with GADGET SVM have been

implemented in the Peersim simulator. For the ASG SVM algorithm, we varied the thresh-

old of the selection set between 0.001% and 3% of the local training data. Since increase

in threshold value does not provide enhanced classification performance, we report results
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in Table 3 with threshold=0.001%. In the case of Dist-Eval, the β parameter of the con-

sensus filter is set to 1 as suggested by Wang et al. (2010). For CHOCO-SGD, we have

implemented compression using Quantized SGD (Alistarh et al. (2017)) with parameter

b= 3 and use it to solve a convex objective, instead of the popular non-convex formula-

tion. We measured the speed-up provided by GADGET SVM using the following formula:

Speed− upGADGET = Time taken by Algorithm Compared
Time taken by GADGET SVM

. Our results indicate GADGET SVM is

at least 1.5 times faster than ASG SVM on all datasets except Quantum – often several

orders of magnitude faster (for e.g. Sido, Protein and Real-sim). GADGET SVM is also

at least 10 times faster than Dist-Eval – often several orders of magnitude faster (for e.g.

Gisette, Protein, Covertype, Real-sim) on all the datasets examined in this work. This

is primarily because, in Dist-Eval, solving the SVM in the dual at a local site in itself

is rather compute intensive and contributes to the overall time taken to obtain a predic-

tion. When the gradients are compressed using the CHOCO-SGD algorithm, a speedup is

observed in all datasets except Quantum and Covertype datasets for comparable accuracy.

Furthermore, an estimate of the size of messages exchanged in each iteration reveals the

following – GADGET SVM simply exchanges weights and therefore message complexity

is O(d); ASG SVM has a message complexity χ×O(d) where χ is dependent on the size

of the Selected Set and can be substantially large if a sufficiently large threshold is used

– for example, Flouri et al. (2009) use 30% of data in their experiments; Dist-Eval has

a message complexity of O(ni) since it exchanges the predictions at each iteration while

CHOCO-SGD has a message complexity of O( 1√
mT

).

While Section 3.2.4 discusses two more closely related gossip-based SVM algorithms

(Ormandi et al. (2013) and Kim et al. (2015)), we do not use them for comparison with

GADGET SVM. This is primarily due to the following reasons: (a) Ormandi et al. (2013)

can be viewed as a special case of the current algorithm when the models being studied

are linear and (b) Kim et al. (2015) state that “ [their] optimal algorithm is identical to

the Wolfe dual formulation of a modified formulation of SVM which is a scaled version

of ν-SVM”. We surmise that the time complexity of such an algorithm is similar to Dist-

Eval presented above (Implemented with C-SVM) since it requires solution of the dual

formulation (Both C and ν SVM are implemented in the LibSVM package (Chang and

Lin (2011b)). In addition, the message complexity is %×O(d) where % is the maximum

number of extremum points of the convex hull at a site. This implies the following – while
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it is possible to learn a non-linear SVM using gossip based protocols, these algorithms are

much more compute intensive and require significant communication (including transfer

of data) in the network than what is required to learn the linear kernel.

5.5.3. Comparison of GADGET SVM with state-of-the-art SVM algorithms We

compare the performance of GADGET SVM to several state-of-the-art SVM algorithms

- (a) SVMPerf (Joachims and Yu (2009), Joachims (2006)) (b) LIBLINEAR (Fan et al.

(2008)) (c) LIBSVM (Chang and Lin (2011a)) and a pseudo distributed ADMM algo-

rithm(Boyd et al. (2011)). The choice of these algorithms is motivated by the following

reasons: GADGET SVM is designed for primal SVM formulations with L1 loss (hinge)

and L2 regularization. Consequently, we preferred to compare it against state-of-the-art

primal solvers with L1 loss and L2 regularization wherever available. For LIBLINEAR, a

very popular library for large scale linear SVM classification, we compared our results with

a dual formulation of L2-regularized L1-loss support vector classifier. This is because the

primal solver (Newton’s method) in LIBLINEAR relies on differentiability and L1 loss is

not differentiable. In the case of LIBSVM, we used a C-SVC (Given instances xi, i= 1, · · · , l
with labels yi ∈ {+1,−1} the main task in training C-SVC involves solving the follow-

ing quadratic optimization problem: minαf(α) = 1
2
αTQα− eTα, subject to 0≤ αi ≤C, i=

1, · · · , l, yTα = 0, where e is the vector of all 1’s, C is the upper bound of all variables,

Q is an l× l symmetric matrix with Qij = yiyjK(xi, xj) and K(xi, xj) is the Kernel func-

tion.) formulation which solves the dual formulation using a quadratic program. Finally,

GADGET SVM uses a SGD method for optimization; its performance is also inherently

compared against other solvers in state-of-the-art algorithms, such as Sequential Minimal

Optimization (SMO) used in LIBSVM, Newton’s Method in LIBLINEAR and ADMM.

None of the state-of-the-art SVM algorithms discussed above are distributed; so we

simulated a distributed setting as follows: each site executed the algorithm in question

on training data available at that site and reported the performance on the test set. The

average performance of all the sites is reported in Table 4. This in effect means that these

algorithm will execute in a pseudo distributed mode i.e. without communication amongst

the sites. To the best of our knowledge, there are no known theoretical guarantees on

global convergence in these settings for any of the above algorithms, although Dist ADMM

has been studied in the consensus setting (Boyd et al. (2011)). Another important point

to consider is that GADGET SVM is the only anytime algorithm – in other words, the
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performance reported for all other algorithms is when the algorithm has converged. In the

case of GADGET SVM, convergence is chosen to be the first time when the norm of the

weight vector in (three) successive iterations falls below the user defined tolerance (0.001)

at each site in the network. The choice of three successive iterations is purely empirical,

and can be tuned appropriately for other applications.

Based on the results presented in Table 4 it can be seen that GADGET SVM has

significant benefits in time compared to state-of-the-art SVM solvers, an artifact of the

distributed nature of the algorithm. For the Sido, Protein and Adult datasets, the time at

which the performance metric was obtained by interrupting the algorithm was sufficient to

reflect comparable performance to the state-of-the-art algorithms. For the other datasets,

Gisette, Quantum, Covertype and Real-Sim more training is likely to enhance performance.

Interestingly, the Gisette data, a handwritten digit recognition problem used to separate

two classes – those representing the digit 4 and 9, is known to contain a large number of non-

informative features which tend to mislead the classifier (Sharma et al. (2017), Guyon et al.

(2004)). This is one of the primary reasons for the sub-optimal performance of GADGET

SVM on the Gisette data – in other words, GADGET SVM is not designed to handle non-

informative features. Furthermore, Quantum, CoverType and Real-Sim are known to be

sparse datasets (Hong et al. (2019), Shalev-Shwartz et al. (2007)) and some features contain

missing values. GAGDET SVM is not specifically designed to deal with data sparsity, unlike

some of the other sparse SVM solutions available in literature (such as Hong et al. (2019),

Li et al. (2015), Steinwart (2003)). Furthermore, in terms of accuracy of classification,

LIBLINEAR is very accurate on its own. However, the results from LIBLINEAR presented

here use the dual formulation of the problem solved using the second-order Newton method

(GADGET uses a first order method for solving the optimization problem. A second order

method is typically much faster than a first order method – however, computation of the

Hessian is not always straightforward, especially for large problems. The Hessian may

not even exist.); similarly LIBSVM solves the dual using a quadratic program – thereby

warranting careful comparison to the results obtained from GADGET SVM.

When comparing the consensus algorithm against a state-of-the-art ADMM solver (Boyd

et al. (2011)), we first note that the ADMM solver is not a completely decentralized one. We

follow the guidelines presented in Boyd et al. (2011) and construct subsystems capable of

solving small convex problems, where “small” indicates that the problem is solvable using
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a serial algorithm. To this end, each site is allowed to solve its own ADMM formulation

on its local data partition and the results are averaged over all the sites in the network.

Table 7 (in the Appendix B) presents the parameters of the ADMM algorithm used for

each dataset. It is important to note that the authors in Boyd et al. (2011) envision a

completely decentralized general ADMM solver as follows “In the general form consensus

case, [· · · ],a decentralized implementation is possible [· · · ]; each set of subsystems that

share a variable can communicate among themselves directly. In this setting, it can be

convenient to think of ADMM as a message-passing algorithm on a graph, where each

site corresponds to a subsystem and the edges correspond to shared variables.”. However,

a system which implements this idea does not exist to date (Personal communication

with the authors of Boyd et al. (2011).). Several parallel ADMM solvers are available and

popularly used using Message Passing Interface (MPI), Apache Hadoop’s Map Reduce

framework and their variants. However, the architecture used for such implementations

uses a master-slave framework which is drastically different from the peer-to-peer setting

studied in this paper. Hence we refrain from comparing performance of the ADMM solver

in those architectures with GADGET SVM. It was observed that the consensus based

algorithm beats the ADMM algorithm in six of the seven datasets in terms of accuracy.

The time taken to converge to a solution is much larger for the ADMM solver than the

SGD based algorithm presented here.

These results suggest that the GADGET SVM algorithm can provide accuracy compa-

rable to state-of-the-art solvers (often) much faster and could be very useful in scenarios

where getting approximate results fast is much more desirable than obtaining the correct

solution using a lot of compute power. This is very useful in distributed and resource con-

strained environments (such as in networks of IoT devices) where centralization of data

may not be an option and distributed algorithms are the norm.
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Gisette
Method GADGET Pegasos (Centralized) Speed-up

Time (secs) (Acc. %) Time (secs) (Acc.%)
GD 8111.21± 1725.64 0.69± 0.16 68801.91 0.96 10617.58

SGD 3.91± 2.10 0.65± 0.07 1.34 0.61 0.34
Mini-Batch (b=1000) 6.48± 1.23 0.59± 0.10 10038.11 0.88 1549.09
Mini-Batch (b=100) 0.53±0.85 0.71±0.15 59665.88 0.96 112577.13
Mini-Batch (b=10) 3.91± 2.1 0.65± 0.07 67706.82 0.5 17316.32

Sido
GD 6.72± 4.54 0.92± 0.02 4.27 0.94 0.64

SGD 0.18±0.51 0.94±0.009 0.008 0.94 0.04
Mini-Batch (b=1000) 44.40± 1.42 0.91± 0.13 8.56 0.9 0.19
Mini-Batch (b=100) 8.38± 5.61 0.92± 0.02 0.96 0.92 0.11
Mini-Batch (b=10) 4.99± 1.32 0.92± 0.04 0.16 0.89 0.03

Quantum
GD 3.9± 2.17 0.5± 0.021 1.2 0.48 0.31

SGD 0.04±0.049 0.51±0.034 1.18 0.48 29.5
Mini-Batch (b=1000) 0.99± 0.44 0.5± 0.025 1.26 0.48 1.27
Mini-Batch (b=100) 0.139± 0.09 0.049± 0.019 1.25 0.48 8.99
Mini-Batch (b=10) 0.046± 0.008 0.5± 0.029 1.28 0.48 27.82

Protein
GD 0.05± 0.034 0.84± 0.32 34.45 0.98 689

SGD 0.0022±0.001 0.98±0.003 0.0024 0.99 1.09
Mini-Batch (b=1000) 0.006± 0.005 0.88± 0.31 0.368 0.977 61.33
Mini-Batch (b=100) 0.0020±0.0015 0.89±0.31 0.079 0.98 39.5
Mini-Batch (b=10) 0.0018± 0.001 0.89± 0.310 0.0039 0.98 2.17

Adult
GD 2333.06± 1081.29 0.77± 0.05 24155.12 0.77 10.35

SGD 37.44±3.32 0.79±0.03 46.92 0.76 1.25
Mini-Batch (b=1000) 1502.15± 789.68 0.77± 0.05 709.92 0.75 0.47
Mini-Batch (b=100) 1502.15± 789.68 0.77± 0.05 709.92 0.75 0.47
Mini-Batch (b=10) 784.78± 883.88 0.75± 0.03 30.95 0.61 0.04

Covertype
GD 23.7± 1.62 0.49± 0.02 340.62 0.46 14.37

SGD 0.092± 0.021 0.49± 0.022 0.07 0.51 0.76
Mini-Batch (b=1000) 0.75± 0.09 0.49± 0.02 1.22 0.52 1.63
Mini-Batch (b=100) 0.12± 0.016 0.49± 0.02 0.09 0.5 0.75
Mini-Batch (b=10) 0.08±0.009 0.49±0.015 0.05 0.52 0.625

Real-Sim
GD 1415.17± 498.67 0.79±0.03 170.16 0.84 0.12

SGD 234.46± 35.69 0.73± 0.08 605.91 0.72 2.58
Mini-Batch (b=1000) 528.97± 367.32 0.75± 0.05 416.37 0.68 0.79
Mini-Batch (b=100) 409.13± 162.93 0.38± 0.14 842.16 0.41 2.06
Mini-Batch (b=10) 6.67±1.14 0.27±0.12 37.19 0.13 5.58

Table 2 Comparison of the performance of GADGET SVM and centralized Pegasos on Gisette, Sido,

Quantum, Protein, Adult, Covertype, and Real-Sim data using the following metrics: accuracy of classification,

time taken for the distributed algorithm versus the centralized, and percentage of speed-up in execution time.

The accuracy and time reported for GADGET is the mean over all the sites in the network. Convergence in the

consensus algorithm occurs when the norm of the weight vector in successive iterations falls below the user

defined tolerance ε= 0.001 at each site in the network. The numbers in bold fonts indicate the lowest time to

convergence and best accuracy in the distributed setting.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-0001-1922.65 31

D
a
ta
se
t

G
A
D
G
E
T

S
V
M

A
S
G

S
V
M

D
is
t-
E
v
a
l

C
H
O
C
O
-S
G
D

T
im

e
(s
ec
s)

A
cc

(%
)

T
im

e
(s
ec
s)

(S
p
ee
d
-u
p
)

A
cc

(%
)

T
im

e
(s
ec
s)
(S

p
ee
d
-u
p
)

A
cc

(%
)

T
im

e
(s
ec
s)
(S

p
ee
d
-u
p
)

A
cc

(%
)

G
is
et
te

3
.9
1
±

2
.1
0

0
.6
5
±

0
.0
7

3
4
.7
1
±

1
3
.7
2
(8
.8
7
)

0
.4
7
±

0
.0
8

1
2
9
6
.7
5
±

1
5
1
7
.9
9
(3
3
1
.6
5
)

0
.4
6
±

0
.0
0
5

2
5
.7
4
±

0
.4
8
(6
.5
4
)

0
.5
2
±

0
.0
4

S
id
o

0
.1
8
±

0
.5
1

0
.9
4
±

0
.0
0
9

7
.5
±

2
.3
9
(4
1
.6
6
)

0
.9
6
±

0
.0
2

1
8
.5
±

1
.7
0
(1
0
2
.7
8
)

0
.9
9
±

0
.0
1

3
.2
8
±

2
.7
3
(1
8
.2
1
)

0
.9
6
±

0
.0
2

Q
u
a
n
tu

m
1
.2
4
±

1
.7

0
.5
2
±

0
.0
3
4

0
.4
6
±

0
.1
1
(0
.3
7
)

0
.5
2
±

0
.0
5

2
3
8
±

3
3
4
.7
3
(1
9
1
.9
4
)

0
.6
8
±

0
.1
2

0
.0
5
±

0
.0
1
(0
.0
4
)

0
.5
±

0
.0
4

P
ro
te
in

0
.0
0
2
2
±

0
.0
0
1

0
.9
8
±

0
.0
0
3

1
.5
4
±

0
.4
8
(7
0
0
)

0
.9
9

1
4
3
.1
9
±

1
0
0
.3
5
(6
5
0
8
6
.3
6
)

0
.9
9

0
.0
1
±

0
.0

(4
.5
5
)

0
.9
9
±

0
.0

A
d
u
lt

0
.0
4
±

0
.0
0
3

0
.7
9
±

0
.0
2
5

0
.0
6
±

0
.0
2
(1
.5
)

0
.7
0
±

0
.2

0
.4
3
±

0
.0
6
(1
0
.7
5
)

0
.8
7
±

0
.0
4

0
.0
6
±

0
.0
2
(1
.4
5
)

0
.7
8
±

0
.0
3

C
o
v
er
ty
p
e

0
.8
1
±

0
.8
3

0
.4
1
±

0
.2
7

2
.0
5
±

0
.5
7
(2
.5
3
)

0
.6
9
±

0
.3
6

6
0
1
.5
2
±

7
3
1
.8
5
(7
4
2
.6
2
)

0
.5
1
±

0
.3
2

0
.0
7
±

0
.0
7
(0
.0
8
)

0
.4
2
±

0
.4
1

R
ea

l-
si
m

0
.2
3
±

0
.0
4

0
.7
3
±

0
.0
8

6
0
3
7
.4
7
±

6
3
7
3
.2
6
(2
6
2
.4
9
)

0
.3
8
±

0
.4
0

2
5
8
7
.3
9
±

6
3
6
7
.4
9
(1
1
2
4
9
.5
2
)

0
.8
5
±

0
.0
3

3
7
6
.9
1
±

1
1
.7
6
(1
6
3
8
.7
2
)

0
.4
6
±

0
.1
3

T
a

b
le

3
C

o
m

p
ar

is
o

n
o

f
p

er
fo

rm
a

n
ce

o
f

G
A

D
G

E
T

S
V

M
w

it
h

st
a

te
-o

f-
th

e-
ar

t
g

o
ss

ip
-b

a
se

d
a

lg
o

ri
th

m
s.

A
S

G
-S

V
M

re
fe

rs
to

A
d

a
p

ti
ve

S
el

ec
ti

ve
G

o
ss

ip
(A

S
G

)

S
V

M
a

lg
o

ri
th

m
(F

lo
u

ri
et

a
l.

(2
0

0
9

))
,

D
is

t-
E

va
l

re
fe

rs
to

th
e

a
lg

o
ri

th
m

p
re

se
n

te
d

b
y

W
a

n
g

et
a

l.
(2

0
1

0
)

a
n

d
C

H
O

C
O

-S
G

D
re

fe
rs

to
th

e
a

lg
o

ri
th

m
p

re
se

n
te

d

b
y

K
o

lo
sk

o
va

et
a

l.
(2

0
1

9
a

).



Authors’ names blinded for peer review
32 Article submitted to Management Science; manuscript no. MS-0001-1922.65

D
a
ta

se
t

G
A

D
G

E
T

S
V

M
S
V
M

P
e
r
f

L
I
B
L
I
N
E
A
R

L
I
B
S
V
M

D
is

t-
A

D
M

M

T
im

e
(s

ec
s)

(A
cc

.
%

)
T

im
e

(s
ec

s)
(A

cc
.%

)
T

im
e

(s
ec

s)
(A

cc
.

%
)

T
im

e
(s

ec
s)

(A
cc

.
%

)
T

im
e

(s
ec

s)
(A

cc
.

%
)

G
is

et
te

3
.9

1
±

2
.1

0
0
.6

5
±

0
.0

7
0
.0

7
8
±

0
.0

1
4

0
.6

7
±

0
.1

2
5

1
.3
±

0
.0

2
0
.9

8
±

0
.0

1
7
.1

4
±

0
.1

1
0
.9

8
±

0
.0

1
0
.8

8
±

0
.0

2
0
.5

4

S
id

o
0
.1

8
±

0
.5

1
0
.9

4
±

0
.0

0
9

0
.0

8
±

0
.0

1
3

0
.9

4
0
.8

2
±

0
.0

1
0
.9

5
±

0
.0

0
4

2
.1

0
±

0
.1

7
0
.9

4
0
.8

4
±

0
.0

1
0
.9

4

Q
u
a
n
tu

m
1
.2

4
±

1
.7

0
.5

2
±

0
.0

3
4

7
.3

7
±

9
.4

2
0
.5

3
±

0
.0

1
7

1
.4

1
±

0
.0

2
0
.6

2
±

0
.0

4
2
.6

3
±

0
.0

9
0
.6

1
±

0
.0

1
4
8
.8

6
±

6
1
.4

3
0
.3

2
±

0
.0

2

P
ro

te
in

0
.0

0
2
2
±

0
.0

0
1

0
.9

8
±

0
.0

0
3

0
.4

3
±

0
.6

0
0
.9

8
±

0
.0

0
4

1
.4

1
±

0
.4

2
0
.9

8
±

0
.0

0
4

3
5
.7

3
±

1
2
.1

2
0
.9

9
1
.4

8
±

0
.1

3
0
.6

3
±

0
.3

2

A
d
u
lt

0
.0

4
±

0
.0

0
3

0
.7

9
±

0
.0

2
5

0
.0

0
6
±

0
.0

1
0
.7

6
0
.0

8
±

0
.0

0
6

0
.8

4
±

0
.0

0
6

0
.7

4
±

0
.0

2
0
.8

3
±

0
.0

0
5

2
5
.5

6
±

8
.7

7
0
.0

5
±

0
.0

3

C
ov

er
T

y
p

e
0
.8

1
±

0
.8

3
0
.4

1
±

0
.2

7
9
.9

1
6
±

3
.4

7
0
.7

2
2
4
.8

6
±

0
.6

8
0
.4

5
±

0
.0

8
9
7
4
.3

7
±

8
3
.6

9
0
.4

8
3
2
.6

5
±

9
1
8
.6

0
0
.5

9
±

0
.0

2

R
ea

l-
S
im

0
.2

3
±

0
.0

4
0
.7

3
±

0
.0

8
1
0
2
.8

8
±

4
.1

9
0
.8

2
±

0
.0

1
1
8
.4

3
±

3
.8

3
0
.8

7
±

0
.0

2
7
1
6
.9

6
±

2
2
9
.6

2
1
0
0

N
A

N
A

T
a

b
le

4
C

o
m

p
ar

is
o

n
o

f
th

e
p

er
fo

rm
a

n
ce

o
f

G
A

D
G

E
T

S
V

M
(S

G
D

),
S
V
M

P
e
r
f

,
L

IB
L

IN
E

A
R

,
L

IB
S

V
M

a
n

d
p

se
u

d
o

d
is

tr
ib

u
te

d
A

D
M

M
.

A
ll

a
lg

o
ri

th
m

s
ar

e

ex
ec

u
te

d
in

d
iv

id
u

a
lly

o
n

ea
ch

si
te

o
f

th
e

n
et

w
o

rk
.

A
n
N
A

in
d

ic
a

te
s

th
a

t
th

e
A

D
M

M
so

lv
er

w
a

s
n

o
t

a
b

le
to

co
n

ve
rg

e
w

it
h

in
8

6
4

0
0

se
cs

.
F

o
r

ex
p

er
im

en
ts

w
it

h

S
V
M

P
e
r
f

,
C

=
0
.0

0
0
1

a
n

d
th

e
1

-s
la

ck
a

lg
o

ri
th

m
(p

ri
m

a
l)

d
es

cr
ib

ed
in

J
o

a
ch

im
s

(1
9

9
9

)
is

u
se

d
.

D
a
ta

se
t

L
a
ss

o
R

id
g
e

E
la

st
ic

N
et

T
im

e
(s

ec
s)

(A
cc

.%
)

T
im

e
(s

ec
s)

(A
cc

.
%

)
T

im
e

(s
ec

s)
(A

cc
.

%
)

G
is

et
te

1
.0

7
±

0
.1

0
0
.9

8
±

0
.0

1
1
1
.2

0
±

2
.4

5
0
.9

8
±

0
.0

1
1
.1

6
±

0
.0

8
0
.9

9
±

0
.0

1

S
id

o
1
.0

9
±

0
.0

8
0
.9

5
±

0
.0

1
2
1
.8

9
±

0
.4

2
0
.9

5
±

0
.0

1
1
.1

2
±

0
.0

9
0
.9

5
±

0
.0

1

Q
u
a
n
tu

m
0
.3

8
±

0
.0

7
0
.7
±

0
.0

2
0
.4

5
±

0
.0

1
0
.7
±

0
.0

1
0
.3

8
±

0
.0

6
0
.7
±

0
.0

2

P
ro

te
in

1
2
.4
±

2
.9

4
0
.9

9
±

0
.0

0
4

1
.5

1
±

0
.0

3
0
.9

9
±

0
.0

0
2

4
.9

6
±

0
.9

2
0
.9

9
±

0
.0

0
1

A
d
u
lt

0
.5

9
±

0
.1

7
0
.8

4
±

0
.0

1
0
.4

6
±

0
.0

1
0
.8

4
±

0
.0

1
0
.6

1
±

0
.1

5
0
.8

4
±

0
.0

1

C
ov

er
T

y
p

e
3
.3

3
±

0
.1

3
0
.8

1
±

0
.0

0
1

4
.9

5
±

0
.1

5
0
.7

8
±

0
.0

7
3
.3

9
±

0
.1

7
0
.8

1
±

0
.0

0
1

R
ea

l-
S
im

2
8
.6

6
±

1
.2

3
0
.7

1
±

0
.0

2
3
8
5
.5

3
±

2
0
5
.4

8
0
.6

1
±

0
.0

2
3
0
.9

7
±

4
.4

7
0
.7

1
±

0
.0

2

T
a

b
le

5
C

o
m

p
ar

is
o

n
o

f
th

e
p

er
fo

rm
a

n
ce

o
f

G
A

D
G

E
T

S
V

M
w

it
h

p
en

a
liz

ed
lin

ea
r

re
g

re
ss

io
n

–
L

a
ss

o
,

R
id

g
e

a
n

d
E

la
st

ic
N

et
m

o
d

el
s.

T
h

e
G

A
D

G
E

T
S

V
M

re
su

lt
s

ar
e

p
re

se
n

te
d

in
T

a
b

le
4

a
b

o
ve

o
n

ly
fo

r
b

re
vi

ty
.

D
a
ta

se
t

R
a
n
d
o
m

F
o
re

st
B

o
o
st

in
g

M
u
lt

iL
ay

er
P

er
ce

p
tr

o
n
s

T
im

e
(s

ec
s)

(A
cc

.%
)

T
im

e
(s

ec
s)

(A
cc

.
%

)
T

im
e

(s
ec

s)
(A

cc
.

%
)

G
is

et
te

0
.2

5
±

0
.1

2
0
.9

3
±

0
.0

2
5
7
.9

7
±

3
.8

4
0
.9

5
±

0
.0

3
8
2
7
.7

9
±

3
7
.8

0
0
.7

2
±

0
.0

8

S
id

o
0
.1

4
±

0
.0

1
0
.9

4
±

0
.0

1
4
8
.2

0
±

2
.6

2
0
.9

4
±

0
.0

1
3
5
3
.1

4
±

7
.6

9
0
.9

7
±

0
.0

2

Q
u
a
n
tu

m
0
.4

7
±

0
.0

4
0
.7

1
±

0
.1

0
2
.2

4
±

0
.1

0
.6

9
±

0
.0

1
2
1
.4

9
±

0
.7

4
0
.5
±

0
.0

2

P
ro

te
in

1
.0

0
±

0
.0

8
0
.9

9
±

0
.0

4
5
.6

5
±

1
1
0
.0

4
0
.9

9
±

0
.0

7
8
.4

1
±

3
.9

1
0
.9

9
±

0
.0

0
3

A
d
u
lt

0
.2

3
±

0
.0

2
0
.8

3
±

0
.0

5
1
1
.1

1
±

3
0
.3

8
0
.8

3
±

0
.0

0
4

3
1
.4

4
±

1
.1

5
0
.7

6
±

0
.0

0
3

C
ov

er
T

y
p

e
1
1
.9

4
±

1
.8

5
0
.8

8
±

0
.0

3
6
7
.3
±

0
.4

7
0
.8
±

0
.0

6
2
9
2
.6

9
±

1
0
.6

9
0
.6

1
±

0
.2

R
ea

l-
S
im

3
2
.5

8
±

2
.8

6
0
.5

4
±

0
.0

4
2
4
3
8
.9

8
±

2
7
6
.4

9
0
.8
±

0
.2

0
2
8
2
8
4
.5
±

1
3
8
2
1
.6

5
0
.9

9
±

0
.0

0
8

T
a

b
le

6
C

o
m

p
ar

is
o

n
o

f
th

e
p

er
fo

rm
a

n
ce

o
f

G
A

D
G

E
T

S
V

M
w

it
h

R
a

n
d

o
m

F
o

re
st

,
B

o
o

st
in

g
a

n
d

M
u

lt
iL

ay
er

P
er

ce
p

tr
o

n
.T

h
e

G
A

D
G

E
T

S
V

M
re

su
lt

s
ar

e

p
re

se
n

te
d

in
T

a
b

le
4

a
b

o
ve

o
n

ly
fo

r
b

re
vi

ty
.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. MS-0001-1922.65 33

5.5.4. On the utility of using SVMs for empirical analysis The next set of exper-

iments were conducted to justify the use of SVMs as a viable tool for classification,

given the existence of several other classification algorithms in literature such as thresh-

olded (penalized) linear regression (Friedman et al. (2010)), random forests (Breiman

(2001)), boosting (Schapire and Freund (2012)) and MultiLayer Perceptrons (MLP).

Such comparisons are useful to provide the readers with choice of different classification

methods. For implementing thresholded (penalized) linear regression we used the glmnet

(https://web.stanford.edu/~hastie/glmnet/glmnet_beta.html) package in R. For

experiments reported here α = 0.8. In experiments with Random Forests, the number of

trees is kept constant at ten for all datasets. In the AdaBoost algorithm a Decision Stump

was used, without resampling. For the construction of an MLP, a learning rate (0.001)

with decay, a single hidden layer with ten neurons and sigmoid activation was chosen.

Table 5 compares GADGET SVM with Lasso, Ridge and Elastic Net regression methods

while Table 6 compares it to Random Forests, Boosting and MultiLayer Perceptrons. It

is observed that if the distributed algorithm is interrupted earlier than the convergence

time of Lasso, Ridge or Elastic Net models, it produces comparable performance for Sido,

Protein, Adult and Real-Sim datasets; however, it is likely to require more training time

for Gisette, Quantum and CoverType datasets to reach comparable performance. A similar

observation is recorded for experiments with Random Forest and Boosting owing primarily

to sparse nature of the datasets discussed earlier. Multilayer Perceptrons, however, provide

very different insight – if the problem is non-linear and the data set is very large (such as in

Real-Sim) they out-perform most other techniques including SVMs, Random Forests and

Boosting; however, they are computationally very expensive and it is often laborious to

tune the large parameter space. In contrast, if the problem is linear, they are overkill and

much better performance can be obtained with less computation with Random Forests,

SVMs and Boosting.

Having established the utility of our consensus based SVM algorithm on several real-

world datasets, we now turn to a specific application – that of predicting failures in a

production line – a problem of interest to chocolate manufacturers. This case study is

presented next.



Authors’ names blinded for peer review
34 Article submitted to Management Science; manuscript no. MS-0001-1922.65

6. Case Study on the Bosch Production Line

Bosch, one of the world’s largest manufacturing companies uses advanced mechanical com-

ponents to produce decadent, delicate chocolate soufflés. The parts of the assembly line

are subject to close monitoring as they are required to meet high standards of quality and

safety. Bosch records data at every step along its assembly lines, they have the ability

to apply advanced analytics to improve these manufacturing processes. Each part in the

assembly line is assigned a unique id and data about the part is collected. This data is

streamed in through sensors which are then required to predict which parts are likely to

fail. The goal, therefore, is to predict internal failures using thousands of measurements

and tests made for each component along the assembly line. Figure 2 illustrates an archi-

tecture of the production line including a primary layer comprising of IoT devices, the

protocols and gateway layers and the backend. Our interest lies primarily in the consensus

setting in the backend.

Figure 2 A Consensus Learning Framework on the IoT Hubs for Bosch’s Production Line

We test a SVM algorithm for the consensus environment described above

using data made available by a Kaggle competition (https://www.kaggle.com/c/

bosch-production-line-performance/overview). Specifically, our consensus system

used 500000 examples to train a model to predict failures and another 500000 to test it.
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Figure 3 The left hand plot illustrates the maximum accuracy of classification obtained for the Bosch data on

one IoT Hub. The right hand plot presents the average accuracy in the Hub. The three vertical lines

corresponding to each node shows the results that would have been obtained for different termination criteria i.e.

if convergence occurs when successive norm of weight vectors do not change for 4 iterations (Converge@4Itr), 8

iterations (Converge@8Itr) and 10 iterations (Converge@10Itr) respectively.

Figure 4 Empirical Analysis of the robustness of convergence – Converge@4 itr, Converge@8 itr and

Converge@10 itr.

Each example has 969 numerical features. Features are named according to a convention

that indicates the production line, the station on the line, and a feature number – for

example, L3 S36 F3939 is a feature measured on line 3, station 36, and is feature number

3939. There are four lines with fifty one stations in all – the first, second and third lines

have one, two and three stations respectively while line four has all the rest of the stations.

The data set is highly imbalanced as the number of failures in the system is reasonably

low. The training files have 0.6% examples with failures while the test files report 0.59%

failures. Figure 5 shows the performance of the system in terms on accuracy of classifi-

cation and decrease in primal objective value at one of the IoT hubs in the system. The

sites are assumed to have converged if the difference in norm of the weight vector falls

below ε = 0.001 in ten successive iterations. However, this definition of convergence was
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set solely from empirical data. We explored what would happen if sites were assumed to

have converged after the difference in norm of the weight vector fell below ε= 0.001 in four

(Converge@4 itr), eight (Converge@8 itr) and ten (Converge@10 itr) iterations respectively.

The performance of the system with regard to maximum and average accuracy obtained

are reported in Figures 3. It was observed that some sites reach a maximum accuracy of

60% when convergence is observed at eight (Converge@8 itr) or ten (Converge@10 itr)

successive iterations of low change in difference of norms of weigh vector. If a more relaxed

definition of convergence is permissible for use in the application, say for example, four

successive iterations (Converge@4 itr) of low change in difference of norms of weigh vector,

the accuracy of classification hovers around the 55% mark. Next, we ran the GADGET

SVM algorithm for a fixed number of iterations (10000) and observed the robustness of

Converge@4 itr, Converge@8 itr and Converge@10 itr. This was made possible by keep-

ing track of how many times a site “converged” within a fixed time frame (measured by

the number of iterations). Figure 4 presents empirical results on the Bosch data. About

60% of sites in the network “converged” more than 80 times with Converge@4 itr thereby

indicating that it is not uncommon for sites to reach convergence fast using this metric,

but they are fundamentally unstable and can be easily disturbed from their steady state

when new information comes along through the gossip protocol. On the other hand, when

Converge@10 itr is used, sites tend to remain in their converged state for extended periods

of time. Finally, we compare the performance of the consensus based algorithm to several

state-of-the-art solvers including SVMPerf and LIBLINEAR on the million examples. Our

results indicate that GADGET SVM has an accuracy of 59%, SVMPerf 41% and LIBLIN-

EAR 47%. The consensus based algorithm has a higher accuracy in predicting the failure

class than the state-of-the-art algorithms in terms of accuracy of classification. We surmise

that the worse performance of the SVMPerf and LIBLINEAR may be linked to the fact

that the dataset is highly imbalanced since number of failures in the system is significantly

less. Furthermore, the average behavior of GADGET SVM for Converge@10 itr is slightly

better than a random classifier (51%). Future work will involve over or under sampling the

dataset appropriately (Chawla et al. (2002)) and estimating the accuracy of prediction of

the rare class.
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Figure 5 Accuracy of classification and Primal Objective for the Bosch data on one IoT Hub.

7. Conclusions

We presented a distributed consensus based algorithm for SVMs, for approximately min-

imizing the objective function of a linear SVM using the primal formulation. The algo-

rithm uses a gossip-based protocol to communicate amongst distributed sites. We derived

theoretical bounds to show that the algorithm is guaranteed to converge and presented

empirical results on seven publicly available real-world data sets. Our results indicate that

the performance of the distributed algorithm is comparable to state-of-the-art central-

ized counterparts (such as Pegasos) and pseudo distributed variants including SVMPerf ,

LIBLINEAR, LIBSVM and an ADMM solver. It is also 1.5 times faster than state-of-the-

art gossip based algorithms for distributed SVMs on all datasets studied in this paper.

The consensus algorithm was then used to predict failures in mechanical components in

a chocolate manufacturing process using a large data set of more than a million points.

This case study showed that businesses can use the IoT device not just for collecting data

but also for the purpose of prediction and learning using the consensus based framework.

More generally, the quote from the McKinsey Global Institute Report stated earlier in the

article which laments the use of IoT devices only as data collecting tools without being

useful for predictive analytics in business enterprises can change with successful adoption

of these new technologies.

There are several directions for future work including extension to multi-class variants of

SVMs, testing the resilience to site failures, impact of the underlying network structure on
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the convergence of the algorithm and development of distributed gossip-based algorithms

for non-linear SVMs. We hope to address these and other related problems in subsequent

papers.
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Appendix

A. Analytical Results

Before analyzing the GADGET algorithm, the notion of strong convexity and a sub-differential needs to

be introduced. These are essential tools for obtaining bounds on the convergence rate of the algorithm in

addition to understanding the convergence of the projected sub-gradient method and the network error. We

will prove a lemma about the SVM loss function and then apply the relative error bounds of Push-Sum to

obtain the true convergence rate.

Informally, a strong convex function is a function who’s gradient is always changing, or equivalently the

Hessian is always positive definite. Unfortunately, the SVM objective function is not differentiable and our

analysis must rely on the following, more general, definition of strong convexity using sub-differentials. The

following is the formal definition of strong convexity.

Definition 1. A function f :<d→< is λ-strongly convex if ∀x, y ∈<d and ∀g ∈ ∂f(x),

f(y)≥ f(x) + 〈g, y−x〉+ λ
2
||x− y||2.

Definition 2. The sub-differential of f(x), denoted ∂f(x), is the set of all tangent lines which can be

drawn under f(x). Moreover, each vector v ∈ ∂f(x) is called a sub-gradient of f(x).

Lemma 1 If Lg(w) is the global average loss of the vector w, then we have

||Lg(w1)−Lg(w2)|| ≤R||w1−w2||2.

Proof: The global hinge loss is equal to 1
n

∑n

i=1 max{0,1 − yi〈xi,w〉}; Using triangle inequality we have

‖Lg(w1)−Lg(w2)‖2 ≤
1
n

∑n

i=1 ‖max{0,1− yi〈xi,w1〉}−max{0,1− yi〈xi,w2〉}‖2 . Notice that if one of the

max functions is zero (assume without loss of generality 1− yi〈xi,w2〉 ≤ 0), the difference of loss equation

(for a particular feature) is less or equal to ‖(1− yi〈xi,w1〉)− (1− yi〈xi,w2〉)‖2. Further observing that if

both losses are non-zero, we also arrive at this same equation, the difference in global loss simplifies to

1
n

∑n

i=1 ‖yi〈xi,w2〉− yi〈xi,w1〉‖2 ≤
1
n

∑n

i=1 ‖〈xi,w2−w1〉‖2. Finally, using the Cauchy-Schwartz inequality,

we obtain our desired result. �

Lemma 2 As presented by Kempe and McSherry (2008), let vt,i be the k× 1 vector held by the site i after

the tth iteration of Push-Vector, wt,i its weight at that time, and v the correct vector. Define M =
∑

i
|v0,i|

to be the vector whose (r,1) entry is the sum of the absolute values of the initial vector v0,i at all sites i.

Then, for any ε, the approximation error is || v(t,i)

w(t,i)
−v||2 ≤ ε||M ||2, after t=O(τmix · log 1

ε
)

Proof: This proof appears in Lemma 2 of Kempe and McSherry (2008). �

Theorem 2 Assuming that ||w(t)− ŵ
(t)
i ||< ε, we have

||w(t+ 1
2

)− ŵ
(t+ 1

2
)

i || ≤ (1−λα(t))(ε+
Nε1
λ

) +α(t)(
Rε

N
+ ε2) (7)

where ε2 is the relative error in approximating average global loss through Push-Sum of loss on each site and

ε1 is the relative error in approximating the weighted sum of the weight (support) vector estimated at each

site i.e.
∑
i niŵ

(t)
i

N
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Proof:

||w(t+ 1
2

)− ŵ
(t+ 1

2
)

i ||= ||(1−λα(t))w(t) +α(t)L
(t)

N
− (1−λα(t))PS(niŵ

(t)
i ,B)−α(t)PS(L̂

(t)
i ,B)||

≤ (1−λα(t))(||w(t)−
∑

i
niŵ

(t)
i

N
||+ ||

∑
i niŵ

(t)
i

N
−PS(niŵ

(t)
i ,B)||)

+α(t)(||L
(t)

N
−
∑

i L̂
(t)
i

N
||+ ||

∑
i L̂

(t)
i

N
−PS(L̂

(t)
i ,B)||)

≤ (1−λα(t))(ε+
Nε1
λ

) +α(t)(
Rε

N
+ ε2)

(8)

where we have used Lemma 2, Lemma 3, and the following:

||w(t)−
∑
i niŵ

(t)
i

N
||= ||

∑
i
niw

(t)

N
−

∑
i niŵ

(t)
i

N
|| ≤

∑
i
niε

N
= ε

||
∑

i
niŵ

(t)
i

N
−PS(niŵ

(t)
i ,B)|| ≤ ε1

1

N2

K∑
k=1

( N∑
i=1

|niŵ
(t+ 1

2
)

i (k)|
)2

≤
∑

i
n2
i

N2

N∑
i=1

K∑
k=1

(ŵ
(t+ 1

2
)

i (k))2 ≤
∑

i
n2
i

N2

N

λ
≤ N

λ

||
∑

i L̂
(t)
i

N
−PS(L̂

(t)
i ,B)|| ≤ ε2

N

√√√√ N∑
i=1

(L̂
(t)
i )2 ≤ ε2

�

Lemma 3 As stated in Shalev-Shwartz et al. (2007), let f1, · · · , fT be a sequence of λ-strongly convex func-

tions. Let B be a closed convex set and define
∏
B

(w) = arg minẃ∈B||w− ẃ||. Let w1, · · · ,wT+1 be a sequence

of vectors such that w1 ∈B and for t≥ 1, wt+1 =
∏
B

(wt−αt∇t), where ∇t belongs to the sub-gradient set

of ft at wt and αt = 1
λt

. Assume that for all t, ||∇t||< c. Then it can be shown that,

〈w(t)−u,∇t〉 ≤
||w(t)−u||2− ||w(t+1)−u||2

2α(t)
+
α(t)

2
c2

Proof: The proof appears in Lemma 1 of Shalev-Shwartz et al. (2007). We restate it here for the sake of

completeness. Let ẃt denote wt−αt∇t. Since wt+1 is the projection of ẃt onto B, and u∈B, we have that

||ẃt− u||2− || ´wt+1− u||2 ≥ ||ẃt− u||2− ||ẃt− u||2 = 2αt〈w(t)−u,∇t〉 −α2
t ||∇t||2. Rearranging the previous

equation, and using the fact that ||∇t||< c, we have,

〈w(t)−u,∇t〉 ≤
||w(t)−u||2− ||w(t+1)−u||2

2α(t)
+
α(t)

2
c2

�

Theorem 3 Assume that the conditions in Theorem 2 hold. Then it can be shown that

f(w̄i)− f(w?)≤ 2c√
λ

+
c2log(T )

2Tλ
+

2√
λ

(
γR√
λ

+ γR

)
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Proof: From Algorithm 2, we have,

w̃
(t+ 1

2
)

i = (1−λα(t))niŵ
(t)
i +α(t)L̂i

(t)

(9)

Summing over iterations t= 1,2, . . . , T we define,

w̄(t+ 1
2

) :=

m∑
i=1

ŵ
(t+ 1

2
)

i

N
= ˜̄w(t)−α(t)

(
λ ˜̄w(t)− L̂(t)

g

)
(10)

where ˜̄w(t) =

∑m

i=1 niŵ
(t)
i

N
, L̂(t)

g = 1
N

∑m

i=1 L̂
(t)
i . Note that ||w?|| ≤ 1√

λ
and ||ŵ(t)

i || ≤ 1√
λ

from the algorithm.

Also, we have

|| ˜̄w(t)||= ||
∑m

i=1 niŵ
(t)
i

N
|| ≤

m∑
i=1

ni
N
||ŵ(t)

i || ≤
m∑
i=1

ni√
λN

=
1√
λ

(11)

Assuming that c is the maximum sub-gradient, and using the fact that increment of a continuous function

over an interval is always less than its maximum subgradient times the length of the interval, we have

f(ŵ
(t)
i )− f( ˜̄w(t))≤ c||ŵ(t)

i − ˜̄w(t)||2 (12)

where f represents Eq.(1). Using λ-strong convexity of f from definition 1 with x = ˜̄w(t), y = w?, and

g= λ ˜̄w(t)−Lg( ˜̄w(t)) we have

f( ˜̄w(t))− f(w?) +
λ

2
|| ˜̄w(t)−w?||2 ≤ 〈λ ˜̄w(t)−Lg( ˜̄w(t)), ˜̄w(t)−w?〉 (13)

Summing over t in Eq. 12 and subtracting f(w?) on both sides we have

T∑
t=1

f(ŵ
(t)
i )− f(w?)≤ c

T∑
t=1

||ŵ(t)
i − ˜̄w(t)||+

T∑
t=1

f( ˜̄w(t))− f(w?)
(14)

Using Eq.13 to replace f( ˜̄w(t))− f(w?) in Eq.14 gives

T∑
t=1

f(ŵ
(t)
i )− f(w?)≤ c

T∑
t=1

||ŵ(t)
i − ˜̄w(t)||+

T∑
t=1

〈λ ˜̄w(t)−Lg( ˜̄w(t)), ˜̄w(t)−w?〉

−
T∑
t=1

λ

2
|| ˜̄w(t)−w?||2

(15)

Now using Lemma 3 with w(t) = ˜̄w(t),u = w?,∇t = λ ˜̄w(t)− L̂(t)
g , we have

〈λ ˜̄w(t)− L̂(t)
g , ˜̄w(t)−w?〉 ≤ ||

˜̄w(t)−w?||2− || ˜̄w(t+1)−w?||2

2α(t)
+
α(t)

2
c2

(16)
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Now, using the fact that 〈a− b, c〉= 〈(a− d)− (b− d), c〉= 〈a− d, c〉− 〈b− d, c〉, we have

〈λ ˜̄w(t)−Lg( ˜̄w(t)), ˜̄w(t)−w?〉= 〈λ ˜̄w(t)− L̂(t)
g , ˜̄w(t)−w?〉+ 〈L̂(t)

g −Lg( ˜̄w(t)), ˜̄w(t)−w?〉
(17)

Now, || ˜̄w(t) − w?|| ≤ || ˜̄w(t)|| + ||w?|| ≤ 2√
λ

. Notice that ||Lg( ˜̄w(t)) − L̂(t)
g || = ||Lg( ˜̄w(t)) − 1

N

∑m

i=1 L̂
(t)
i ||.

Because each global loss approximation is within a γ-radius ball of the global loss of some w vector which

in-turn is within a γ-radius ball of ˜̄w(t), this in turn is less than or equal to ||Lg( ˜̄w(t))− (1− γ)Lg((1 +

γ) ˜̄w(t))||. Now, using lemma 2 we have the last term ≤ ||Lg( ˜̄w(t))−Lg((1 + γ) ˜̄w(t))||+ γR. Again applying

lemma 2 to the first term, we get it ≤ γR√
λ

+ γR. Using this bound and Cauchy-Schwartz inequality, we have

〈L̂(t)
g − Lg( ˜̄w(t)), ˜̄w(t) −w?〉 ≤ || ˜̄w(t) −w?||||Lg( ˜̄w(t))− L̂(t)

g || ≤ 2√
λ

( γR√
λ

+ γR). Using this and replacing the

first term of Eq. 17 with bound in Eq. 16, we have

〈λ ˜̄w(t)−Lg( ˜̄w(t)), ˜̄w(t)−w?〉 ≤ ||
˜̄w(t)−w?||2− || ˜̄w(t+1)−w?||2

2α(t)
+
α(t)

2
c2

+
2√
λ

(
γR√
λ

+ γR)
(18)

Using this bound in Eq. 15, and expanding the sum over t, we get

T∑
t=1

f(ŵ
(t)
i )− f(w?)≤ c

T∑
t=1

||ŵ(t)
i − ˜̄w(t)||+ (

1

2α(1)
− λ

2
)|| ˜̄w(1)−w?||2

−
(

1

2α(T )

)
|| ˜̄w(T+1)−w?||2 +

c2

2

T∑
t=1

α(t)

+

T∑
t=2

(
1

2α(t)
− 1

2α(t−1)
− λ

2

)
|| ˜̄w(t)−w?||2 +

2T√
λ

(
γR√
λ

+ γR)

(19)

Substituting in for α(t) = 1
λt

, we find that the second term and the fifth term is zero. Fourth term is

bounded by c2log(T )

2λ
. We ignore the third term. Using the fact that ||ŵ(t)

i ||, ||w?||, and || ˜̄w(t)|| are ≤ 1√
λ

, the

first term is bounded by 2cT√
λ

. Thus simplifying the Eq. 19 and diving by T , we get

T∑
t=1

f(ŵ
(t)
i )− f(w?)≤ 2c√

λ
+
c2log(T )

2Tλ
+

2√
λ

(
γR√
λ

+ γR

)
Using the property of f being a convex function, we have

f(w̄i)− f(w?)≤ 2c√
λ

+
c2log(T )

2Tλ
+

2√
λ

(
γR√
λ

+ γR

)
(20)

�

B. Supplements to Empirical Results

The results presented in Section 5.5.3 compares GADGET SVM with state-of-the-art SVM solvers. One such

algorithm studied is a pseudo-distributed version of ADMM. Table 7 presents the parameters used in our

experiments.
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Data Lambda Rho Alpha

Gisette 1000 0.7 2.4

Sido 1000 0.7 10.5

Quantum 1 1 1

Protein 0.001 10000 1.2

Adult 1000 0.8 1.4

Covertype 0.0001 0.000001 1

Real-sim NA NA NA

Table 7 Parameters of the ADMM Algorithm used in experiments.


