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INTRODUCTION
Greedy-GQ is an off-policy two timescale algo-
rithm for optimal control in reinforcement learn-
ing. This paper develops the first finite-sample
analysis for the Greedy-GQ algorithm with linear
function approximation under Markovian noise.
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RESULTS

Consider the following step-sizes: β = βt = 1
T b , and α = αt = 1

Ta , where 1
2 < a ≤ 1 and 0 < b ≤ a. Then

we have that for T ≥ 1,

E[‖∇J(θM )‖2] = O
(

1

T 1−a +
log T

Tmin{b,a−b}

)
.

If we choose a = 2
3 and b = 1

3 , then the best rate of the bound is obtained as follows:

E[‖∇J(θM )‖2] = O
(

log T

T
1
3

)
.

PROOF SKETCH
Step 1: Decompose the error recursively into two parts:

E[‖∇J(θM )‖2] ≤ 1∑T
t=0 αt

(
(J(θ0)− J(θT+1)) +

K

2

T∑
t=0

α2
tE[‖Gt+1(θt, ωt)‖2]︸ ︷︷ ︸

classical non-convex type analysis

−
T∑
t=0

αt
2
〈∆t,∇J(θt)〉

)
︸ ︷︷ ︸

stochastic bias (∗)
The first part is handled in many classical non-convex problems. To bound the second part stochastic
bias, first bound ‖∇J(θ)‖ in stochastic bias by a constant

Step 2: Decompose stochastic bias (∗) into two parts: bias due to Markov noise and tracking error:
(∗) =

〈
∇J(θt),−2Gt+1(θt, ωt) + 2Gt+1(θt, ω

∗(θt))
〉︸ ︷︷ ︸

tracking error

−
〈
∇J(θt),∇J(θt) + 2Gt+1(θt, ω

∗(θt))
〉︸ ︷︷ ︸

bias due to Markov noise (, ζ(θt, Ot))

where Ot =

(St, At, Rt, St+1)
The challenge of bounding lies in that θt and Ot are dependent.

Step 3: Bound bias using uniform ergodicity of underlaying MDP:
Decouple the independence of θt and Ot by considering τ steps back: |ζ(θt, Ot) − ζ(θt−τ , Ot)| ≤

O

(∑t−1
k=t−τ αk

)
Define independent R.V. Ô = (Ŝ, Â, R̂, Ŝ′) ∼ µ × P , then: E[ζ(θt−τ , Ot)] ≤ |E[ζ(θt−τ , Ot)] −
E[ζ(θt−τ , Ô)]︸ ︷︷ ︸

=0

| ≤ kζmρτ

Combine two inequalities above to bound bias term ζ(θt, Ot).

Step 4: Bound tracking error:
Rewrite tracking error recursively: ||zt+1||2 ≤ ||zt||2 + 2βt〈zt, f2(θt, Ot)〉+ 2βt〈zt, ḡ2(zt)〉+ 2〈zt, ω∗(θt)−
ω∗(θt+1)〉+ 2βt〈zt, g2(zt, Ot)− ḡ2(zt)〉+O(β2

t + α2
t )

Bound terms above using methods similar to those in step 3

Step 5: Plug the bound of ‖∇J(θ)‖ into stochastic bias (∗) in step 1: −
∑T
t=0

αt

2 〈∆t,∇J(θt)〉 This can
improve rate by a tighter bound of ‖∇J(θ)‖
Recursively apply step 1 to 4 until it converges

REINFORCEMENT LEARNING
• An agent interacts with a stochastic envi-

ronment: Markov Decision Process (MDP)

– S: states space

– A: action set

– P : transition kernel (P ass′ = P(St+1 =
s′|St = s,At = a))

– r: reward function

– γ: discount factor

• Agent’s goal: maximize cumulative dis-
counted reward

– Value function of a policy π: V π(s) =
E[
∑∞
t=0 γ

tr(St, At)|S0 = s]

– Action-value function: Qπ(s, a) =
r(s, a) + γ

∫
S P(dx|s, a)V π(x)

– Goal: an optimal policy that max-
imizes value/action value function:
Q∗(s, a) = supπ Q

π(s, a)

• Linear function approximation: A set of
fixed independent base functions φ : S ×
A → RN , Qθ(s, a) = φ(s, a)>θ

GREEDY-GQ

• At time t, given st
• Policy: πθt = Γ(φ>θt), where Γ is a policy

improvement operator
• Take action at based on πθt , observe st+1

and rt+1

• Updates:
θt+1 ← θt+αt(δt+1(θt)φt−γ(ω>t φt)φ̂t+1(θt))
and
ωt+1 ← ωt + βt(δt+1(θt)− φ>t ωt)φt

TECHNICAL ASSUMPTIONS

• The matrix C = Eµ[φtφ
>
t ] is non-singular.

• ‖φs,a‖2 ≤ 1,∀(s, a) ∈ S ×A.

• There exists some constants m > 0 and ρ ∈
(0, 1) such that

sups∈S dTV (P(st|s0 = s), µ) ≤ mρt ,

for any t > 0, where dTV is the total-
variation distance between the probability
measures.

• The policy πθ(a|s) is k1-Lipschitz and k2-
smooth, i.e., for any (s, a) ∈ S ×A,

‖∇πθ(a|s)‖ ≤ k1,∀θ, and,

‖∇πθ1(a|s) − ∇πθ2(a|s)‖ ≤ k2‖θ1 −
θ2‖,∀θ1, θ2


