FINITE-SAMPLE ANALYSIS OF GREEDY-GQ WITH LINEAR FUNCTION
APPROXIMATION UNDER MARKOVIAN NOISE
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RESULTS

Consider the following step-sizes: 3 = 8; = =, and a = o =
we have that for T > 1,

INTRODUCTION

Greedy-GQ is an off-policy two timescale algo-
rithm for optimal control in reinforcement learn-
ing. This paper develops the first finite-sample
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Algorithm 1 Greedy-GQ [18] where 5 <a <1land 0 < b < a. Then

Initialization:
90, Wo, S0, Qﬁ(?’), for 1 = ]_, 2, coey N

analysis for the Greedy-GQ algorithm with linear Methad: (17000 |2] = O ( 1 I log T ) |
function approximation under Markovian noise. 0. — D(676) Tl—a = Tminib,a—b}

fort =0,1,2,...do
Choose a; according to 7y (-|s¢)
(_)bserve S¢+1 and 1y
V9t+l (911) — Za’E{l o, (a,‘8t+1)9;¢3t+1,a’ 4:[
5t—|—1(9t) T+ 7V9t+1 (Qt) - 9;_(351:
de41(0;) < gradient of Vs, ., (61)
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EEd If we choose a = % and b = %, then the best rate of the bound is obtained as follows:
convex optimization.
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REINFORCEMENT LEARNING

e An agent interacts with a stochastic envi-
ronment: Markov Decision Process (MDP)

— S states space
— A: action set

— P: transition kernel (P%, = P(S;;1 =
s'|Sy = s, Ay = a))

— r: reward function
— ~v: discount factor

o Agent’s goal: maximize cumulative dis-

counted reward

— Value function of a policy m: V7™ (s) =

1> oo Y (St, At)|So = 8]

— Action-value function: Q7 (s,a) =
r(s,a) +v ¢ P(dx|s,a)V 7 (x)

— Goal:

an optimal policy that max-

imizes value/action value function:

Q" (s,a) = sup, Q" (s, a)
e Linear function approximation: A set of
fixed independent base functions ¢ : S X

A— RN, Qy(s,a) = ¢(s,a)' 0

reward

R,
E* Rr+1 )
S | Environment

action
A.t

Ory1 < 0y + 0 (0441 (01)pr — W(wfaﬁt)@m(@t))

Wil — wp + Be(0e41(0;) — ¢5;rwt)¢5t
Policy improvement: 7y, , < I'(¢'0;1)

end for

PROOF SKETCH

Step 1: Decompose the error recursively into two parts:

T
(¢

21V I(O)IP) < ' ((J(%) — J(0r41)) + % > OE[|Gra (B w)I”) = ) - (A, VJ(@»)

t=0

At time ¢, given s;
Policy: mp, = I'(¢'6;), where T is a policy
improvement operator

Take action a; based on my,, observe sy
and Tt41

classical non-convex type analysis stochastic bias ()

The first part is handled in many classical non-convex problems. To bound the second part stochastic
bias, first bound ||V J(8)|| in stochastic bias by a constant

Updates: Step 2: Decompose stochastic bias (x) into two parts: bias due to Markov noise and tracking error:
Opr < Ot e(811(0,) by —(wl D) bear(0)) | | ) = (VJ(0r), —2G141(0r, wi) + 2Gi1 (0, 0™ (01))) — (VI (0:), VI (0r) + 2G41(0r,w* (0;))) where O, =
and - tracking error bias due to Markov noise (£ ¢(6+, O¢))

wit1 — Wi + Bi(0141(0r) — ¢y wi) (St, A¢, Ry, Sii1)

The challenge of bounding lies in that 6, and O, are dependent.

TECHNICAL ASSUMPTIONS

Step 3: Bound bias using uniform ergodicity of underlaying MDP:
e The matrix C = E,[¢;¢, ] is non-singular.

Decouple the independence of 0, and O; by considering 7 steps back: |((0:,0:) — ((0i—+,0¢)] <
o ||¢sall2 <1,V(s,a) €S x A O( -l Ozk)

e There exists some constants m > 0 and p €
(0, 1) such that

A

Define independent R.V. O = (S,A,R,S") ~ u x P, then:

2[C(0r—r, O)]| < kemp”
S
—0
Combine two inequalities above to bound bias term ((6;, O;).

S (017, 0] < B (017, O1)] ~

SUPges dTV (P(St‘so — 5)7 /L) < mpt ’

for any ¢t > 0, where dry is the total-
variation distance between the probability

measures. Step 4: Bound tracking error:

Rewrite tracking error recursively: ||z, 1]|? < [|z¢|1* + 28¢ (2, f2(0r, O8)) + 2Bz, G2 (2¢)) + 2(z¢, w* (0;) —

W*(Or11)) + 2B¢(2t, 92(2¢, Or) — g2(21)) + OB} + )
Bound terms above using methods similar to those in step 3

The policy mg(a|s) is kj-Lipschitz and ko-
smooth, i.e., for any (s,a) € S x A,
Vmg(als)|| < kq,V6, and,

Vg, (als) — Vro(als)] <
92‘|7\V/91792

ka0 — Step 5: Plug the bound of ||VJ(0)| into stochastic bias (x) in step 1: — Zfzo St (A, VJ(0,)) This can

improve rate by a tighter bound of ||VJ(8)]|
Recursively apply step 1 to 4 until it converges




