

The State University of New York

INTRODUCTION

Greedy-GQ is an off-policy two timescale algorithm for optimal control in reinforcement learning. This paper develops the first finite-sample analysis for the Greedy-GQ algorithm with linear function approximation under Markovian noise.

Keywords: Greedy-GQ, Off-policy control, nonconvex optimization.

Reinforcement Learning

- An agent interacts with a stochastic environment: Markov Decision Process (MDP)
 - S: states space
 - \mathcal{A} : action set
 - \mathcal{P} : transition kernel ($P_{ss'}^a = \mathbb{P}(S_{t+1} =$ $s'|S_t = s, A_t = a))$
 - *r*: reward function
 - γ : discount factor
- Agent's goal: maximize cumulative discounted reward
 - Value function of a policy π : $V^{\pi}(s) =$ $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(S_t, A_t) | S_0 = s\right]$
 - Action-value function: $Q^{\pi}(s, a) =$ $r(s,a) + \gamma \int_{\mathcal{S}} \mathbb{P}(dx|s,a) V^{\pi}(x)$
 - Goal: an optimal policy that maximizes value/action value function: $Q^*(s,a) = \sup_{\pi} Q^{\pi}(s,a)$
- Linear function approximation: A set of fixed independent base functions ϕ : $S \times$ $\mathcal{A} \to \mathbb{R}^N$, $Q_{\theta}(s, a) = \phi(s, a)^\top \theta$

FINITE-SAMPLE ANALYSIS OF GREEDY-GQ WITH LINEAR FUNCTION **APPROXIMATION UNDER MARKOVIAN NOISE**

YUE WANG, SHAOFENG ZOU

GREEDY-GQ

Algorithm 1 Greedy-GQ [18]

Initialization: $\theta_0, \omega_0, s_0, \phi^{(i)}, \text{ for } i = 1, 2, ..., N$ Method: $\pi_{\theta_0} \leftarrow \Gamma(\phi^\top \theta_0)$ for $t = 0, 1, 2, \dots$ do Choose a_t according to $\pi_b(\cdot|s_t)$ Observe s_{t+1} and r_t $\bar{V}_{s_{t+1}}(\theta_t) \leftarrow \sum_{a' \in \mathcal{A}} \pi_{\theta_t}(a'|s_{t+1})\theta_t^\top \phi_{s_{t+1},a'}$ $\delta_{t+1}(\theta_t) \leftarrow r_t + \gamma \bar{V}_{s_{t+1}}(\theta_t) - \theta_t^\top \phi_t$ $\hat{\phi}_{t+1}(\theta_t) \leftarrow \text{gradient of } \bar{V}_{s_{t+1}}(\theta_t)$ $\theta_{t+1} \leftarrow \theta_t + \alpha_t (\delta_{t+1}(\theta_t)\phi_t - \gamma(\omega_t^{\top}\phi_t)\hat{\phi}_{t+1}(\theta_t))$ $\omega_{t+1} \leftarrow \omega_t + \beta_t (\delta_{t+1}(\theta_t) - \phi_t^\top \omega_t) \phi_t$ **Policy improvement**: $\pi_{\theta_{t+1}} \leftarrow \Gamma(\phi^{\top} \theta_{t+1})$ end for

- At time t, given s_t
- Policy: $\pi_{\theta_t} = \Gamma(\phi^{\top} \theta_t)$, where Γ is a policy improvement operator
- Take action a_t based on π_{θ_t} , observe s_{t+1} and r_{t+1}
- Updates: $\theta_{t+1} \leftarrow \theta_t + \alpha_t (\delta_{t+1}(\theta_t)\phi_t - \gamma(\omega_t^\top \phi_t)\hat{\phi}_{t+1}(\theta_t))$ and $\omega_{t+1} \leftarrow \omega_t + \beta_t (\delta_{t+1}(\theta_t) - \phi_t^\top \omega_t) \phi_t$

TECHNICAL ASSUMPTIONS

- The matrix $C = \mathbb{E}_{\mu}[\phi_t \phi_t^{\top}]$ is non-singular.
- $\|\phi_{s,a}\|_2 \leq 1, \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$
- There exists some constants m > 0 and $\rho \in$ (0,1) such that

 $\sup_{s \in \mathcal{S}} d_{TV}(\mathbb{P}(s_t | s_0 = s), \mu) \le m\rho^t ,$

for any t > 0, where d_{TV} is the totalvariation distance between the probability measures.

• The policy $\pi_{\theta}(a|s)$ is k_1 -Lipschitz and k_2 smooth, i.e., for any $(s, a) \in \mathcal{S} \times \mathcal{A}$,

 $\|\nabla \pi_{\theta}(a|s)\| \leq k_1, \forall \theta, \text{ and},$ $\|\nabla \pi_{\theta_1}(a|s) - \nabla \pi_{\theta_2}(a|s)\| \leq k_2 \|\theta_1 - \theta_1\|$ $heta_2 \|, orall heta_1, heta_2$

RES
Consi we ha
If we
Dnc
Prc
Pro Step
Pro Step $\mathbb{E}[\nabla x]$
Pro Step $\mathbb{E}[\nabla x]$
PRC Step $\mathbb{E}[\nabla x]$ The find bias, in

 (S_t, A_t, R_t, S_{t+1}) The challenge of bounding lies in that θ_t and O_t are dependent.

Combine two inequalities above to bound bias term $\zeta(\theta_t, O_t)$.

Step 4: Bound tracking error: Rewrite tracking error recursively: $||z_{t+1}||^2 \leq ||z_t||^2 + 2\beta_t \langle z_t, f_2(\theta_t, O_t) \rangle + 2\beta_t \langle z_t, \bar{g}_2(z_t) \rangle + 2\langle z_t, \omega^*(\theta_t) - \theta_t \rangle$ $\omega^*(\theta_{t+1})\rangle + 2\beta_t \langle z_t, g_2(z_t, O_t) - \bar{g_2}(z_t)\rangle + \mathcal{O}(\beta_t^2 + \alpha_t^2)$ Bound terms above using methods similar to those in step 3

SULTS

ider the following step-sizes: $\beta = \beta_t = \frac{1}{T^b}$, and $\alpha = \alpha_t = \frac{1}{T^a}$, where $\frac{1}{2} < a \leq 1$ and $0 < b \leq a$. Then ave that for $T \geq 1$,

$$\mathbb{E}[\|\nabla J(\theta_M)\|^2] = \mathcal{O}\left(\frac{1}{T^{1-a}} + \frac{\log T}{T^{\min\{b,a-b\}}}\right).$$

e choose $a = \frac{2}{3}$ and $b = \frac{1}{3}$, then the best rate of the bound is obtained as follows:

$$\mathbb{E}[\|\nabla J(\theta_M)\|^2] = \mathcal{O}\left(\frac{\log T}{T^{\frac{1}{3}}}\right)$$

DOF SKETCH

1: Decompose the error recursively into two parts:

$$J(\theta_M)\|^2] \leq \frac{1}{\sum_{t=0}^T \alpha_t} \left(\underbrace{(J(\theta_0) - J(\theta_{T+1})) + \frac{K}{2} \sum_{t=0}^T \alpha_t^2 \mathbb{E}[\|G_{t+1}(\theta_t, \omega_t)\|^2]}_{t=0} - \sum_{t=0}^T \frac{\alpha_t}{2} \left\langle \Delta_t, \nabla J(\theta_t) \right\rangle \right)$$

stochastic bias (*)

classical non-convex type analysis first part is handled in many classical non-convex problems. To bound the second part stochastic first bound $\|\nabla J(\theta)\|$ in stochastic bias by a constant

2: Decompose stochastic bias (*) into two parts: bias due to Markov noise and tracking error: $\langle \nabla J(\theta_t), -2G_{t+1}(\theta_t, \omega_t) + 2G_{t+1}(\theta_t, \omega^*(\theta_t)) \rangle - \langle \nabla J(\theta_t), \nabla J(\theta_t) + 2G_{t+1}(\theta_t, \omega^*(\theta_t)) \rangle$ where $O_t = 0$

tracking error

Step 3: Bound bias using uniform ergodicity of underlaying MDP: Decouple the independence of θ_t and O_t by considering τ steps back: $|\zeta(\theta_t, O_t) - \zeta(\theta_{t-\tau}, O_t)| \leq$

$$\sum_{k=t-\tau}^{t-1} \alpha_k$$

Define independent R.V. $\hat{O} = (\hat{S}, \hat{A}, \hat{R}, \hat{S'}) \sim \mu \times \mathcal{P}$, then: $\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] \leq |\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)] - |\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)]| \leq |\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)]| = |\mathbb{E}[\zeta(\theta_{t-\tau}, O_t)]|$ $\mathbb{E}[\zeta(\theta_{t-\tau}, \hat{O})]| \le k_{\zeta} m \rho^{\tau}$

Step 5: Plug the bound of $\|\nabla J(\theta)\|$ into stochastic bias (*) in step 1: $-\sum_{t=0}^{T} \frac{\alpha_t}{2} \langle \Delta_t, \nabla J(\theta_t) \rangle$ This can improve rate by a tighter bound of $\|\nabla J(\theta)\|$ Recursively apply step 1 to 4 until it converges

bias due to Markov noise ($\triangleq \zeta(\theta_t, O_t)$)