Multi-agent energy-efficient coverage path planning

Problem Statement
• Problem statement
• A number of drones are located near depot.
• They need visit a set of nodes that geographically
surround the depot.
• Key constraints
• Each node can be visited exactly once.
• Each drone has limited battery.
• Energy Cost
- The first part is based on the distance it travels.
- The second one is based on the turns it takes.

• \mathcal{V} : set of Nodes, $|\mathcal{V}| = V$

- \mathcal{A} : set of agents
- Node $0 \in \mathcal{V}$: depot
- c_{ij} : travelling distance cost from node i to node j

Important notation

• q_{ijk} : turning cost between nodes $i, j, k \in \mathcal{V}$

EECPP Model

We represent the area to be surveyed as a set of grid cells and assume that a grid cell is covered if the drone visits its center, then we get a model as follows:

min

$$\min \sum_{a \in \mathcal{A}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} c_{ij} x_{ij}^a + \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} \sum_{k \in \mathcal{V}} q_{ijk} I_{ijk}^a$$
(1)
s.t.
$$\sum \sum x_{ij}^a = 1, \ \forall j \in \mathcal{V} \setminus \{0\}$$
(2)

$$\sum_{a \in \mathcal{A}} \sum_{i \in \mathcal{V} \setminus \{0\}} x_{i0}^a \leqslant |\mathcal{A}|$$
(3)

$$I_{ijk}^{a} \geqslant x_{ij}^{a} + x_{jk}^{a} - 1, \ \forall a \in \mathcal{A}, \forall i, j, k \in \mathcal{V}$$
(4)

$$I_{ijk}^{a} \leqslant x_{ij}^{a}, \ \forall a \in \mathcal{A}, \forall i, j, k \in \mathcal{V}$$
(5)

$$I_{ijk}^{a} \leqslant x_{jk}^{a}, \ \forall a \in \mathcal{A}, \forall i, j, k \in \mathcal{V}$$
(6)

$$x_{ij}^{a} \in \{0, 1\}, \ \forall i, j \in \mathcal{V} \text{ and } \forall a \in \mathcal{A}$$
 (7)

- \bullet (1) is defined to minimize the total energy consumed across the drones.
- (2) requires that all nodes except node 0 are visited exactly once.

Jipeng Dai, Karthik Dantu, Jee Eun Kang and Nicholas Mastronarde

University at Buffalo, Department of Electrical Engineering

- (3) is defined that drones used must be less than the maximum number available.
- (4)-(6) by linear constraints it is forced that $I^a_{ijk} = x^a_{ij} \cdot x^a_{jk}.$

Additional Constraints

Battery capacity constraint

 $\sum \sum c_{ij} x_{ij}^a + \sum \sum \sum q_{ijk} I_{ijk}^a \leqslant C, \forall a \in \mathcal{A}$ $i \in \mathcal{V} \ j \in \mathcal{V} \ k \in \mathcal{V}$ $i \in \mathcal{V} \ j \in \mathcal{V}$

Any drone has limited flying path because of battery capacity constraint C(kJ).

Flow control

 $\sum x_{ij}^a - \sum x_{jk}^a = 0, \ \forall a \in \mathcal{A}, \forall j \in \mathcal{V}$ $i \in \mathcal{V} \setminus \{j\}$ $k \in \mathcal{V} \setminus \{j\}$

It ensures that, after a drone visits a node, it departs from this node to the next one.

Subtour elimination

 $d_i^a + 1 \leqslant d_j^a + M(1 - x_{ij}^a), \ \forall i, j \in \mathcal{V} \text{ and } \forall a \in \mathcal{A}$ d_i^a is the position of node *i* in drone *a*'s flight path $(1, 2, \ldots, |\mathcal{V}|).$

The maximum path length

 $d_i^a \leqslant M, \forall i \in \mathcal{V} \text{ and } \forall a \in \mathcal{A}$ DP/SP Method

In our prior work[1], we showed the EECPP problem is NP-hard. To save time, we decide to try a new way. First, we use dynamic programming(DP) to determine the set of feasible paths *l* within battery capacity constraint. Second, with the idea of set partitioning(SP)[2], we use cplex to select best ones from the feasible labels to realize minimum cost. And the formulation will be as follows:

nin
$$\sum_{l} C_l X_l$$
 (8)

s.t.
$$\sum_{l} a_{il} X_l = 1, \ \forall i \in \mathcal{V}$$
 (9)

$$\sum_{l} X_{l} \leqslant |\mathcal{A}| \tag{10}$$

$$X_l \in \{0, 1\}$$
 (11)

(8)	describes	objective	function,	which	is	to
-----	-----------	-----------	-----------	-------	----	----

- minimize the total cost of selected labels.
- (9) requires that all nodes except the depot are visited exactly once.
- (10) the maximum number of selected labels does not exceed the number of available drones.

Comparison

With battery capacity C = 16.0 kJ, we do two comparisons: CPLEX and DP/SP method, One obstacle and no obstacle(both use DP/SP method). And get two tables as follows:

Scalability of CPLEX w.r.t our algorithm

			•	
	CPLEX		DP/SP (Proposed)	
Grid Size	Objective	Time(s)	Objective	Time(s)
2 x 4	13.983	2.505	13.983	0.516
3 x 3	20.389	76.424	20.389	1.710
2 x 5	20.289	1182.410	20.289	3.641
3 x 4	26.117 ¹	7200	26.117	35.864
3 x 5	38.010 ¹	7200	37.186	351.965
4 x 4	39.905 ¹	7200	38.419	694.454
3 x 6	76.811 ¹	7200	60.304	1247.346
4 x 5	73.420 ¹	7200	54.062	4028.075
3 x 7	no result ²	7200	Infeasible	3300.508
4 x 6	no result ²	7200	no result ²	7200

¹ Best incumbent solutions are shown in **bold**.

 2 "no result" indicates that no feasible solution was found within 2 hour.

Scalability of One obstacle w.r.t no obstacle

	One obstacle	No obstacle
Grid Size	Time(s)	Time(s)
2 x 4	0.359	0.516
3 x 3	0.078	1.710
2 x 5	0.219	3.641
3 x 4	2.236	35.864
3 x 5	22.517	351.965
4 x 4	72.640	694.454
3 x 6	144.446	1247.346
4 x 5	577.771	4028.075
3 x 7	406.438	3300.508
4 x 6	2468.456	7200

Best incumbent solutions are shown in **bold**.

Trajectory results without obstacle using **DP/SP** Method

Results

(a) Battery 16

(b) Battery 18 Figure: Experiment results using DP/SP Method for grid 4x4

Trajectory results with one obstacle using **DP/SP** Method

(a) Battery 16

(b) Battery 18 Figure: Experiment results using DP/SP Method for grid 4x4(obstacle at grid index 5)

Conclusion

• EECPP problem is extremely NP-hard. • DP/SP(Proposed) w.r.t CPLEX.

• For C = 16.0 kJ, when grid size is not greater than 3 x 4, our DP/SP method achieves optimal solution with CPLEX and uses less time.

• As the grid size increases, the time for two methods both blows up quickly.

• The obstacle can reduce complexity.

References

[1] J. Modares, F. Ghanei, N. Mastronarde, and K. Dantu, "Ub-anc planner: Energy efficient coverage path planning with multiple drones," in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 6182–6189.

[2] Y. Dumas, J. Desrosiers, and F. Soumis, "The pickup and delivery problem with time windows," European journal of operational *research*, vol. 54, no. 1, pp. 7–22, 1991.