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Introduction

What is missing data problem?
•Missing Data - Gaps in the observed/acquired data
or data loss due to data delivery.
•Data acquisition and delivery processes are affected
by sensor faults, connection errors in sensor networks,
physical acquisition constraints, security attacks, en-
vironmental factors, and so on ...

Applications:
• Imaging Applications : MRI, CT, Remote Sensing,
Seismic Imaging.
• Internet of Things (IoT) : Data fusion in healthcare
monitoring, Internet of Vehicles (IoV).
•Social Media : Recommender Systems, Sentiment
Analysis, Social Network Analysis.

Impact:
• Imaging Applications : Incomplete data scanning
leads to distorted, artifact-induced, low-resolution
medical or geological imaging, not acceptable; Expen-
sive and time consuming data acquisition schemes.
• Internet of Things : Can adversely affect the protocol
implementation which plays a crucial role in remote,
energy dependent sensor networks.
•Social Media : Loss of correlation information be-
tween features; Can lead to learning of incorrect
models for data analysis which can further lead to
incorrect biases and interpretations.

Main Contributions
1 This study proposes a low-rank kernel scheme for
reconstructing data on manifolds which comes in
handy to impute the missing values encountered
in data acquisition processes.

2 This scheme is novel for its incorporation of kernel
functions designed not only for real valued data
but also complex valued data acquired commonly
in imaging applications.

3 This scheme proposes a data model based on clas-
sical kernel arguments and employs a bi-linear
model which avoids the need for a pre-imaging
process and the need for choosing an optimal ker-
nel function which can vary in accordance to data.

4 The framework doesn’t rely on the availability of a
fully-observed training data (unlike deep learning
schemes) rather uses the partially observed data
itself to learn a data model from which the missing
values can be filled.

5 The data model can be applied to various health-
care, social media and IoT applications.

6 The efficacy of the study is validated for the MRI
application where good quality medical images are
generated from partially observed scanner data.

7 This study outperforms other state-of-the-art re-
construction schemes for the dMRI recovery prob-
lem.

Main Idea

•Consider yt = Measured time series data at time t.
•Non-linearly map all yt to feature space where the
similarity between the data points is exploited via
kernel function κ(·, ·).
•Based on the assumption feature maps lie on the
smooth low-dimensional manifold learn the com-
pressed latent representations for the same.
•Latent Representations - Use the concept of tangent
space to locally and affinely combine the neighboring
points to describe each point on the manifold.
•Compression imposes low-rank structure to the data
model, highly desirable in reconstruction problems.
•Reconstruct the high dimensional data point from
latent representations.
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Figure: Low-dimensional Manifold embedded in the feature space

on which the feature maps lie

Mathematical Formulation: The Dynamic-MRI Case

•MR scanner time series data: Y.
•dMRI Image series: X = F−1(Y) re-
lated by inverse 2D Fourier Transform.
•Partially observed S(Y) =⇒ Dis-
torted, aliased, artifact induced X.
•Ft(·): 1D Fourier Transform along tem-
poral axis. Figure: Visual Representation of the data acquisition process

•Kernel Dictionary {K}Mi=1 generated from heavily sampled area of the sensor data (Gaussian & Polynomial).
•Compressed Kernel Dictionary {K̂}Mi=1 using robust sparse embedding in the feature space.
•Kernel Dictionary: Formulation allows for a data adaptive kernel expressed as an affine combination of a wide
range of kernels (no need to tune for optimal kernels)
•Modeling: X = ∑M

i=1 DiK̂iBi; Shorthand Notation: X = D̃K̃B̃

Inverse Problem Formulation

min
X,D̃,B̃,Z

Data-fit Term︷ ︸︸ ︷
1
2‖X− D̃K̃B̃‖2

F +

Sparsity on
representations︷ ︸︸ ︷
λ1‖B̃‖1 +

Sparsity along temporal
direction due to periodicity︷ ︸︸ ︷

λ2
2 ‖Z−Ft(X)‖2

F + λ3‖Z‖1

s.to ‖D̃ei‖ ≤ CD ∀i ∈ {1, . . . ,Md}︸ ︷︷ ︸
Bounding Constraint

; 1>N`
Bi = 1Nfr ∀i ∈ {1, . . . ,M}︸ ︷︷ ︸

Affine Constraints

;S(Y) = FS(X)︸ ︷︷ ︸
MRI Data Relation

Numerical Results
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(b) Comparisons across state-of-the-art techniques
Figure: The efficacy of the proposed scheme (KRIM), in the multi-kernel [M] and single kernel [S] setting is validated against various state-of-the-art

techniques. The reconstructions are achieved for the MRXCAT phantom simulating and acceleration rate of 8x. The red markings highlight the
distortions in reconstructions of the competitive methods.
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Figure: NRMSE values vs. acceleration rates

NRMSE SSIM HFEN M1 M2
KRIM[M] 0.0372 0.9052 0.1058 37.95 1.5 × 106

KRIM[S] 0.0407 0.8869 0.1198 37.65 1.4× 106

BiLMDM 0.0438 0.8697 0.1314 28.69 1.1× 106

KLR 0.0744 0.6704 0.1580 34.98 1.4× 106

FRIST 0.3055 0.4572 0.7006 13.50 7.7× 105

SToRM 0.0644 0.7743 0.2478 31.06 1.5 × 106

PS-Sparse 0.0449 0.8864 0.1338 30.66 1.2× 106

Table: Quantitative Performance Analysis for
MRXCAT Phantom (Acceleration Rate: 8x)

Validation

•Validation Numeric Metrics: NRMSE (voxel reconstruction error), HFEN (edge reconstruction error), M1 & M2
(sharpness measure) and SSIM (structural similarity).
•Quantitatively, the proposed kernel schemes present the best numbers when compared to the state-of-the-art
methods.
•Qualitatively, the proposed scheme produces image reconstructions which are high-resolution, distortion-free,
aliasing-free, artifact free and are very similar to the gold standard in regards to contrast and image structure.
•The proposed scheme consistently outperforms the other schemes for increasing number of missing values in the
scanner data (acceleration rate).
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