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Abstract—Most research in body area networks to date has
focused on traditional RF wireless communications, typically
along the body surface. However, the core challenge of enabling
networked intra-body communications through body tissues is sub-
stantially unaddressed. RF waves are in fact known to suffer from
high absorption and to potentially lead to overheating of human
tissues. In this paper, we consider the problem of designing optimal
network control algorithms for distributed networked systems of
implantable medical devices wirelessly interconnected by means
of ultrasonic waves, which are known to propagate better than
radio-frequency electromagnetic waves in aqueous media such as
human tissues. Specifically, we propose lightweight, asynchronous,
and distributed algorithms for joint rate control and stochastic
channel access designed to maximize the throughput of ultrasonic
intra-body area networks under energy constraints. We first
develop (and validate through testbed experiments) a statistical
model of the ultrasonic channel and of the spatial and temporal
variability of ultrasonic interference. Compared to in-air radio
frequency (RF), human tissues are characterized by a much lower
propagation speed, which further causes unaligned interference
at the receiver. It is therefore inefficient to perform adaptation
based on instantaneous channel state information (CSI). Based on
this model, we formulate the problem of maximizing the network
throughput by jointly controlling the transmission rate and the
channel access probability over a finite time horizon based only on
a statistical characterization of interference. We then propose a
fully distributed solution algorithm, and through both simulation
and testbed results, we show that the algorithm achieves consider-
able throughput gains compared with traditional algorithms.

Index Terms—Distributed algorithms, intra-body area net-
works, stochastic channel access, ultrasonic communications.

I. INTRODUCTION

IRELESS intra-body networks have received consider-

able attention in the last few years [2], [3], driven by
the fascinating promise of a future where carefully-engineered
miniaturized biomedical devices implanted, ingested or worn by
humans can be wirelessly internetworked to provide personal-
ized health care by collecting diagnostic information (e.g., mea-
suring the level of glucose in the blood of diabetic patients)
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and by fine-tuning medical treatments (e.g., adaptively regu-
late the dose of insulin administered) over extended periods of
time [4], [5]. Networked systems composed of implanted sen-
sors and actuators could enable revolutionary applications at
the intersection between biomedical science, networking, and
control, e.g., measuring the level of glucose in the blood of di-
abetic patients, and reactively controlling actuators implanted
under the skin to adaptively regulate the dose of insulin adminis-
tered, or using pill-sized cameras to monitor the digestive tract.
Yet, while body area networks have received considerable at-
tention in the last few years [2], [3], most research to date has
focused on communications along the body surface among de-
vices that use traditional electromagnetic radio-frequency (RF)
carrier waves, leaving the root challenge of enabling networked
intra-body miniaturized (at the micro or nano scale) sensors and
actuators that communicate through body tissues substantially
unaddressed.

Challenges and New Approaches: Commercial wireless
medical implants [6], [7] that communicate through RF
point-to-point links have recently become available, along with
RF-based transceiver chips for medical implants [8]. However,
these technologies tend to merely “scale down” traditional
wireless technologies (e.g., Bluetooth, Zigbee) to the intra-body
environment, with little or no attention to the peculiar character-
istics and safety requirements of the human body. The human
body is however composed (up to 65%) of water, a medium
through which RF waves do not propagate well. In addition,
the medical community is still divided on the risks caused by
exposure of human tissues to RF radiation—the World Health
Organization classifies RF waves as “possibly carcinogenic
to humans”. Not less importantly, RF-based technologies are
prone to malicious jamming attacks or to environmental inter-
ference from pervasively deployed existing RF communication
systems that can undermine the reliability and security of the
intra-body network, and ultimately the safety of the patient.

For these reasons, in [4], [9], [10] we proposed a different ap-
proach and explored the use of ultrasonic waves to wirelessly in-
ternetwork in-body devices, i.e., ultrasonic intra-body area net-
works. Acoustic waves, typically generated through piezoelec-
tric materials, are known to propagate better than RF in dielec-
tric media composed primarily of water. Since World War II,
piezoelectrically generated acoustic waves have found applica-
tion, among others, in underwater communications (typically at
frequencies between 0 and 100 kHz), in indoor localization [11],
and, massively, in ultrasonic medical imaging [12]. While com-
munication at low frequencies requires sizable transducers, in-
novations in piezoelectric materials and fabrication methods,
primarily driven by the need for resolution in medical imaging,
have made miniaturized transducers at the micro [13], [14] and
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even nano scales [15] a reality; with examples of devices that
have even reached clinical stages [16].

Envisioned New Applications: Ultrasonic wave heat dissipa-
tion in tissues is low compared to RF waves [17]. The medical
experience of the last decades has demonstrated that ultrasounds
are fundamentally safe, as long as acoustic power dissipation
in tissues is limited to predefined safety levels [4], [5]. There-
fore, ultrasonic intra-body area networks can improve existing
biomedical applications as well as enable a rich set of new ap-
plications, which can be as diverse as automated drug admin-
istration, pervasive surveillance using pill-size ingestible cam-
eras, bio-hybrid implants, intraocular pressure monitoring, ma-
licious agent monitoring, heart monitoring, and minimally-in-
vasive microsurgery [4].

While in some applications, e.g., in under-skin and static
scenarios, implanted sensors can be easily pre-deployed,
possibly wired, and scheduled in a centralized fashion, in
many envisioned applications this is however undesirable.
For example, in automated drug administration, targeted drug
delivery in a spatial-, temporal- and dosage-controlled fashion
based on distributed measures of biological parameters is
already a reality [16]. In these scenarios, it is infeasible to
wire deeply-implanted devices, and centralized scheduling
of interfering wireless links serving different areas of the
body may be complex and involve long-range, high-power
transmissions that are undesirable due to potential excessive
radiation. Another example is pervasive surveillance, where
malicious agents are monitored through distributed networks
of ingestible sensors [18]—in this case centralized control is by
no means easy to implement without global network topology
information; moreover it may not be easy to maintain global
synchronization, which makes distributed control an appealing
approach as in traditional mobile ad hoc networks.

Main Contributions: Based on these premises, in this paper
we design lightweight (i.e., based on local decisions taken
through polynomial-time algorithms and with minimal mes-
sage exchange), asynchronous (updates at different nodes are
unsynchronized, i.e., as in [19, p. 425]), and distributed (i.e.,
without centralized control) resource allocation algorithms. We
claim the following main contributions.

* We develop for the first time (and validate through testbed
experiments!) new statistical models of ultrasonic interfer-
ence. The models capture the unique spatial and temporal
variability of unaligned ultrasonic interference through a
new approach (that we refer to as M -sampling method)
in which interference is characterized through a vector of
measurements taken at multiple instants of time at each
receiver during a given interval (i.e., time slot) to cap-
ture its statistical behavior. The effects of temporal uncer-
tainty (i.e., the random transmission of different nodes on
time-varying ultrasonic channels) on the interference level
at each measurement point is modeled using generalized
Nakagami probability distribution functions.

+ Based on this modeling framework, we formulate an opti-
mization problem where the objective is to maximize the

ISince conducting experiments in real live tissues is complex, in this work
the validation is based on a Kidney phantom testbed (see details in Section III),
which provides a good approximation of the ultrasonic propagation character-
istics of real tissues. In-vivo experiments in real body tissues will be conducted
before applying the algorithms discussed in this article in clinical settings.
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throughput achievable by mutually interfering nodes by
jointly controling cross-layer networking functionalities
of devices in an ultrasonic network (e.g., channel access,
spectrum management, queuing and rate control) while
keeping the radiated power within safety limits. A core
feature of the proposed algorithm is that decisions at each
node are taken based only on the second-order moment of
ultrasonic interference (and not on its instantaneous level).
The actual level of interference cannot in fact be known
at the transmitter without significant delay and overhead,
while its variance varies slowly in time.

* Then, we design and validate through simulations and
testbed experiments new probabilistic throughput-maxi-
mizing distributed cross-layer control strategies based on
these newly developed stochastic models of ultrasonic
interference. We show that the proposed joint optimization
leads to up to nine times higher throughput with respect
to optimizing the transmission profile or rate control
individually.

The rest of the paper is organized as follows. In Section II, we
review the related work. In Section III, we describe the prop-
agation characteristics of ultrasonic signals in human tissues,
and based on our experimental measurement results, we propose
statistical models of ultrasonic small-scale fading and interfer-
ence, respectively. In Section IV, we formulate the optimiza-
tion problem and then propose a distributed solution algorithm
in Section V. In Section VI, we present the globally optimal
solution algorithm. Performance of the distributed algorithm is
then evaluated through both simulation and testbed results in
Section VII, and finally conclusions are drawn in Section VIII.

II. RELATED WORK

In [4], [20], we showed that intra-body ultrasound propaga-
tion is severely affected by multipath caused by inhomogeneity
of the body in terms of density, sound speed, and the pervasive
presence of small organs and particles. Based on these obser-
vations, in [9], we proposed Ultrasonic WideBand (UsWB),
a new ultrasonic multipath-resilient physical and medium
access control (MAC) layer integrated protocol. UsWB is
based on the idea of transmitting short carrierless ultrasonic
pulses following a pseudo-random adaptive time-hopping
pattern, with a superimposed adaptive spreading code. Impul-
sive transmission and spread-spectrum encoding combat the
effects of multipath and scattering and introduce waveform
diversity among interfering nodes so that multiple users can
coexist with limited interference on the same channel. In [10],
we experimentally demonstrate the feasibility of ultrasonic
communications in human tissues through an FPGA-based
prototype implementation of the UsWB physical and medium
access control protocols. We showed that our prototype can
flexibly trade data rate performance for power consumption,
and achieve, for bit error rates (BER) no higher than 106,
either (i) high-data rate transmissions up to 700 kbit/s at a
transmit power of —14 dBm (a 40 pW), or (ii) low-data rate
and lower-power transmissions down to —21 dBm (=2 8 W) at
70 kbit/s (in addition to numerous intermediate configurations).
Moreover, we show how the UsWB MAC protocol allows
multiple concurrent users to coexist and dynamically adapt



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUAN et al.: DISTRIBUTED ALGORITHMS FOR JOINT CHANNEL ACCESS AND RATE CONTROL IN ULTRASONIC INTRA-BODY NETWORKS 3

their transmission rate to channel and interference conditions
to maximize throughput while satisfying predefined reliability
constraints, e.g., maximum packet drop rate.

There are also some important lessons to be learnt in dealing
with acoustic interference from recent research in underwater
networks; even though there, the focus is mostly on long-dis-
tance, low data rate communications. Significant recent efforts
have attempted to address some of the challenges of interfer-
ence modeling at the MAC layer [21]-[24]. For example, it
was shown in [21] that for slotted transmission the packet col-
lision probability can be reduced by adding a guard band to
each time slot to limit the effect of the spatial uncertainty of
interference. In [22], [25], different MAC schemes based on
handshaking were proposed to avoid interference, while the re-
sulting hidden terminal problems were studied in [23]. How-
ever, 1) these solutions mainly rely on signaling exchanges that
still suffer from the low-speed of sound, and might result in
under-utilization of the channel and therefore in low throughput;
moreover, ii) they look at the problem from a MAC perspective,
exclusively. While the above MAC protocols mostly attempt
to mitigate the negative effect of spatial uncertainty of interfer-
ence, Chitre, et al. pointed out in [24] that the large hence dis-
tance-dependent propagation delay could be exploited through
interference alignment (IA) in the time domain to achieve a
throughput much higher than that without spatial uncertainty.
However, the IA scheme in [24] largely relies on exact knowl-
edge of global location information of all nodes and on central-
ized control, which is not easy to implement in practice due to
high communication overhead required to collect exact location
information and to broadcast schedules. Furthermore, iii) no
previous work has modeled the temporal uncertainty of inter-
ference, i.e., its time-varying nature, and its cumulative effect,
and iv) previous work is largely based on the protocol interfer-
ence model, i.e., a packet is lost whenever two transmissions
overlap at a receiver, which is not the case with advanced trans-
mission schemes. Ultimately, v) existing models fail to capture
the statistical behavior of time-varying and spatially uncertain
ultrasonic channels, and moreover, previous work has not con-
sidered the asynchronous transmission behavior of each node
and are unsuitable to applications with random packet arrivals.

Finally, there is a large body of work on distributed medium
access control and cross-layer optimization algorithms for wire-
less networks (see, among many others [26]-[31]). For example,
Huang and Lin proposed a Virtual-Multi-Channel CSMA algo-
rithm [30] while Kwak, Lee and Eun proposed a delayed CSMA
based on high-order Markov chains [31], to avoid the starvation
problem in traditional CSMA. However, algorithms proposed
for RF wireless communications (i) do not consider the spatially
and temporally uncertain ultrasonic environment; plus, (ii) most
of them typically require coordination and instantaneous and
synchronized control message exchanges that are not desirable
in resource-constrained environments affected by long propa-
gation delays.

III. CHANNEL AND INTERFERENCE MODELING

Ultrasonic waves originate from the propagation of mechan-
ical vibrations of particles in an elastic medium at frequencies

TABLE 1
FREQUENCY LIMITS FOR A = 100 dB

Communication Range  Distance  Frequency Limit
Short Range pm - mm > 1 GHz
Medium Range mm - cm ~ 100 MHz
Long Range >cm ~ 10 MHz

above the upper limit for human hearing, i.e., 20 kHz. Acoustic
propagation through a medium is governed by the acoustic wave
equation (Helmhotz equation), which describes pressure vari-
ation over the three dimensions, V2P — }2 %th’ = 0, where
P(x,y, z,t) represents the acoustic pressure scalar field in space
and time, and ¢ is the propagation speed in the medium with a
typical value of 1500 m/s in blood and other soft tissues [4] (i.e.,
five orders of magnitude slower than RF propagation in air).

In [4] it was shown that attenuation can be significant and it
increases (exponentially) with the distance between transmitter
and receiver. For example, Table I shows the maximum “al-
lowed” carrier frequency for a 100 dB maximum tolerable atten-
uation [4], [S]. Note that even with transmission distances of no
more than a few tens of centimeters, due to the low speed of ul-
trasonic signals, the propagation delay can be rather large com-
pared with the channel access period, leading to non-aligned in-
terference and thus making time-division MAC protocols not ef-
ficient. Based on the experimental observations from our testbed
measurements, next we propose a theoretically tractable inter-
ference model for ultrasonic propagation in human tissues. To
this end, we first characterize the small-scale fading of the ul-
trasonic channel—for which unfortunately there is no literature
available to date.

Channel Model: We conducted a series of experiments
to measure the small-scale fading on the channel with the
ultrasonic software defined testbed that we developed. The
testbed consists of ultrasonic software defined nodes (uSDN5s)
communicating through physical medical phantoms (i.e.,
tissue-mimicking materials with acoustically accurate represen-
tations of anatomy) that emulate with high fidelity propagation
through biological tissues. The uSDNs are implemented using
the Universal Software Radio Peripheral (USRP) N210 soft-
ware-defined radios interfaced with low-frequency (LFRX
and LFTX) daughterboards [32] and ultrasonic transducers
operating around 5 MHz with a —6 dB bandwidth of about
4 MHz [33]. Phantoms are interposed between transmitters
and receivers to emulate propagation through tissues. In
Fig. 1(a) we show a sample experimental setup with a phantom
mimicking propagation through a human kidney [34]. We
measured the faded envelope of ultrasonic signals,2 and the
experimental result is least-square fitted with a Nakagami
and a generalized Nakagami distribution. We found that the

2Real intra-body ultrasonic propagation environments are time varying be-
cause of the constant movements of human organs. In our experiments, we
moved the transducers in Fig. 1(a) to a different location in each instant of
channel measurement to introduce variability in the propagation environments.
A three-dimensional movement model has been considered to mimic the mo-
tion of a real human Kidney [35]. In each measurement, the transducers are
displaced following three directions, i.e., superior-inferior, anteri-or-posterior
and medial-lateral, and the maximum displacement from the reference point is
set to 10 mm, 5 mm and 3 mm in the three directions, respectively.
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Fig. 1. (a) Ultrasonic experimental testbed; (b) Measurement and fitting results for the envelope fading of ultrasonic signals.

generalized Nakagami distribution fits the measurement results
in general well, as shown in Fig. 1(b), particularly at high
signal envelope values.3 Results indicate that the ultrasonic
signals are attenuated by both randomly-located and structured
scatterers when propagating through the kidney, corresponding
to a Nakagami parameter between 0.5 and 1 (0.59 with gener-
alization parameter s = 1.12 according to our measurements in
the considered setting). To the best of our knowledge, these are
the first measurements reported for ultrasonic communications
in tissues.

Motivated by these experimental observations, we model the
statistical characteristics of the channel fading coefficient p; for
any time slot ¢ using a generalized Nakagami distribution func-
tion &(x),

28z L, e

5(1') = P[pt = .’E] - F(Z)QZ e 0¥ ) (l)

where z, € and s are the shaping, spreading, and generalization
parameters of the generalized Nakagami distribution function
that can be measured off-line or estimated online, and I'(z) £
[ a*le™®da is the functi
o gamma function.
Then, the channel gain of the ultrasonic link in tissues from

transmitter m to receiver n on sub-channel f € F at time slot,

denoted by A%/, can be represented as?
hfz]:n = Hr]:m : (Pt)27 (2)
where HJ, represents the transmission attenuation that an

ultrasonic signal transmitted on sub-channel f &€ F expe-
riences over a transmission distance d.,, [4]. Denote f.
as the central frequency of sub-channel f. Then, HS  can

be represented as HI = e Plfe)dnm | where B(f) (in

[np - cm 1)) represents the amplitude attenuation coefficient
that captures all the effects associated to energy dissipation
from the ultrasonic beam. The parameter 8(f.) can be further
represented as 5 = a - (f.)®, where a (in [np m~* MHz "))

3A noticeable fitting gap can be observed between the model and the mea-
surement results in the small-envelope region. To the best of our knowledge,
there are no well-developed mathematical models that can be used to charac-
terize accurately the statistics of ultrasonic intra-body channels. Our objective
is to enable theoretical formulation and analysis of the stochastic channel access
problem (will be presented in Sections IV and V) by presenting for the first time
an ultrasonic intra-body channels model.

4A session m comprises a transmitter and a receiver, denoted as transmitter
and receiver m, respectively. In the following, we use transmitter (or receiver)
m, the transmitter (or receiver) of session m and session m interchangeably
while it will be clear based on the context if the transmitter or the receiver is
referred to.

and b are attenuation parameters characterizing the tissue that
can be measured off-line. In the rest of the paper, we simplify
rtf VHI. and d,, to RY,HI and d,, respectively, for
n = m.

Interference Model: In intra-body environments, because
of the non-negligible ultrasonic propagation delay that can be
much larger than the time duration of a time slot, signals trans-
mitted simultaneously by different transmitters do not reach the
receiver at the same time in general. Hence, the interference
experienced at each receiver depends not only on the channel
model described above, but also on the concurrent interfering
transmissions of other nodes. If the interfering nodes send
their packets in a unsynchronized manner and each following a
certain transmission probability profile that may vary from time
to time (as will be discussed in detail in Section IV), the large
propagation delay further creates time-varying interference
statistics, which are difficult to capture.

To model the effect of non-aligned interference, we propose
a new approach (that we refer to as M-sampling method) in
which interference is characterized through a vector of mea-
surements taken at multiple uniform-sampling time instants at
each receiver during a given interval (i.e., time slot). Each re-
ceivern € A measures the received signal on each sub-channel
f € Fineachtime slot ¢ ata set MY with |ME| = M of time
instants. An illustration is shown in Fig. 2(a).

Because of the non-aligned nature of interference, a signal
from session n € A that arrives at its intended receiver at
the I-th measurement instant in time slot ¢, with [ € M for
any f € F, can receive interference from the transmission of
any session m € A /n occurring during time slot £(m, n,t,1),
which might be different from ¢. Denote the transmission
probability corresponding to £(m,n,¢,1) as al{mmtbf (also
atf (n,t,1) for notational convenience). Let It/ (1),1 € MY,
denote the aggregate interference measured by the receiver
node of session n € A on sub-channel f € F at the I-th
measurement point in time slot ¢. Then, I/ (1) can be expressed
as

i =Y PYRLaH(n ) Ve M, (3)
meEN /n
where a%f (n,t,1) = 1 with probability o/ (n,¢,1) and 0 with
probability 1 — ot/ (n,t,1).

Now we model the statistical characteristics of the inter-
ference level at each measurement time point !. With the
previously discussed model of channel fading based on the
generalized Nakagami distribution function, the probability
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Fig. 2. (a) Interference model; (b) Validation of the Gamma-distribution-based interference model.

density function of the aggregate interference at each mea-
surement instant I:f(I) can be characterized by a Gamma
distribution function

—z /07!
tfl e n
PO = 2] =) = o i g @

where T'(k!f!) is the gamma function as in (1), while k%/* and
611! are the shaping parameters of the Gamma distribution func-
tion depending on the transmission probabilities of all inter-
ferers atf (n,t,1) in (3).

We validated the interference model through experiments,
where we considered 10 interfering transmitters and one re-
ceiver randomly located around the kidney phantom. The power
of each transmitter is set to 22 dBm, and the measurement period
is set to 0.3 us. We let each transmitter emit ultrasonic signals
with probability 0.5 in each measurement period, and record the
aggregate interference at the receiver. The probability density
function of the measured interference is plotted in Fig. 2(b).
Then, we fit the measured data using the Gamma distribution
function with parameters k%! and ¢/ in (4) estimated as

kIt = (i (D)2 /(e 1)), )

0,1 = (o (1) /i (1), ©
with ut7 (1) and ¢*f (1) being the mean and standard deviation of
the recorded interference levels at the considered measurement
time point /. Clearly, a Gamma distribution fits the experimental
measurements very well.

Modeling the Temporal Correlation: Since each transmission
lasts for a time slot duration 7}, measurements of aggregate
interference at different time instants in each time slot can be
closely correlated with each other. Let n*f (1, 1) with 1,1 € M?/
represent the correlation coefficient between I/ (1) and I/ ().
Then, n%/ (1,1) can be expressed as

LU AU U R LU,
" orl (Yo (I)
The interference measurements in M/ can be grouped into
{M!F(1)} with each AM*f(1) consisting of a subset of mea-
surements starting from the -th. We adopt a threshold-based
grouping policy, which groups a number of consecutive interfer-
ence measurements [,1 + 1,. .., into M/ (1) so that the cor-
relation coefficient between the interference levels at any two
measurements in the group (which are not necessarily adjacent
to each other) is greater than a threshold denoted as n'?, i.e.,
(1, l) > nfhl < 1yl < [. An example of the measure-
ment grouping is shown in Fig. 2(a), where I/ (3) and I*/(4)
are grouped together since n'f(3,4) > P, and I%t/(1) and

It/ (2) are not grouped because I/ (2) suffers from interference
from session m but not for I%/(1).

IV. PROBLEM FORMULATION

Having developed the channel and interference models
in the previous section, we now formulate and study a net-
work-level optimization problem for ultrasonic intra-body
communications.

Network Description: Consider an ultrasonic intra-body area
network with a set A of concurrent sessions with [A| = N,
each consisting of a transmitter-receiver pair. The available
spectrum is divided into a set F of orthogonal sub-channels
with |F| = F—the latter can be obtained on a code-division
or frequency-division basis. Note that we consider multiple
sub-channels to keep the system model as general as possible.
The transmission time is divided into consecutive time slots,
which are further grouped into consecutive frames each con-
sisting of a set 7 of time slots with |7 = T.

Let R = (R,)nen represent the data generation profile,
i.e., the transport-layer data allowed in the network. Then, each
source node n € A introduces data in its queue at an average
rate of R,, [bit/s]. Because of the fast variability and high propa-
gation delay of the ultrasonic channel, we assume that each ses-
sion can obtain only statistical channel state information (CSI)
at the transmitter side (i.e., no fast feedback is available). There-
fore, unlike in traditional RF communications, each transmitter
adopts a stochastic policy (based only on the estimated statis-
tics of interference at the receiver, and not on its instantaneous
value), to decide whether to transmit in a specific time slot and
over which sub-channel to transmit. Let &, = (a%f);cr de-
note the data transmission vector of transmitter n € A in time
slot t € T, where o/ represents the probability that session n
transmits a packet over sub-channel f € F. Then, the transmis-
sion profile of session n € A in a time frame denoted as a,, can
be written as a,, = (@!));c7. Let a represent the transmission
profile of all sessions in A" and &, represent the transmission
policy vector of all sessions except n. Then, & and &_,, can
be written as & = (@ )ncn and @, = (@) men/n» respec-
tively. Note that this model includes deterministic policies (i.e.,
in which the probability to transmit over a specific time slot or
channel is equal to one) as a special case.

Let U, (R, a,, & ;) represent the throughput of session
n € AN, which depends on its data generation rate R,,, trans-
mission profile e, and also on the transmission profiles of all
interfering sessions in A/ /n. Then, the objective of each trans-
mitter n € A is to maximize its throughput U,, (R, &, & 4,)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

by jointly adjusting its data generation rate K, and the trans-
mission profile a,,, based on the statistical behavior of the
observed interference caused by other interfering transmitters.
To formalize the optimization problem, next we derive the
mathematical expression for throughput U,,(R,,, &, &, ).
Throughput Derivation: Due to the non-aligned interference
as shown in Fig. 2(a), the experienced signal-to-interference-
plus-noise ratio (SINR) in a time slot does not remain con-
stant even if the channel is assumed to be slow-fading. This
results in a fast-fading channel in each time slot.5 If the mea-
surement instants in each time slot are uniformly spaced,® then
the outage probability of each session n € A in time slot £ over
sub-channel f € F, denoted as O'f (a_,,), can be expressed
s [36]
O (a

a) 2P C(n,t, f,1) <Rp| (8)

where £(M!]) represents the set of beginning measurements
of each group in { M/} defined in Section III, and

C(n,t, f,1) +I7 0 ©

represents the achievable capacity during measurement group
M (1), with (67)? being the ambient noise power at the re-
ceiver node of session n € A over sub-channel f € A; B
represents the bandwidth [Hz] of each sub-channel, and R? is
the target rate required to transmit a packet in a time slot; 7%/ (1)
is the aggregate interference given in (3). The distribution of
C(n,t, f,1) can be obtained with given distributions of channel
fading coefficient bt/ and the aggregate interference It/ (1).
Then, the average capacity of session n € A/, denoted as

= Blog, (1+ P /[(6])?

Cpla,,a ), can be expressed as
Crl(etn,a th an,a ), (10)
ST
with
Chlan,a )= off (1- 0 (a_,)RS. (1)

fer

Finally, if we assume as in [37] that packet arrivals of each
user n. € N follow a Poisson process with average arrival rate
R, [bit/s]” and that the service time of each packet with length
L,, bits follows an exponential distribution, the queue of each
user n. € N can be modeled as a discrete-time M /M /1 queue
[38, p. 162, §3.3]. Let PIY(R,,, a,, @ ) represent the packet

SDifferent from fast fading in in-air radio-frequency communications, which
is caused by the channel variation itself [36], here fast fading is caused by the
non-aligned interference.

Different measurement distributions will be studied in our future work, e.g.,
random distribution, compressive-sampling-based measurements.

7In this work, it is assumed that the data rate generation of different nodes are
uncorrelated. For example, if nodes are performing different functions, say some
are performing medical imaging while others are taking glucose level measure-
ments, the resulting traffic is likely uncorrelated; conversely, if multiple nodes
are involved in the same task, e.g., capturing images of the same tissue but from
different angles, not only the data generation rates of different nodes would be
correlated, but there would also be correlation in the data content. In the latter
case, a more complicated traffic model needs to be developed to account for the
correlations. This will be a topic of future research.
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loss rate of user n caused by exceeding the maximum queueing
delay T2, Then, PAY(R,,, ar,,, & _,,) can be expressed as

rth

—(C — n
P,r(Lﬂy(Rnyans a—n) = (Cnlan@—n)=Rx) Enoy

(12)

and the throughput of each session n € N, denoted as
Un(R,,,a,,a_,), can be expressed as

Un(Bn, @) = Ru(1 = Pi¥ (R, 0) — P), - (13)
where 7™ represents the residual packet error rate due to non-
perfect channel coding/decoding techniques, which is consid-
ered fixed in this work.

Problem Statement: So far, we have derived an expression
for the throughput of each session. Then, the social objective
is to maximize sum utility of all sessions n € N, with given
energy budget E7'#* while keeping the radiated energy level
within safety limits, by jointly controlling the stochastic channel
access profile a,, and regulating the data generation rate R,,, i.e.,

Civen: B [0 PO wn € N (14a)

Maxnmze UR,a)= > Up(Rp,an.a ) (14b)
neN

Subject to:aflf >0,vneN,Vte T ,VfeF (14¢)

off <1,YneN,VteT VfeF (14d)

Y all <1¥neNteT (14e)

fer

S (RaES+Y " o PY| Ty < EY™ Vne N
teT ferF

(14f)

where PS denotes the transmission power of user n € N8 Ty
represents the time slot duration, EY represents the energy [J]
consumed by source node n to generate and process (e.g., A/D
conversion, source encoding) one bit of data, and E'#* de-
notes the maximum energy available in each time frame con-
sisting of |[7| = T consecutive time slots; constraint (14¢) im-
poses that each session transmits on at most one sub-channel in
each time slot on average, constraint (14f) imposes a balance
between the energy needed for (i) data processing and genera-
tion and (ii) transmission for throughput maximization, under
a given energy budget and limiting radiation to specific safety
levels [4], [5].

Note that it is essential to incorporate rate control into the
optimization framework, since in some scenarios of interest it
might be very difficult to determine the optimal rate in advance.
Consider for example a dynamic intra-body network with a set
of miniaturized sensors cruising along the blood vessels to con-
duct multi-site measurement of physiological quantities of in-
terest. As discussed in further detail in Section VII, without
rate control, trivially allocating too high a portion of the energy
budget to data generation leads to growing queueing delay that
could result in high packet drop rates (therefore reducing the
throughput).

8We consider fixed transmission power since power control requires instan-
taneous CSI at the transmitter, which we assume to be unavailable.
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V. DISTRIBUTED SOLUTION ALGORITHM

It is challenging to achieve the social objective formulated
in (14a)—(14f) for many intra-body applications, as discussed
in Section I, because of the lack of centralized control. In this
section we design a lightweight, asynchronous and distributed
resource allocation strategy, which we refer to as D-ROSA (Dis-
tributed Rate cOntrol and Stochastic channel Access), and dis-
cuss several issues related to the practical implementation and
convergence of the algorithm. Then, to provide a performance
benchmark for the proposed distributed algorithm, we derive
the global optimum of the social problem based on a newly
designed globally optimal but centralized solution algorithm,
which will be briefly discussed in Section VI.

Algorithm: The D-ROSA algorithm is based on a local
best-response strategy. Each transmitter iteratively solves the
problem of joint rate control and transmission probability
profile adaption based on a local observation of the second
order statistics of the aggregate interference at the receiver.

Welet T, = {(Ry, @)} represent the domain set of session
n € N, which consists of all possible combinations of R,, and
@, as defined in (14c)—(14f). Then, for a given (fixed) trans-
mission profile of all other sessions in /7, the individual op-
timization problem of session n € A denoted as OPT(Y,,, Uy,)
with U,, = U, (R, &, @ ), can be represented as

Given: Emax B0 PO
M?zxiznize: U (R, 0, &)
Ty n

Subject to: Transmission constraints: (14c) — (14e)

Energy constraint: (14f)
(15)

Then, the distributed best-response-based algorithm can be for-
malized as in Algorithm 1, where SOL(Y,, U, ) represents the
solution set of OPT(Y,,, Up).

Algorithm 1 D-ROSA based on local best response

Data: E™a*, P2 E0 VYn ¢ N

(S.0): Choose any feasible o!¥ € Y, andsetk =0

(8.1): 1f {a,(f) }nen satisfies some stopping criterion, STOP.
(S.2): For each n € N, solve OPT(Y, Uy (@, a®))).
(S.3): Letalf ™ € SOL(T, Un(an, a'™)).

(S.4): Set k< k + 1 and goto (S.1).

In (S.1) of Algorithm 1, a stopping criterion can be the fol-
lowin% the change between the optimized transmission pro-
file &5, ’ in two consecutive iterations is within a certain pre-
defined error tolerance for all sessions in /. As an alternative,
we can set a limit on the maximum number of iterations. Note
that Algorithm 1 is a Jacobi version of the distributed algorithm
[19 p. 224, §3.4]. In practice, different sessions do not need to
be synchronized when updating their own transmission prob-
ability profile, which results in a Gauss-Seidel-like implemen-
tation of the algorithm [19, p. 224, §3.4]. Note that at each it-
eration in Algorithm 1, each session solves an individual op-
timization problem formulated in (15), where the transmission
probability profile of all other sessions a_,, is assumed to be
known as input, which is not the case in practice. Since we focus

on fully distributed algorithms without any message exchange
among different sessions, then a natural question that arises is:
how can each session adjust its transmission probability profile
based on the profile of the other sessions?

Proposition 1: 1t is sufficient for each session n € A to
estimate the statistical effects of aggregate interference from all
other sessions in A /n with transmission profile &_,, on its own
throughput by recording the first- and second-order moments of
the interference level observed at its intended receiver.

Proof: Recall that in Section III, we verified that the ag-
gregate interference follows a Gamma distribution. Then, ac-
cording to (5) and (6), the probability density function of in-
terference can be exactly determined by (first-order) mean and
(second-order) variance. O

Each session n € A periodically transmits an updated
estimate of the interference mean and variance back to its
transmitter. Then, based on (3)—(11), the transmitter can cal-
culate the outage probability profile (Oflf JteT,fer and adjust
its data generation rate R,, and transmission profile &, to
maximize its own individual throughput U,,(R,,, &, _,,) as
given in (12) and (13). Since the expression in (13) is still
non-concave, each optimization problem OPT(Y,,U,) is
non-convex. In Theorem 1, we show however that the globally
optimal solution of each OPT(T,,,U,,) can still be obtained
with polynomial-time algorithms.

Theorem 1: Each individual optimization problem in
OPT(Y,,,U,) can be solved by solving an equivalent convex
optimization problem.

Proof: 1t can be proven that the objective function
U, (R, @, ), with given a_,,, is a log-concave function.
Moreover, all constraints in (14c)—(14f) are linear constraints,
hence the resulting domain set is convex (also bounded and
closed). Therefore, maximizing U,,(R,,, &,,, &_,,) is equivalent
to maximizing its logarithm, which is a convex optimization
problem, whose globally optimal solution can be solved in
polynomial computational complexity using standard convex
optimization techniques [39, §11]. Proof of the log-concavity
of U,, follows the rule that affine mapping preserves convexity
of function [39, P79, §3.2.2]. Please refer to Appendix A for
more details. O

Convergence Analysis: We now provide some results on the
convergence property of the proposed algorithm.

Theorem 2: Given the number of available channels | F| and
the number of concurrent sessions ||, Algorithm 1 converges
to a stationary point of the problem of joint rate control and sto-
chastic channel access, if the number of time slots in each frame,
i.e., | T, is sufficiently large. At this point, for each session there
is no incentive to unilaterally deviate from its current transmis-
sion strategy.

Proof: The theorem can be proven by showing that the
individual utility function U, (R,,, &, @_,,) in (15) satisfies the
condition in [40, Proposition 3]. Please refer to Appendix B for
more details. O

Intuitively, with a large number of time slots in each frame,
changing the transmission probability in a time slot for a ses-
sion only affects the overall achievable capacity of the consid-
ered session slightly. Additionally, due to the linearity of (11)
with respect to o/, each session assigns non-zero transmission

n 2
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probability to only a subset of the jointly optimized time slots.
The larger | 7| is, the more likely it is that the time slot sub-
sets for different sessions are disjoint with each other, which
implies convergence of the algorithm. In practice, Algorithm 1
converges very fast to a stable zone with only limited |77, as
shown in Section VII.

Practical Considerations: Note that Algorithm 1 does not re-
quire each receiver to send interference parameters (i.e., mean
and variance) back to its transmitter at every time slot. Since the
algorithm is designed based on a statistical characterization of
the interference, feedback needs to be invoked only when there
is a noticeable change in the statistical characteristics of inter-
ference compared with the last feedback, typically after tens
or hundreds of time slots. Moreover, in each feedback mes-
sage only mean and variance of the inference are transmitted.
Furthermore, as discussed above, each transmitter only needs
to solve a convex optimization problem with polynomial com-
plexity with respect to the number of time slots in each frame
upon receiving feedback. Therefore, the resulting communica-
tion and computational complexity is in practice low.

It is worth pointing out that since feedback information (in-
cluding packet acknowledgement information) is short, it can
be sent back to the transmitter based on reliable transmission
schemes, e.g., using repetition coding [41], or CDMA with high
spreading gain or other reliable coding techniques.

VI. GLOBALLY OPTIMAL ALGORITHM

In Section V we have presented an algorithm to solve
problem (15), which is a distributed version of the social joint
rate control and channel access control problem formulated
in (14a)—(14f). Then, a natural question is: how does the dis-
tributed solution compare to the global optimum of the social
optimization problem? Next we answer this question by formu-
lating the social optimization problem, proposing a centralized
but globally optimal solution algorithm, and using the resulting
global optimum as a benchmark for performance evaluation.

We develop a non-heuristic method for global optimization
of the problem introduced above based on a combination of the
branch and bound framework and the reformulation lineariza-
tion techniques (RLT) [42, p. 297, §8]. The proposed algorithm
searches for a globally optimal solution with predefined preci-
sion of optimality 0 < & < 1 which can be arbitrarily close to
1. If we denote the globally optimal objective function in (14b)
as U™, then the algorithm searches for an -optimal solution U/
that satisfies U > U™,

The proposed algorithm searches for the optimal solution iter-
atively. At each iteration, the algorithm maintains a global upper
bound UP,1;, and a global lower bound LRy, on the social ob-
jective UV in (14b) such that

LRy < U* < UPgp. (16)
Let T = [],,c o Tr represent the Cartesian product of T, de-
fined in Section V with n € A/, and define the initial search
space as the overall domain set Y. Then, the proposed algorithm
maintains a set of sub-spaces T = {T; Cc T,i = 1,2,...},
where ¢ represents the iteration step of the algorithm. For any
T, consider UP(-) and LR(-) as the upper and lower bounds
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on U in (14b) over sub-domain Y. We refer to UP(T;) and
LR(Y;) as the local upper bound and local lower bound, respec-
tively. Then, the global upper and lower bounds can be updated
as

(17)
(18)

UPglb = max{UP(Tl)},
LRglb = max{LR(Tl)}

For example, at the beginning, i.e., i = 0, the set of sub-
domains Y is initialized to {Y}, i.e., T = {T}, and UPy
and LRy, are initialized to be UP(T) and LR(Y), respec-
tively. The algorithm partitions T into two sub-domains. For
T;, i = 1,2, the algorithm calculates UP(Y;) and LR(Y;),
respectively. Then, the algorithm updates the global upper and
lower bounds as follows

UPgp = max{UP(Y;), i = 1,2},
LRglb = max{LR(Tl),z = 1, 2}

(19)
(20)

If UP(Y;) < LR, this indicates that the globally optimal
solution U* is not located in T';, and hence T; is removed from
{T}.

We use UP,y, to drive the branch and bound technique and
use LR 11, to check how close the obtained solution is to U* and
decide when to terminate the algorithm. If LRgp, > € - UPgpp,,
the algorithm terminates and sets the optimal objective I/ in
(14b)to U = ILRglb. Otherwise, the algorithm chooses one sub-
domain from T and further partitions it into two sub-domains
through variable partition (see Appendix C for more details),
calculates UP(-) and LR(-), and updates the UPy, and LR,
as in (17) and (18). In our algorithm, we select the T; with the
highest local upper bound from 7T, i.e., ¢ = arg max; UP(Y;).
Based on the update criterion of UPg)y, and LRy, in (17) and
(18), the gap between UP,1, and LR 1, converges to 0 as the do-
main-partition progresses. Furthermore, from (16), UP,;, and
LR, converge to the globally maximal objective function U*.

The branch-and-bound framework requires that, for given Y';,
the UP(Y,;) and LR(Y;) should be easy to calculate. To de-
termine UP(-), we rely on convex relaxation, i.e., we relax the
original nonlinear non-convex problem into a convex problem
that is easy to solve using the standard convex programming
techniques. For LR(-), through local search we obtain a fea-
sible solution starting from the relaxed solution and set the cor-
responding sum-throughput as the local lower bound. Readers
are referred to Appendix C for details of convex relaxation and
local search.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of D-ROSA
in terms of throughput, optimality and convergence. Some
key simulation parameters are summarized in Table II for
the reader's convenience. For performance comparison, we
implemented Aloha and its variations. To the best of our
knowledge, there are no other existing schemes designed for
ultrasonic networking in intra-body environments. Moreover,
we do not compare against CSMA/CA-based schemes be-
cause carrier sensing is known to be ineffective with high
propagation delays [43]. Specifically, in addition to D-ROSA,
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TABLE II
SIMULATION PARAMETERS

[ Para. | Physical Meaning | Value |
Communication area 40 x 40 x 60 (cm®)
Number of nodes 4, 8, 6, 10, 20, 50
B8 Amplitude attenuation 0.1 (ultrasonic
coefficient propagation in blood)
F = |F| | Number of sub-channels | 1,2
T = |T| | Number of time slots 1,3,4,5,7,9, 11
in a frame
R, Data generation rate 2, 4,6, 8, 10, 30, 50,
80, 110 (kbit/s)
B Sub-channel Bandwidth | 50 (kHz)
Ly Packet length 100 (bit)
Ta Time slot duration 0.5 x 1073 (s)

we also implemented four competing schemes, three dis-
tributed and one centralized: (i) a variation of D-ROSA
that does not consider rate control (ROSA-WoRC), i.e., a
fixed data generation rate is considered that takes value from
{0,2,4,6,8,10,30,50,70,90,110} kbit/s; (ii) Aloha with
optimized persistence probability for each session in each
time slot (Aloha-Opt); the probability is set to the optimal
transmission profile obtained by solving the social optimization
problem in (14a)—(14f) but considering only a single time slot
in each frame; (iii) Aloha-Opt without considering rate control
(Aloha-WoRC); the data generation rate is the same as that in
ROSA-WoRC; and (iv) the globally optimal solution algorithm
(referred to as C-ROSA) designed in Section VI.

Case Study: First, as a case study we show the effect of
multi-slot joint optimization on the individual throughput per-
formance for a five-session intra-body network, as shown in
Fig. 3. We observe that significant throughput gains can be ob-
tained by D-ROSA compared with single-slot-based channel
access (Aloha-Opt). For example, a 5x throughput gain is ob-
tained by session 2. For session 2, a throughput of 19.59 kbit/s
is achieved by transmitting with probability 1 and 0.23 in the
second and third time slot in each frame, while keeping silent in
the first and fourth (as indicated in the numerator in the figure).
In the single-slot optimization, the session chooses to access the
channel with probability 0.6318 in every time slot, and as a re-
sult, a throughput of only 3.86 kbit/s can be achieved. By av-
eraging over the five sessions, a 3.3 throughput is achieved
by D-ROSA. Indeed, we found that avoiding interference by
adding a guard band to each time slot as proposed in [21] for
underwater acoustic networks can be a natural outcome of opti-
mizing the transmission strategy based on our framework. How-
ever, our framework leads to fully distributed solutions, while
the approach in [21] needs global network information, and
hence is not suited for fast time-varying networks.

Additional examples are presented in Figs. 4(a) and 4(b) by
considering mobility of the transmitters. We consider three
interfering sessions, and let each transmitter move randomly
within a certain area (e.g., the targeted area of spatial-, temporal-
and dosage-controlled medical applications [16]) following
the Random waypoint model [44], as shown by the movement
trajectory in Fig. 4(a). From Fig. 4(b) we can see that, D-ROSA
considerably outperforms Aloha-Opt (i.e., Aloha with individ-
ually optimized persistence probability) in terms of individual

19.67 (0, 1,
7.0 (0.5¢

1959 (0, 1, 0.23, 0)
3.86 (0.6318)

19.99 (0.30, 0. 0, 1) )

138 (0.44) §-.| (cm)

Fig. 3. Individual throughput and transmission probability profile with
5-sessions.
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Fig. 4. (a) The transmitter of each session moves following the Random
waypoint model [44]; (b) Individual throughput by D-ROSA and Aloha-Opt in
scenario (a).
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Fig. 5. Throughput comparison between D-ROSA and C-ROSA.

throughput in all tested network topologies and for all the three
sessions.

Optimality and Convergence: Optimality and convergence
properties of D-ROSA are studied in Figs. 5 and 6, respectively.
From Fig. 5 we see that D-ROSA achieves nearly-optimal sum
throughput in intra-body networks with a moderate number of
nodes. For example, in 10-node intra-body networks 98.8% of
the global optimum can be achieved by D-ROSA. Results also
indicate a moderate performance gap between D-ROSA and
C-ROSA when the number of nodes is large, e.g., around 70% of
the optimum can be achieved. Note that this is achieved in a dis-
tributed way and with no message exchange. Cooperative strate-
gies, requiring however message exchange among different ses-
sions, were shown in our previous work to be able to partially
fill this gap. However, for low densities of nodes that are envi-
sioned in most practical applications, lightweight strategies with
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Fig. 7. Sum throughput achieved with different number of time slots in a frame
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minimal message exchange like D-ROSA seem to be more ap-
pealing. From Fig. 6, we see that D-ROSA can quickly converge
to a stable zone (always within several iterations in the tested
instances).

The effect of multi-slot optimization on sum throughput is
further studied in Fig. 7, with T varying from 1 to 11 in steps
of 2. By comparing the case 7' = 3 with 7" = 1, we ob-
serve that D-ROSA always obtains throughput gains. Also, in
an intra-body network with a moderate number of nodes, e.g.,
4 — 16 in Fig. 7, jointly optimizing more than three time slots
can only slightly increase the sum throughput. This is because in
a network with little or moderate interference, a lower number
of time slots is sufficient to provide the degrees of freedom
needed by the involved sessions to avoid creating excessive in-
terference to one another. An extreme case is the single-session
network without interference, where there is no need for the
session to perform multi-slot joint optimization. The benefit is
more obvious in a high-interference network, e.g., in a 20-node
intra-body network, where a maximum 9.4x throughput gain
can be achieved by jointly optimizing over 11 time slots.

The impact of rate control on the sum throughput is studied
in Fig. 8, with 4, 8 and 16 nodes, and data generation rate R,
fixed to different values from 0 to 110 kbit/s (for the algorithm
ROSA-WoRC). Compared with D-ROSA, the sum throughput
of ROSA-WoRC degrades considerably once the data genera-
tion rate R,, is fixed to a given value for each session. While
smaller values of R,, directly degrade the sum throughput, in-
jecting too much data into the network leads to a more con-
gested queue and also less energy available for data transmis-
sion with the total energy constraint in (14f). Note that, results
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Fig. 9. Sum Throughput of different algorithms in a 50-node network.

in Fig. 8 are averaged over 100 simulations by varying the net-
work topology. For a given specific intra-body network, if the
rate R,, can be carefully tailored, e.g., fixed to the optimum, then
the resulting throughput of ROSA-WoRC will coincide with
D-ROSA. Doing so however is less flexible in practice for dy-
namic networks. For example, to measure in real-time specific
blood components (e.g., the level of glucose) or to monitor cer-
tain tissues for micro-range and even multi-view imaging, a set
of implanted sensors may need to move around as in Fig. 4(a),
or cruise within a certain body area along blood vessels to con-
duct multi-point measurements. In this case, it would be very
difficult to determine the optimal sampling rate in advance.

In Fig. 9, we compare the sum throughput achieved
by the four distributed algorithms (D-ROSA, Aloha-Opt,
ROSA-WoRC, and Aloha-WoRC) in a 50-node network. While,
as expected, D-ROSA outperforms all the others, it is somewhat
surprising that the throughput achieved by Aloha-Opt can be
much lower than that of Aloha-WoRC. This implies that, in a
high-interference network, rate control must be jointly applied
with multi-slot optimization, or otherwise each session will in-
ject large amounts of data into the network to optimize its own
individual throughput, while the other sessions have no way to
avoid the resulting high interference by Aloha-Opt based on
which each session optimizes its transmission probability by
considering single time slot only.

Testbed Results: Testbed experiments have also been con-
ducted, with the objective of investigating if the throughput
gain, compared to single-time-slot-based channel access, can
be achieved by jointly optimizing the channel access over mul-
tiple time slots in D-ROSA and how the gain varies with the
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number of time slots in each frame, by considering real ultra-
sonic intra-body channels (mimicked using a kidney phantom)
and real state-of-the-art transmission schemes.

We first briefly introduce the experimental setup. The ex-
periment consists of two ultrasonic nodes that communicate
through a human-kidney phantom. Two ultrasonic transducers
are located on opposite sides of the phantom at a distance
of 10 cm. Time is divided in slots of 100 ms each, and each
session can transmit at most one packet of 96 bytes per time
slot. At the physical layer, we have implemented an orthog-
onal frequency-division multiplexing (OFDM) transmission
scheme. We set the number of total subcarriers to 64, of which
48 are actually used for data transmission, over a bandwidth
of approximately 200 kHz centered around 5 MHz, i.e., the
central frequency of the ultrasonic transducer in use. The cyclic
prefix is set to 16 samples. Each subcarrier is BPSK-modulated.
This results in a physical layer data rate of approximately
120 kbit/s. At this stage, only stochastic channel access has
been implemented on the test bed.

To guarantee repeatability of the experiments, we generate in-
terference from co-located transceivers by artificially injecting
interference at the transmitter, and multiplying each session for
a stochastic component that follows a Nakagami distribution
(please refer to Section III for validation of the channel model).
We consider a maximum of five concurrent interfering sessions.
In each time slot, each session transmits with a probability p &
{0.35,0.5,0.65, 0.8}. The number of time slots in each frame is
varied from 1 to 9, and we set to 3 the number of packets avail-
able in each session queue that need to be transmitted within a
time frame.

The experiment is divided in two stages. In the first stage, the
transmitting node transmits in consecutive time slots while the
receiver estimates the corresponding packet drop rate for each
time slot. The estimate is sent to the transmitter, that decides
accordingly the optimal transmission schedule. In the second
stage, the transmitting node transmits the 3 packets in queue in
each time frame according to the optimal transmission schedule
obtained. At the receiver, we evaluate the performance of the re-
source allocation strategy in terms of packet drop rate (or packet
delivery ratio).

In Fig. 10, we plot the packet drop rate against the number
of time slots in each frame. We consider two scenarios with dif-
ferent interference levels, i.e., SINR = 13 dB in Fig. 10 (top)
and SINR = 10 dB in Fig. 10 (bottom). For comparison, we
compare D-ROSA with a random channel access, where the
transmitting node selects randomly three time slots in a time
frame to transmit. We observe that the resulting packet drop
ratio consistently decreases as more time slots are jointly con-
sidered. When jointly considering 9 time slots, up to 10 times
lower packet drop rate can be achieved compared to random
channel access in the case of SINR = 13 dB, while 6 times
lower than for SINR = 10 dB.

VIII. CONCLUSIONS

We investigated for the first time algorithms for cross-layer
control of functionalities in ultrasonic intra-body area networks.
We focused on the design of lightweight, asynchronous, and dis-
tributed algorithms for joint stochastic channel access and rate
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Fig. 10. Testbed validation: packet drop rate against the number of time slots
in each frame with different levels of interference, SIN R = 13 dB(top) and
SINR = 10 dB (bottom).

control optimization, with the objective of maximizing the net-
work throughput for a given energy budget. We first developed
a statistical model of the spatial and temporal variability of ul-
trasonic interference. Then, we formulated a throughput maxi-
mization problem under energy budget constraints and proposed
a distributed solution algorithm. Extensive simulation results
showed considerable throughput gains compared with Aloha-
based channel access, and that separate rate control could lead
to rather poor performance in intra-body environments. Prelim-
inary testbed results have also been presented to validate effec-
tiveness of the algorithm.

It is worth pointing out that, the current testbed is equipped
with only two transducers and a static Kidney phantom. To sup-
port more realistic validations, a new testbed needs to be devel-
oped with a phantom that can move as real human tissues and
with a larger number of transducers. Another research subject
in future is to develop mm-size miniaturized transducers to en-
able deployment of large-scale intra-body networks, e.g., with
tens of and even more nodes as discussed in this paper. Other
possible future research will be incorporating reliability (e.g.,
link layer retransmissions) and layer-3 routing into the network
model and analysis.

APPENDIX

A. Proof of Log-Concavity

Define [zn £ log(U,(R,, @,,a_,)), then we only need to
show that Uy, is a concave function with R, and e, with given
a_,. To this end, we rewrite U,, as

U, = log (Ru(1 — P¥Y(Ry,an,a ) — PET))
- log (Rn) - (Cn (any afn) - Rn)Tflh/Ln

pth

+log (1 — PermyelOnlan ) =B Fm 1) (21)

AW/

Since the first and second items in the right-hand side of (21)
are linear, we only need to show that the third item denoted as
A,, is concave.

Let y, (R, @) = Cp(an, &) — R, then it can be proven,
by deriving the second-order derivative of A,, with respect to
Yn, that A, is a concave function of y,,. Moreover, from (10)
and (11) we have that, with given &_,, y, (R, &, @ ;) is an
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affine function of R,, and ¢,,. Then, based on the fact that com-
position with an affine mapping preserves convexity of function
[39, §3.2.2], we have A,, is a concave function of R,, and a,,.

B. Proof of Theorem 2

We first construct a |A| x || real matrix & as follows

max

[(I)E]nm = { MI”;’;&X’

Vrnn ?

ifn=m,

otherwise, (22)

where pl'a* £ SUD(R a)cT Amost (Hpn) and o2

SUp(R a)e || Ham|l, with H,, being the Hessian matrlx of

Hl ax A

Un, Hpm the Jacobi matrix with respect to (R, ey, ) of the
gradient function of Uy, Amost (Hnn) the greatest eigenvalue
of H,,,and T = Hne N T,, being the Cartesian product of
all individual domain sets I',,. Then, to prove the theorem,
we only need to show that [(Dﬁ]nm in (22) is a P-matrix, and
further it is sufficient to show the following condition holds

true [40, P7, Proposition 3]
max > Z I/;?:LX.
meN/n

From (21), (10) and (11), each element of Hy,, ie., the
second derivative of U, with respect to R,, and «,, can be
written as

(23)

U, 1 9%4,
dE? (R T o2 @)
2T, a2A,,
n _ Lf
R0l O LT< ~Od(a- ))} @3)
U,  9*A, it ?
Ty R [m( - Oilla ”} 26)

with A,, and y,, defined in Appendix A, |7| and RY being pa-
rameters in (10) and (11), and O (a_,,) defined in (8). Each
element of Jacobi matrix H,,,, can be written as

U, 82U,
= — =0 27
8RmaRn 8015,’:81%71 ( )
U, A offRS 904 8)
ORyDalf AMym)* [T| aalf
277 r7 0 2 tf po tf
a mt _ |:Rm (1 o Oif{ (a—m,)):| 8 AQ amRm aO{n
dasi ooy LIT] Iym)* [T] daif
QA TN RO 90tf
_ (____ _ m > m ;n' (29)
OYm  Lm ) |T| dalf

We can see from (24)—(29) that, as the number of time slots
in each frame |7| increases, the determinate the Hessian ma-
o
trix H,,,, turns to be dominated by only OB(R—Z’)Q in (24), and the
Jacobi matrix H,,,, turns to be a zero matrix. In the case of suf-
ficiently large |77, we have

1 0?4
RN - e Ve N 30
/‘L'n, (Rn)z a .,ZL n ( )
v 2 0,Yn,m eN (31)
and hence condition (23) holds true since ‘);;4;‘ < 0 for the

concave function U,,.
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C. Centralized Solution Algorithm

We describe the three key components of the centralized so-
lution algorithm, i.e., convex relaxation, variable partition, and
local search.

1) Convex Relaxation: To relax the social optimization
problem in (14a)—(14f) to be convex, we need to relax all
non-convex items, including the non-concave capacity expres-
sion in (9), and the non-concave objective function in (13).

To relax the non-concave expression C(n, ¢, f,1) in (9), we
first rewrite it as

C(n,t, f,1) =log, ((65)* + ILF (1) + PIAY)

~log, ()% + 7 (1)) -

Since the first line of (32) is concave, it is sufficient to only
relax the item in the second line. We chose to relax the loga-
rithm with a set of linear constraints. Fig. 11 shows an illustra-
tion of the relaxation, where we use four lines, one secant and
three tangent lines, to approximate the original logarithm func-
tion. The lower and upper bound of I/ (1) £ (61)? + I}/ (1)
can be easily calculated with given range of af! for each inter-
fering session m € M /n in a specific sub-domain. The relax-
ation error A log(I%/ (1)), defined as the gap between the relaxed
value and the real value of the logarithm function, tends to zero
as the sub-domain partition goes.

To relax the non-concave objective function in (13), we first
introduce a new variable

(32)

ﬁsly é _Pgly(Rnaarua*n)' (33)

Then, the individual objective function in (13) can be rewritten
as Uy, (R, a) = Ry (1—Po%)+ R, PYY  where the first item in
the right-hand side is linear while the second item can be relaxed
using the RLT [42]. To this end, let UPR(PI), UPR(R,,)
and LW R(P‘Hy) LW R(R,,) represent the upper and lower
bounds of Pdl) and R, respectively, with given sub-domain
T;. Further, we introduce a new variable v, = R, PdllV then
the non-convex item R, Pdly can be relaxed by substituting v,
into the following four linear constraints,

(UPR(PJY) — PMYUPR(R,) — Ry) >0, (34)
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(UPR(I/:\;?W) - ﬁgly)(Rn - LVVR(RHD 2 0, (35)
(P — LWR(PI))(UPR(R,) — Ra) >0,  (36)
(P — LWR(PY))(R, — LWR(R,)) >0. (37)

Since PIY(R,,,e,,a_,) defined in (12) is a monotonic
function with R,, — C), (s, a,nl, the above upper and lower
bounds UPR(PIY) and LW R(P2%) can be easily calculated
by solving linear optimization problems.

Finally, we relax the equality constraint in (33) as

P < _ PR, a,,a ), (38)
Py > LWwR(PIY), (39)

which result in a convex domain set since —P3Y in (38) is a
concave function with respect to R,, and Cy, (@, _,) in (10).
2) Variable Partition: We select the subproblem that has the
highest local upper bound to partition. In this paper, we select
the subproblem that has the highest local upper bound. The se-
lected subproblem can be partitioned into two new subproblems
by partitioning one of its variables, i.e., {a!f,n € N,t € T,
f € F}. We select the variable that has the largest range and
partition it in the middle, that is to select (o )* such that

(UPR(a)) — LWR(a!S)), (40)

tfyx a
() ne/\/gle%fef

and partition it as

v _ UPR((e}f)*) + LWR((eff)*)

— 5 ,
which results in two new subproblems with domains of
[LWR((ef)) (ef)M] and  [(a/)™  UPR((eff)")],
respectively.

3) Local Search: We call the solution obtained through
solving the relaxed optimization problem relaxed solution.
Since the transmission profile @ corresponding to the relaxed
solution is also feasible, we can obtain a lower-bound capacity
based on (10), and then calculate the optimal E,, with given
C,, for each n € A by solving a convex optimization problem
similar as in Algorithm 1.

(o) (41)

REFERENCES

[1] Z. Guan, G. E. Santagati, and T. Melodia, “Ultrasonic intra-body
networking: Interference modeling, stochastic channel access and rate
control,” in Proc. IEEE Conf. Comput. Commun., Hong Kong, Apr.
2015, pp. 2425-2433.

[2] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A
survey on wireless body area networks,” Wireless Netw., vol. 17,no. 1,
pp. 1-18, Jan. 2011.

[3] T.Gao, D. Greenspan, M. Welsh, R. R. Juang, and A. Alm, “Vital signs
monitoring and patient tracking over a wireless network,” in Proc.
IEEF Int. Conf. Eng. Med. Biol. Soc., Shanghai, China, Sep. 2005, pp.
102-105.

[4] G.E. Santagati, T. Melodia, L. Galluccio, and S. Palazzo, “Ultrasonic
networking for e-health applications,” IEEE Wireless Commun. Mag.,
vol. 20, no. 4, pp. 74-81, Aug. 2013.

[5] T. Hogg and R. A. Freitas, “Acoustic communication for medical
nanorobots,” Nano Commun. Netw., vol. 3, no. 2, pp. 83-102, Feb.
2012.

[6] Medtronic, ‘“Medtronic pain neurostimulation system,” [Online].
Available: http://www.medtronic.com/

[7] St.Jude Medical, “The CardioMEMS HF system,” [Online]. Available:
http://www.sjm.com/cardiomems/

[8] Microsemi, “Implantable medical transceivers,” [Online]. Available:
http://www.microsemi.com/

[9] G. E. Santagati, T. Melodia, L. Galluccio, and S. Palazzo, “Medium
access control and rate adaptation for ultrasonic intra-body sensor net-
works,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1121-1134, Aug.
2015.

[10] G. E. Santagati and T. Melodia, “Sonar inside your body: Prototyping
ultrasonic intra-body sensor networks,” in Proc. IEEE Conf. Comput.
Commun., Toronto, ON, Canada, Apr. 2014, pp. 2679-2687.

[11] G. Oberholzer, P. Sommer, and R. Wattenhofer, “Spiderbat: Aug-
menting wireless sensor networks with distance and angle infor-
mation,” in Proc. IEEE/ACM Int. Conf. Inf. Process. Sensor Netw.,
Chicago, IL, USA, Apr. 2011, pp. 211-222.

[12] F. L. Thurstone and H. E. Melton, “Biomedical ultrasonics,” [EEE
Trans. Ind. Electron. Control Instrum., vol. 1IECI-17, no. 2, pp.
167-172, Apr. 1970.

[13] J. Hoyd-GiggNg et al., “Progress towards the development of novel
fabrication and assembly methods for the next generation of ultrasonic
transducers,” in Proc. IEEE Electron. Syst.-Integration Technol. Conf.,
Maritim Pro Arte, Berlin, Sep. 2010, pp. 1-6.

[14] A. Lanata, E. Scilingo, and D. D. Rossi, “A multimodal transducer for
cardiopulmonary activity monitoring in emergency,” [EEE Trans. Inf.
Technol. Biomed., vol. 14, no. 3, pp. 817-825, May 2010.

[15] R. Smith et al., “Design and fabrication of ultrasonic transducers with
nanoscale dimensions,” J. Phys., vol. 278, no. 1, pp. 1-4, Jan. 2011.

[16] S.Mura, J. Nicolas, and P. Couvreur, “Stimuli-responsive nanocarriers
for drug delivery,” Nature Mater., vol. 12, pp. 991-1003, Nov. 2013.

[17] A. Y. Cheung and A. Neyzari, “Deep local hyperthermia for cancer
therapy: External electromagnetic and ultrasound techniques,” Cancer
Res. (Suppl.), vol. 44, no. 9, pp. 4736-4744, Oct. 1984.

[18] A.Kiourti, K. A. Psathas, and K. S. Nikita, “Implantable and ingestible
medical devices with wireless telemetry functionalities: A review of
current status and challenges,” Bioelectromagnetics, vol. 35, no. 1, pp.
1-15, Jan. 2014.

[19] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Upper Saddle River, NJ, USA: Pren-

tice-Hall, 1989.

L. Galluccio, T. Melodia, S. Palazzo, and G. E. Santagati, “Challenges

and implications of using ultrasonic communications in intra-body area

networks,” in Proc. IEEE Int. Conf. Wireless On-Demand Netw. Syst.,

Courmayeur, Italy, Jan. 2012, pp. 182—189.

[21] A. Syed, W. Ye, J. Heidemann, and B. Krishnamachari, “Under-
standing spatio-temporal uncertainty in medium access with ALOHA
protocols,” in Proc. ACM Int. Workshop Underwater Netw., Montreal,
QC, Canada, Sep. 2007, pp. 41-48.

[22] X. Guo, M. Frater, and M. Ryan, “Design of a propagation-delay-tol-
erant MAC protocol for underwater acoustic sensor networks,” /EEE
J. Ocean. Eng., vol. 34, no. 2, pp. 170-180, Apr. 2009.

[23] Z. Zhou, Z. Peng, J.-H. Cui, and Z. Jiang, “Handling triple hidden
terminal problems for multichannel MAC in long-delay underwater
sensor networks,” IEEE Trans. Mobile Comput., vol. 11, no. 1, pp.
139-154, Jan. 2012.

[24] M. Chitre, M. Motani, and S. Shahabudeen, “A scheduling algorithm
for wireless networks with large propagation delays,” in Proc. IEEE
Oceans, Sydney, Australia, May 2010, pp. 1-5.

[25] B.Peleato and M. Stojanovic, “Distance aware collision avoidance pro-
tocol for ad-hoc underwater acoustic sensor networks,” IEEE Commun.
Lett., vol. 11, no. 12, pp. 1025-1027, Dec. 2007.

[26] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as opti-
mization decomposition: A mathematical theory of network architec-
tures,” Proc. IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.

[27] X. Lin and S. Rasool, “A distributed joint channel-assignment,
scheduling and routing algorithm for multi-channel ad hoc wireless
networks,” in Proc. IEEE Int. Conf. Comput. Commun., Anchorage,
AK, USA, May 2007, pp. 1118-1126.

[28] Y. T. Hou, Y. Shi, and H. D. Sherali, “Optimal spectrum sharing for
multi-hop software defined radio networks,” in Proc. IEEE Int. Conf.
Comput. Commun., Anchorage, AK, USA, May 2007, pp. 1-9.

[29] X. Fang, D. Yang, and G. Xue, “Resource allocation in load-con-
strained multihop wireless networks,” in Proc. IEEE Int. Conf.
Comput. Commun., Orlando, FL, USA, Mar. 2012, pp. 280-288.

[30] P.-K. Huang and X. Lin, “Improving the delay performance of CSMA
algorithms: A virtual multi-channel approach,” in Proc. IEEE Int. Conf.
Comput. Commun., Turin, Italy, Apr. 2013, pp. 2598-2606.

[31] J. Kwak, C.-H. Lee, and D. Y. Eun, “A high-order Markov chain based
scheduling algorithm for low delay in CSMA networks,” in Proc. [EEE
Int. Conf. Comput. Commun., Toronto, ON, Canada, Apr. 2014, pp.
1662-1670.

[20

=



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[32] Ettus Research, “USRP: Universal software radio peripheral,” [On-
line]. Available: http://www.ettus.com/

[33] The Ultran Group, “Standard immersion ultrasonic transducers,”
[Online]. Available: http://www.ultrangroup.com/index.php/products/
transducers/standard/

[34] CIRS, “CIRS: Kidney training phantom,” [Online]. Available: http://
www.cirsinc.com/products/all/81/kidney-training-phantom/

[35] A. Tipirneni, R. Song, R. B. Loeffler, and C. M. Hillenbrand, “Evalu-
ation of the relationship between respiratory hepatic and renal motion
using real-time MRL” Proc. Int. Soc. Magn. Resonance Med., vol. 17,
p. 2071, 2015.

[36] D. Tse and P. Viswanat, Fundamentals of Wireless Communication.
New York, NY, USA: Cambridge Univ. Press, 2005.

[37] X. Zhu, E. Setton, and B. Girod, “Congestion-distortion optimized
video transmission over ad hoc networks,” EURASIP Signal Process.,
Image Commun., vol. 20, no. 8, pp. 773-783, Sep. 2005.

[38] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ, USA: Prentice-Hall, 2000.

[39] S. Boyd and L. Vandenberghe, Convex Optimization.
U.K.: Cambridge Univ. Press, 2004.

[40] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Monotone

games for cognitive radio systems,” in Distributed Decision-Making

and Control, ser. Lecture Notes in Control and Information Sciences,

A. Rantzer and R. Johansson, Eds. New York, NY, USA: Springer-

Verlag, 2011.

A. A. Ali and I. A. Al-Kadi, “On the use of repetition coding with

binary digital modulations on mobile channels,” IEEE Trans. Veh.

Technol., vol. 38, no. 1, pp. 14—18, Feb. 1989.

H. D. Sherali and W. P. Adams, A Reformulation-Linearization Tech-

nique for Solving Discrete and Continuous Nonconvex Problems.

Boston, MA, USA: Kluwer, 1999.

[43] D. Pompili, T. Melodia, and I. F. Akyildiz, “A CDMA-based medium
access control for underwater acoustic sensor networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 4, pp. 1899-1909, Apr. 2009.

[44] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for
ad hoc network research,” Wireless Commun. Mobile Comput., vol. 2,
no. 5, pp. 483-502, Aug. 2002.

Cambridge,

[41]

[42]

Zhangyu Guan (M'11) received the Ph.D. degree in
communication and information systems from Shan-
dong University, Jinan, China, in 2010.

He is currently a Postdoctoral Research Associate
with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA,
USA. He was a visiting Ph.D. student with the
Department of Electrical Engineering, The State
University of New York (SUNY) at Buffalo, Buffalo,
NY, USA, from 2009 to 2010; he was a Lecturer
with Shandong University from 2011 to 2014; and

IEEE/ACM TRANSACTIONS ON NETWORKING

he was a Postdoctoral Research Associate with the Department of Electrical
Engineering, SUNY Buffalo from November 2012 to August 2015. His current
research interests are in cognitive radio and software-defined networking,
wireless multimedia sensor networks, and underwater networks.

Dr. Guan has served as a TPC member for IEEE INFOCOM 2016, IEEE
GLOBECOM 2015, IEEE ICNC 2012-2015, and IEEE VTC 2011-Fall
and 2015-Fall, among others, and served as a reviewer for the IEEE
TRANSACTIONS ON COMMUNICATIONS, the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS, and the IEEE COMMUNICATIONS SURVEYS AND
TUTORIALS, among others.

G. Enrico Santagati is a Ph.D. student with the
Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA. He is
currently working with the Wireless Networks and
Embedded Systems Laboratory under the guidance
of Prof. Tommaso Melodia. He received the B.S.
and M.S. degrees in telecommunication engineering
from the University of Catania, Catania, Italy, in
2010 and 2012, respectively. His current research
interests are in ultrasonic intra-body networks and
software defined radios.

Tommaso Melodia (M'07) received the Ph.D.
degree in electrical and computer engineering from
the Georgia Institute of Technology, Atlanta, GA,
USA, in 2007.

He is an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA. His
research has been supported by the National Science
Foundation, Air Force Research Laboratory, and the
Office of Naval Research, among others. His current
research interests are in modeling, optimization, and
experimental evaluation of networked communication systems, with applica-
tions to ultrasonic intra-body networks, cognitive and cooperative networks,
multimedia sensor networks, and underwater networks.

Prof. Melodia was a recipient of the National Science Foundation CAREER
Award and coauthored a paper that was recognized as the ISI Fast Breaking
Paper in the field of Computer Science for February 2009 and of Best Paper
Awards of ACM WUWNet 2013 and 2015. He was the Technical Program
Committee Vice Chair for IEEE GLOBECOM 2013 and the Technical Program
Committee Vice Chair for Information Systems for IEEE INFOCOM 2013.
He serves on the editorial boards of the IEEE TRANSACTIONS ON MOBILE
COMPUTING, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the
IEEE TRANSACTIONS ON MULTIMEDIA, and Computer Networks.



