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Abstract—To support rigorous and repeatable experimental
evaluation of wireless networked systems, the community has
made significant efforts to develop experimentation platforms.
However, existing platforms primarily focus on the data plane,
i.e., the forwarding infrastructure, without explicitly considering
the control plane. To fill this gap, in this work we develop NeXT,
a software-defined testbed with integrated wireless network
simulation, experimentation and optimization capabilities. We
first design the data plane, which integrates an event-driven
broadband wireless network simulator called UBSim and a
software-defined wireless network testing facility called RoboNet.
We then design NeXT’s control plane, where a software toolchain
is developed and deployed to support both traditional model-
based optimization and new data-driven control techniques.
Finally, we validate the effectiveness of NeXT by considering
a series of wireless network optimization and control problems.

I. INTRODUCTION

In the past decades, the evolution of wireless network
systems has significantly changed and will continue to change
the way we live and work, our commercial activities as
well as national security. However, as of today the wireless
research community is still lacking a mature ecosystem to
support rigorous and repeatable experimental evaluation of
wireless networked systems. To fill this gap, significant efforts
have been made by the community. A recent milestone is
the NSF Platforms for Advanced Wireless Research (PAWR)
program, which attempts to develop four large-scale outdoor
experimentation platforms for advanced wireless research [1].
As of today, three of them have already been developed and
are available to the wireless community. These are POWDER-
RENEW for experiments in the sub-6 GHz frequency bands
[2], COSMOS for experiments in both sub-6 GHz and
mmWave frequency bands as well as edge computing [3], and
AERPAW for experiments for wireless UAV systems [4].

While existing community shared facilities have signifi-
cantly advanced experimental research for new wireless sys-
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Fig. 1: NeXT testbed architecture.

tems, it is still challenging to fully meet the needs of experi-
mental wireless research in the era of data-driven networking.
First, to simplify the modeling, control and optimization of
heterogeneous NextG networks, data-driven control based on
Artificial Intelligence (AI) and Machine Learning (ML) has
attracted significant research attention [5]. However, the effec-
tiveness of AI/ML algorithms largely relies on sufficient well-
labeled data for policy training. It is typically time consuming
and sometimes unsafe to collect training data in real-world
environments. Second, the design, prototyping and verification
of new network control algorithms require engineers to grap-
ple simultaneously with mathematical modeling, distributed
control, protocol design across different layers of the protocol
stack, as well as their implementation and deployment. This
process is typically complex, tedious and error-prone.

To address these challenges, in this paper we present NeXT,
a software-defined wireless Network X-Control Testbed, where
“X” refers to optimization, simulation and experimentation. In
a nutshell, NeXT provides an integrated testing framework,
in which researchers are allowed to generate in an auto-
mated manner distributed cross-layer network optimization
algorithms, simulate the generated algorithms in software,
and then validate the simulation results based on testbed
experiments. The overall architecture of NeXT is illustrated
in Fig. 1, where there are two planes, Data Plane and Control
Plane. The former provides simulation and experimentation
capabilities, and the latter implements network optimization
and control functionalities.

The main contributions of this work are as follows:

• We first design the data plane for the NeXT testbed.
In this plane, we first integrate UBSim with NeXT for
software-based network simulation. UBSim is an event-
driven simulator that has been developed at University
at Buffalo for broadband (microwave, mmWave and ter-
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Fig. 2: Architectural overview of UBSim network simulator.

ahertz bands) aerial and ground wireless networking. We
also develop a testing facility for mobile networks based
on software-defined radios.

• We then design NeXT’s control plane, which supports
traditional model-based control and new data-driven con-
trol techniques. For the former, Wireless Network Oper-
ating System (WNOS) [6] has been deployed to enable
automated generation of distributed cross-layer control
algorithms. For the latter, a reinforcement learning (RL)
repository is developed supporting various RL algorithms.

• We showcase the optimization, simulation and experi-
mentation capabilities of the NeXT testbed considering
a series of wireless network control problems. A set of
APIs have been designed to simplify access to NeXT’s
data and control planes.

II. DATA PLANE DESIGN

The data plane provides the forwarding infrastructure for
the NeXT testbed. As illustrated in Fig. 1, two forwarding
infrastructures have been designed: UBSim for software-based
network simulations and RoboNet for experiments based on
software-defined radios.

A. Software Simulations based on UBSim

UBSim is a new wireless network simulator written in
Python and based on the SimPy discrete event simulation
framework [7]. As depicted in Fig. 2, UBSim comprises
three primary modules to handle the behavior definition of
various network elements, as well as three APIs to support a

wide range of custom networking scenarios. Specifically, the
network element module (NEM) defines the behaviors of all
types of communication nodes, environmental blockages, the
channels, and the network as a whole. The network controller
module (NCM) organizes the information from the NEM and
each user API to define the network topology, environment,
and control objective. The discrete event module (DEM)
then takes the resulting full scenario definition and starts the
discrete event-driven simulation process.

The simulator APIs offer full configuration over network
behaviors, environment specification, and control specification.
Specifically, the network configuration API provides control
over parameters such as frequency, bandwidth, mobility, and
location of nodes, as well as networking area and propagation
characteristics. The environmental definition API provides
control over the locations and sizes of blockages as well
as their RF absorption coefficients over different frequency
bands. In general, all environmental features are modeled as
blockages within the networking area. Finally, the custom
algorithm API provides access to the runtime behavior of all
the nodes, such as mobility, transmission patterns, band asso-
ciation, among others. Particularly, this API module provides
direct support for experimental applications of ML for tasks
such as network automation and self-configuration.

B. Software-Defined Forwarding Infrastructure: RoboNet

The design objective of RoboNet is to support experiments
in wireless networks with mobile robots, such as mobile
hotspots [8] and wireless UAVs [9]. The testbed is located in
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Fig. 3: (a) Snapshot of the RoboNet testbed; (b) RoboNet network topology.
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238 Davis Hall on the University at Buffalo’s North Campus.
Fig. 3 shows a snapshot of RoboNet and the corresponding
topology. At the center of RoboNet is a netted enclosure
of dimension 6 × 4 × 2.1 m3, providing a safe space for
robot navigation. For mobile nodes, three wireless robots
have been designed based on SuperDroid vehicles and USRP
SDRs. An indoor navigation system is also designed based
on Marvelmind beacons to provide indoor localization for
the robots. For static nodes, a set of USRP SDRs have been
deployed over the shelves on the left and right sides of the
net enclosure. All the static software radios are controlled by
a server rack of five Dell workstations. The mobile software
radios are controlled by the onboard computing hosts.

Static Nodes. The static nodes consist of 19 USRP N210
and 5 USRP B210 SDRs. Each USRP N210 operates at
frequency from DC to 6 GHz and can process up to 50 mega
samples per second (MS/s). Each USRP N210 is equipped
with a CBX daughterborad and two VART900/VART2450
antennas. These USRP SDRs are connected via two switches
to a server rack, comprising four Dell EMC R340 PowerEdge
workstations for baseband signaling processing. Each USRP
B210 is designed for low-cost experimentation with continu-
ous frequency coverage from 70 MHz to 6 GHz. Each USRP
B210 is also equipped with two VART2450 antennas.

The USRP SDRs are powered via three remotely accessible
CyberPower Power-Distribution-Units (PDUs), as shown in
Fig. 4(a). These PDUs are assigned Ethernet LAN IP addresses
192.168.10.175, 192.168.10.176 and 192.168.10.177 and con-
nected to edge servers via switches. Figure 4(b) shows the
PDU remote management interface, via which experimenters
can power on/off USRPs in real time or at scheduled times.

Mobile Nodes. Three software-defined robot vehicles have
been designed for RoboNet based on a combination of Su-
perDroid robots and USRP SDRs. Snapshots of the robot

vehicles are shown in Fig. 5. The SuperDroid robot serves
as the mobile carrier of the software radios. A programmable
Mecanum wheel vectoring robot has been used in the current
design of the mobile nodes. Each robot comprises 4 Mecanum
wheels, 4 IG32 gear motors, 2 Sabertooth dual 5A motor
drivers, 1 Quadruple LS7366R Encoder and 1 Arduino UNO
controller. Each robot is powered by two 18V/2.4A PB (lead-
acid) batteries. This allows each robot vehicle to carry up
to 50 lbs of payload, including the USRP SDRs and their
controlling host. Each robot is equipped with USRP SDRs
for programmable wireless communications. Currently, both
USRP N210 and B210 can be supported by mobile nodes.

A Dell Latitude 5491 laptop with Intel CoreTM i7-8850H
CPU @ 2.6GHz*12 is used for robot control, USRP SDR con-
trol and baseband signal processing. The connection between
the controlling laptop and the robot vehicle is established by an
Arduino via USB port “/dev/ttyACM0”. The mobile beacon is
connected to the laptop via USB port “/dev/ttyACM1”. Finally,
the movement of the robot is controlled and navigated by the
Arduino and the beacon via serial communications.

Indoor Positioning System. Because of the poor reception
of GPS signals in indoor environments, an indoor positioning
system has been deployed, as shown in Fig. 6. The system
consists of a controller modem (Fig. 6(a)) and 7 precise (with
accuracy of ±2 cm) Marvelmind Super-Beacons (Fig. 6(b)).
Based on this system, the location of the mobile beacon can
be calculated using trilateration based on the propagation delay
of ultrasonic signals to a set of stationary beacons.

The 7 super beacons are divided into two groups: 4 static
and 3 mobile beacons. As shown in Fig. 3(b), the 4 static
beacons, b1, b2, b3 and b4, are attached to the four sides of the
protecting net. For example, Fig. 6(b) shows the deployment
of b1, which can communicate with the controller modem, its
neighbour beacons and the mobile beacon using the selected
frequency (19/25/31/37 kHz). According to the exchanged
information among the static beacons, the mobile beacon and
the modem, the robot locations will be updated in real time.
We adopt a Non-Inverse Architecture to set up the navigation
system and 31 kHz is used as the communication frequency.

Finally, the controller modem is connected to the edge
server via a USB port. Through the control dashboard at
the server, experimenters can define a network map by as-
signing the origin point of the 3D network, configure beacon
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parameters (e.g., beacon address and mode), and monitor the
movements of the mobile beacons mounted on the robots.

III. CONTROL PLANE DESIGN

The control plane supports both traditional model-based
control and emerging data-driven control. To this end, WNOS
has been deployed over NeXT for automated generation of
distributed cross-layer control algorithms, and an RL reposi-
tory has been designed supporting various RL algorithms. The
control plane is deployed over the edge servers.

A. Network Modeling and Optimization Support

It is tedious and error-prone to manually model and optimize
forwarding infrastructure in the data plane. To address this
challenge, WNOS [6] has been deployed over NeXT. The
goal of WNOS is to abstract the data plane forwarding
infrastructure and automatically generate distributed solution
algorithms that can be deployed on the NeXT’s data plane,
i.e., UBSim and RoboNet. The network abstraction provides a
set of APIs, based on which experimenters can characterize
in a centralized manner the desired network behaviors before
actual deployment. The automated control program generation
is enabled by disciplined instantiation (DI) [6], based on which
user-defined abstract centralized network control problems can
be decomposed into a set of distributed subproblems.

WNOS supports a wide set of network control problems in
both static and mobile networks. These include, but are not
limited to, rate maximization, power minimization, end-to-end
delay minimization, and movement optimization. WNOS also
provides a rich set of APIs, based on which experimenters
are allowed to define more sophisticated control problems in
next-generation broadband networks spanning across multiple
frequency bands, e.g., microwave, mmWave as well as THz
bands. Below are some examples of the APIs.

Example APIs: Experimenters can use attach(·) to
add elements to the network and connect(·) to link
one or more network elements. With install_model(·),
one can install an expression model for a network ele-
ment attribute. Based on get_expr(·), mkexpr(·) and
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Fig. 7: Network element control interface and experiment manage-
ment APIs.

record_expr(·), one can get the expression of a network
element, construct the new expression and store the expression
in the database, respectively. set_para(·) can be used to
designate a specific expression as a utility function, constraint,
or optimization variable, and set_soln(·) can be used to
select the solution method to optimize the designated variables.

B. Data-Driven Network Control Repository

This repository consists of two classes of APIs for data-
driven control, i.e., Basic Class and Advanced Class. The
basic class is responsible for network initialization. Examples
include the Environment Initialization API, Variable Initializa-
tion API and Feedback List Initialization API. The Advanced
Class APIs are designed based on Basic Class and are used for
policy training, including updating states, actions and a value
table. Given the number of states and actions specified using
the Configuration API, the environment can be initialized using
the Environment Initialization API. Key variables involved in
learning algorithms, such as the current state and next state,
can be initialized via the Variable Initialization API. One
is also allowed to choose the Reward Type and Calculator
Mode through the Configuration API. Based on these APIs,
four classes of RL algorithms have been implemented in
the advanced class and can be called via the RL Algorithm
API. These are epsilon-greedy search, upper confidence bound
(UCB) action selection, Q-learning and SARSA. Different
reward types and calculator modes have been defined in
advance, while experimenters can define custom reward type
and calculator mode for their own experiments.

C. Experiment Management APIs

A set of experiment management APIs have also been
provided in NeXT’s control plane to help experimenters define
various network environments, as illustrated in Fig. 7. These
include Network Configuration API, Host Configuration API
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Fig. 8: (a) Average capacity obtained over UBSim; and (b) average
number of transmitted packets using RoboNet.

and USRP Configuration API. Parameters that can be con-
figured via network configuration APIs include network area,
center frequency, bandwidth, transmission power, modulation
type, slot duration, number of robots, etc. Through host and
USRP configuration APIs, experimenters can manage Ethernet
address, wireless network address, and port numbers for the
SDRs and their controlling hosts.

After the experiment profile has been configured, one can
further control various network components via a set of system
control APIs deployed at the edge server. These include the
Transmission Control API, which can be used to control the
transmissions of the USRP N210 carried by the robot vehicle;
the Receiver Control API for controlling data receiving; the
Robot Movement Control API for controlling robot movement;
and finally the Beacon Positioning API, based on which
experimenters can obtain the real-time positions of the robots.

IV. EXAMPLE EXPERIMENTS OVER NEXT

We now test NeXT and showcase its capabilities of opti-
mization, simulation and experimentation considering several
network control problems. These include user scheduling in a
cellular network, trajectory optimization for a mobile hotspot,
and joint rate and power control in a multi-hop network.

User Scheduling. In the first experiment, we consider a
wireless network with a hotspot serving a set of users. The
transmission time is divided into a set of consecutive time
slots. In each time slot, we consider that the hotspot can serve
at most one user. The objective of the hotspot is to maximize
the aggregate throughput by selecting a user to serve in each
time slot. We design control algorithms for the hotspot based
on the data-driven network control repository as discussed
in Section III-B. Specifically, we consider the UCB action
selection algorithm and test it over both UBSim and RoboNet
developed in Section II. Firstly, we test the effectiveness of
the UCB algorithm in UBSim. Fig. 8(a) plots the achievable
capacity averaged over 20 episodes each with 500 time slots.
It can be seen that the average capacity improves over time,
and this validates the effectiveness of the data-driven network
control repository.

Then we further test the data-driven network control repos-
itory over RoboNet considering software-defined radios and
real-world wireless channels. USRP20 is selected as the trans-
mitter and five USRPs (USRP2, USRP5, USRP9, USRP11 and
USRP19) are selected as receivers (confer Fig. 3). The time
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slot duration is set to 3 seconds. The exploration parameter
ϵ and UCB control parameter c are set to 0.15 and 2,
respectively. We run 10 episodes of robot navigation, with each
episode consisting of 100 time slots. We calculate the average
number of received packets in each time slot and the results are
shown in Fig. 8(b). It can be seen that the highest throughput
can be achieved in around 20 time slots. This further validates
the effectiveness of the data-driven network control repository.

Mobile Hotspot Navigation. In the second experiment, we
consider a wireless network where a robot carrying a mobile
hotspot moves around to serve a set of users. The objective
is to maximize the users’ aggregate throughput by controlling
the robot’s trajectory. The network is divided into a set of grid
cells, each corresponding to a state of the environment. In each
grid cell, the robot has five action options, i.e., move forward,
move backward, move left, move right and stay. The reward for
each state-action pair is defined as the sum throughput of users.
Q-learning is considered in this experiment with exploration
probability ϵ set to 0.15, step size of 0.2 and discount factor
0.95. Each episode consists of 500 time-slots, corresponding
to 3 hours. We measure the number of received packets and
calculate the corresponding running average in each time slot.
The experimental results are reported in Fig. 9. It can be seen
that the running average converges to around 30 packets/slot.
The drop of instantaneous throughput near time slot 400 is
caused by the imperfection of the wireless link, which may
get disconnected as the robot moves.

Multi-hop Network Optimization. In this experiment we
further consider a multi-session multi-hop networks with two
sessions and eight nodes. Each session consists of four nodes,
namely one source node, two relay nodes and one destination
node. The objective is to maximize the network throughput
while minimizing the interference between the two sessions.
The optimization algorithms are generated with the help of
WNOS, which has been deployed over the control plane of
NeXT, as described in Section III. The resulting algorithms are
deployed over the data plane. Similar to the User Scheduling
experiment, we conduct this experiment over both UBSim and
RoboNet. The results are reported in Fig. 10. We can see
that the control algorithms converge over both UBSim and
RoboNet. It is worth pointing out that different link models
have been considered in UBSim and RoboNet in their current
implementations. In future research we will create a digital
twin of RoboNet based on UBSim and test the gap between
simulated and real-world performance.
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V. ENABLED NEW RESEARCH TOPICS

In this section we discuss the new research topics that NeXT
can enable, including sim-to-real transfer learning, robust
wireless network control, online digital twin construction and
optimization, and multi-agent reinforcement learning.

Sim-to-real transfer learning: Towards zero-touch wireless
network self-configuration, the proposed framework will con-
nect accelerated learning in the virtual domain with perfor-
mance evaluation in the real domain. This will enable experi-
mentation towards policy transfer across domains, starting with
experimental benchmarks to quantify the reality gap between
UBSim and RoboNet and then designing methods to minimize
the impact of this gap through an experimental campaign of
domain adaptation and novel twin-domain learning algorithms.

Robust wireless network control: The use of robust learning
for domain adaptation in the wireless domain has been intro-
duced in [10]. We plan to build on this idea by applying the
enabled sim-to-real capabilities of our framework, exploring
robust learning as a method of accounting for performance
degradation expected from sim-to-real policy transfer.

Online digital twin construction and optimization: Exist-
ing methods for generating a virtual model for digital twin
applications can be tedious and error-prone. This motivates
autonomous virtual environment construction based on mobile
sensing techniques such as simultaneous localization and map-
ping (SLAM). With integrated simulation and experimentation
capabilities, the NeXT testbed can enable research of online
digital twin construction by providing configurable network
simulation environments in UBSim, and verifying the accuracy
of the autonomously generated digital twin with ground truth
obtained through testbed experiments.

Multi-agent Reinforcement Learning (MARL): The NeXT
testbed can support MARL research for development and
evaluation of algorithms such as REINFORCE policy gradient
(PG), gradient-based partially observable MDP (G(PO)MDP),
actor-critic (A2C), or asynchronous actor-critic (A3C). The
architecture of UBSim and its supporting APIs can signifi-
cantly simplify the simulation design process, and enable rapid
deployment of environments such as RoboNet through user-
configurable parameters such as the number of nodes, dis-
tributed or centralized control algorithms, and reward function
related to the environment. Additionally, debugging MARL
algorithms for can be complicated and extremely challenging
due to the distributed nature of data collection and processing.

Using UBSim, all information needed for each node will be
accessible using one command. This can save time, provide
configurable online feedback to display only target data points,
and limit redundancy in coding for large-scale MARL prob-
lems. Finally, with support of the NeXT testbed, simulation
results obtained in virtual environments (e.g., UBSim) can be
verified through real-world experiments (e.g., RoboNet).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced the software-defined
testbed NeXT, which enables integrated simulation, experi-
mentation and optimization for wireless research. We verified
the effectiveness and flexibility of NeXT considering both
simulation and testbed experiments. We also discussed the
new research topics that can be enabled by NeXT. In future
research, we will i) support experiments in flying networks by
integrating UAVs into NeXT; ii) support the use of a digital
twin for testing self-optimizing networks; and iii) enable
remote access to our platform via CloudRAFT, a cloud-based
framework for remote access of experimentation platforms that
has been developed at the University at Buffalo [11].
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