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the meanwhile provide more flexible tradeoff between system efficiency and fairness among users.
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1. Introduction

Radio resource allocation (RRA) for multimedia services
has drawn a lot of attention because of its capability of
offering an efficient way to handle the resources. In previous
research, much attention has been paid to system efficiency
improvement, that is, maximizing system utility [1–8]. It
is shown that the Nash Bargaining Solution (NBS), a well-
defined notion in game theory, can be used to maximize
the sum of Peak Signal-to-Noise Ratios (PSNRs) in rate
allocation for collaborative video transmissions [1]. Optimal
resource allocation for multiuser wireless transmissions is
studied in [2] from an information theoretic perspective, and
it is shown that sum rate maximization (SRM) is suboptimal
when taking video quality into account. This work has
been extended to joint power and subcarrier allocation for
mutiuser video transmission in multi-carrier systems [3].
In [4], Application (APP), MAC, and Physical (PHY) layers
are jointly optimized using Cross-Layer Design (CLD) for
streaming video delivery in a multiuser wireless environ-
ments, and two objective functions are introduced, that is,
minimizing the sum of mean square error (MSE) of all video
users, maximizing the sum of PSNRs. As a continuous work

of [4, 5] proposed an application-driven cross-layer opti-
mization strategy and discussed the challenges in CLD for
multiuser multimedia services. Two Layering, as Optimiza-
tion Decomposition (LOD) methods, dual decomposition
and gradient projection-based decomposition, are used in
[6, 7] for downlink utility maximization (DUM) assuming
utility functions at APP layer are concave, increasing, and
differentiable. The maximization of weighted sum of data
rates in cross-layer resource allocation is addressed in [8],
and an improved conjugate gradient method under given
power constraint is presented as well.

In the work mentioned above, all the resource allocation
methods try to maximize the global utility function. There
are also several resource allocations that run in a distributive
way, for instance, ReSerVation Protocol (RSVP) was used to
allocate bandwidth among multiple multimedia streams over
internet based on the Traffic SPECifications (TSPECs) [9];
air time fairness allocates transmission time proportionally
to TSPECs to eliminate the passive impact of cross-layer
strategies employed in different transmitters [10]. Propor-
tional fairness was introduced [11] to allocate resources
based on users’ rate requirements, and further applied to rate
controlling [12]. In [1], the Kalai-Smorodinsky Bargaining
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Solution (KSBS) was used to allocate rates amongst multiple
video users such that the utility achieved by each user is
proportional to the maximum utility achievable.

Both maximization based and distributive policies work
in a competitive way as explained by the following two
examples. Utility maximization can actually be viewed as a
process in which all users compete for resources according
to the criteria that the Highest Quality Improvement the
Highest Possibility Resources (HQIHPR) [2]. Using KSBS,
users compete for resources to make efficient use of the
resource and achieve higher utility. The disadvantage of
these competitive policies is that they do not consider user’s
quality of service (QoS) satisfication degree, meaning that
they are not suitable for multimedia services. To address
this disadvantage, we propose an optimal and fair policy for
multimedia resource allocation, which introduces a judicious
mixture of competition and cooperation, such that user’s
QoS satisfication degree is taken into account. The idea
behind this judicious mixture is Co-opetition, a concept
from economic [13]. Co-opetition has been employed in
decentralized resource management [14] and collaborative
multimedia resource allocation in our preliminary work
[15]. It is shown that co-opetition can provide better tradeoff
between system efficiency and fairness.

Main contribution of this paper relies on the proposal
of a novel co-opetition strategy for RRA in multimedia
services, which is both optimal and fair. In this paper,
optimal represents sum utility maximization (SUM) subject
to the constraints on individual utility. It is worth to mention
that the value of optimal sum utility might be smaller
than that achieved by the unconstrained SUM, due to the
constraints. Fair is defined to describe that, compared to
unconstrained SUM, our strategy can result in fairer resource
allocation. The additional fairness from our strategy comes
from the individual utility constraint. Recall that the uncon-
strained SUM allocates resources in a competitive way, which
has no constraint on individual utility. Our co-opetition
strategy suggests a judicious mixture of competition and
cooperation in resource allocation. We formulate the co-
opetition strategy mathematically and solve it efficiently
using LOD method. This mathematical formulation would
help to get a better insight into the essential of competition
and cooperation behaviors of users in RRA. We apply our
strategy to wireless resource allocation for multiuser video
transmissions and evaluate its performance by comparing
with existing competition based mechanisms.

The rest of this paper is organized as follows. In Section 2,
we formulate the co-opetition strategy, and in Section 3 we
implement it by employing LOD method. In Section 4, we
apply the co-opetition strategy to power allocation amongst
multiple video users together with numerical results for
performance evaluation. Conclusion is drawn in Section 5.

2. Problem Setup

We consider RRA over a downlink transmission with N
users. We assume that the resource available at PHY layer
is denoted by X . Denote R ⊂ RN

0,+ as the rate region

achievable at PHY layers, and assume that R is convex and
compact. Convexity assumption means that time-sharing
mode is enabled at PHY layer. Let Un(rn), rn ∈ R0,+ denote
the user n’s utility function, which is assumed to be concave,
increasing, and differentiable. An example of utility is PSNR
for video services [16]. Each user has a minimum desired
rate, denoted by r0n, which should be at least guaranteed.
That means

rn ≥ r0n, (1)

otherwise, user n would not be served. A competition strat-
egy should be employed to develop our co-opetition strategy.
In this paper, we focus on optimization-based strategy, that
is, sum utility maximization (SUM). Investigation based
on distributive and competition-based strategies will be
accommodated in our future work. For SUM, system utility
function U : RN

0,+ → R0,+ is defined as

U
(
�r
) =

N∑

n=1

Un(rn), (2)

where �r = (r1, . . . , rN ). Hence, SUM can be written as

max
�r∈R

U
(
�r
)
, s.t. rn ≥ r0n. (3)

To allow co-opetition, we first define the notion of
satisfied user. A user is called satisfied user if its achieved QoS
is above or equal to predefined QoS threshold, Uth. Then the
basic idea of co-opetition can be described as follows. During
the process of RRA, in which all users compete for resources
to achieve SUM, users who have achieved Uth stop competing
temporarily, until all resources have been allocated or all
users have been satisfied. Denote rate required by user n to
achieve Uth with rn,th, and denote �rth as (r1,th, . . . , rN ,th). We
distinguish the following two cases.

(1) If �rth ∈ R, co-opetition allocates resources such that
the minimum utility of all users is Uth, that is, Un ≥
Uth,∀n.

(2) If �rth /∈R, co-opetition allocates resources such that
the maximum utility of all users is Uth, that is, Un ≤
Uth,∀n.

Thus, our co-opetition strategy reads

max
�r∈R

U
(
�r
)
,

s.t. rn ≥ r0n,

Un ≥ Uth, ∀n, if �rth ∈R,

Un ≤ Uth, ∀n, if �rth /∈R.

(4)

Introducing Uth provides better tradeoff between system
efficiency and fairness. For example, for video services in
which PSNR is chosen as a QoS metric, Uth can be set
corresponding to PSNR = 35 dB, above which user could
achieve good video quality and user’s video satisfaction
degree increases very slowly as PSNR increases. In this
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case, rate, which can translate to resources at PHY layer,
is more important to unsatisfied users. In the following,
we investigate how the LOD method is used to solve (4)
efficiently.

3. LODMethod

LOD is a well-defined technique for network utility maxi-
mization (NUM) by decomposing the NUM into a set of
subproblems coupled with each other. Each subproblem is
associated with a protocol layer, in which it can be solved
separately [17].

3.1. Rewrite Co-opetition Strategy. We assume it is known
whether �rth can be achieved or not. In the case of �rth ∈ R,
Un ≥ Uth translates into rn ≥ rn,th, and Un ≤ Uth translates
into rn ≤ rn,th otherwise. We also assume that

rn,th > r0n (5)

always satisfies. Then constraints in (4) can be rewritten as

�rth ≤ �r ≤ ∞, if �rth ∈R,

�r0 ≤ �r ≤ �rth, if �rth /∈R,
(6)

where �r = (r1, . . . , rN ),�r0 = (r01, . . . , r0N )( In the case of
�r0 /∈R, total resource available cannot guarantee all users the
minimum resource required, and some users will deny to be
served. In this paper, we assume the minimum resource of all
users can be always guaranteed, that is,�r0 ∈R.) . We observe
that, no matter �rth ∈ R or not, the constraint has the same
form of

�rlow ≤ �r ≤ �rupp, (7)

with �rlow = (rl1, . . . , rlN ),�rupp = (ru1, . . . , ruN ). Hence, (4) can
be rewritten as

max
�r∈R

U
(
�r
)
, s.t. �rlow ≤ �r ≤ �rupp. (8)

3.2. Dual Decomposition. To solve (8) with LOD, (8) is firstly
modified by introducing an additional variable �s, then the
primal function (8) reads

max
�s

U
(
�s
)
,

s.t. �rlow ≤�s ≤ �r,

�r ≤ �rupp,

�r ∈R.

(9)

After introducing the Lagrangian factors

�λ =(λ1, . . . , λN )T,

�λ′ =(λ1′ , . . . , λ′N )T,
(10)

the Lagrangian function of (9) is written as

L
(
�s,�r,�λ,�λ′

)
= U

(
�s
)

+
(
�λT,�λ′T

)
⎛

⎝
�r −�s
�s−�rlow

⎞

⎠ (11)

with �λ ≥ 0,�λ′ ≥ 0. Thus, the dual function is

g
(
�λ,�λ′

)
= sup

�s
L
(
�s,�r,�λ,�λ′

)
, (12)

The maximization in (9) can be solved by searching the

optimum �λ and �λ′ such that the dual function is minimized,
that is,

min
�λ,�λ′

g
(
�λ,�λ′

)
. (13)

Based on the analysis afore, (12) can be decomposed into
two subproblems as

g
(
�λ,�λ′

)
= gA

(
�λ,�λ′

)
+ gP

(
�λ
)

, (14)

where

gA

(
�λ,�λ′

)
= max

�s

(
U
(
�s
)

+
(
�λ′T −�λT

)
�s−�λ′T�rlow

)
, (15)

gP

(
�λ
)
= max
�r∈R,
�r≤�rupp

�λT�r. (16)

For given �λ and �λ′, the above two-maximization can be
solved independently at APP layer for (15) and at PHY
layer for (16). So far, we have transformed the original
maximization, (8), into its dual problem.

3.3. Solving (13), (15) and (16). As mentioned above, for

each fixed �λ and �λ′, (15) and (16) have to be solved. Denote
G(�s) as the item to be maximized in (15), that is,

G
(
�s
) = U

(
�s
)

+
(
�λ′T −�λT

)
�s−�λ′T�rlow. (17)

Then G(�s) is continuous and differentiable, and further
denote S0 as set of�s = (s1, . . . , sN ) such that

S0 =
{

�s
∣
∣∣
∣
∣
∂G
(
�s
)

∂sn
= 0, n = 1, . . . ,N

}

. (18)

Then (15) can be solved via efficiently selecting the optimum
�s∗, such that

�s∗ = arg max
�s∈S0

G
(
�s
)
. (19)

Maximization of (16) refers to weighted sum rate maxi-
mization (WSRMax) at constraint of maximizing individual
rate for certain PHY layer setup.�r ∈R is a general constraint
usually corresponding to given power or bandwidth.�r ≤ �rupp

can be translated into individual constraint. Recall that, R is
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1. Original optimization

2. Determine whether all users can be satisfied or not

Dual decomposition

3. LOD method

Outer iteration: subgradient method

gA gPλn, λ′n

APP layer
optimization

PHY layer
optimization

Inner iteration

Figure 1: Illustration of the implement of co-opetition strategy.

assumed to be convex and compact, thus the domain of (16),
denoted with R′,

R′ =R ∩
{
�r
∣
∣
∣�r ≤ �rupp

}
, (20)

is also convex and compact. WSRMax over R′ is a well-
researched problem and there are many efficient solutions for
a wide range of PHY layer setups [3, 8, 18].

Hereafter, we assume that for each �λ and �λ′, (15) and

(16) can be solved efficiently. Then the optimum �λ and �λ′
can be determined, for example, using either sub-gradient
method, cutting plane method or ellipsoid method [19]. In
Section 5, we would show how to solve (13), (15) and (16)
more concretely through power allocation.

3.4. Determining Whether �rth ∈ R or Not. Note that is �rth

not necessarily achievable. Whether �rth ∈ R or not can be
determined by userwisely computing the minimum resource
required to achieve �rth. Fortunately again there are several
solutions available for different scenarios. For example, in
[20] a generic procedure, CLARA, was presented for cross-
layer resource minimization subject to a set of constraints
on the overall QoS. [21] proposed an iterative algorithm
which monotonically converges to the unique allocation
with optimal sum power efficiency. This is actually another
hot topic as opposed to utility maximization in this paper,
namely, cost minimization to achieve certain QoS.

3.5. Summery of LOD Method. In this Section, we have
mapped our co-opetition strategy, (4), to a standard con-
strained optimization over convex domain, that is, (8).
Moreover, importantly, through applying the LOD, many
well-researched solutions are available which make our
co-opetition strategy more applicable. Finally, since the
resource allocation in this paper can be formulated as
a convex optimization, the LOD method has worst-case
polynomialtime complexity [17]. It will be shown that the
LOD method converges within limited iterations. Figure 1

is a brief description to apply the co-opetition strategy.
We investigate how co-opetition can be applied to power
allocation in detail.

4. RRAUsing Co-Opetition

In this Section, we first describe the system scenario, and
then illustrate the co-opetition strategy in detail. Finally,
numerical results are presented for performance evaluation
through comparing with competition-based strategy.

4.1. System Setup. We consider downlink N-user video
transmission in a cell with a base-station (BS) which acts
as the central spectrum manager (CSM). At APP layer, users
transmit same or different video sequences. We choose PSNR
as user’s utility as it is the only widely accepted video QoS
metric and choose the rate-distortion (RD) model proposed
in [16] to describe user’s average RD behavior as this model
applies well to the state-of-the-art video encoder [22]. Then
user’s utility can be defined as

Un(rn) = 10 log
2552(rn − R0n)

D0n(rn − R0n) + μn
, (21)

where R0n,D0n and μn are sequence parameters, which are
dependent on video sequence characteristics, such as spatial
and temporal resolution, delay constraints as well as the
percentage of INTRA coded macro-blocks [1, 16]. D0n is the
minimum rate that should be at least guaranteed for user n,
therefore in this work we assume that rn > R0n.

At PHY layer, the BS has limited transmit power, Ptot.

Let �P = (P1, . . . ,PN ) represent the power allocated to all the
users, thus we have

∑N
n=1Pn ≤ Ptot. Each user is assumed

to experience an AWGN channel, whose capacity, Cn(Pn), is
given by

Cn(Pn) = B · log2

(

1 +
Pn
σ2

n,n

)

, (22)

where B and σ2
n,n denote bandwidth available and receiver

noise power, respectively.
It is assumed that private information of each user,

including R0n,D0n,μn, σ2
n,n, are sent to CSM, where power

allocation is made. Then CSM sends back the decision of
power allocated to each user. Note that, more complicated
PHY layer setups can also be taken into account, such as
multicarrier and multiple antennas systems over Rayleigh
fading channels. However, employing simple PHY layer setup
would help to highlight the focus of this paper, investigating
optimal and fair criteria for RRA. It is worth mentioning
that the co-opetition strategy can be easily extended to other
scenarios.

4.2. Co-Opetition Strategy.

4.2.1. CO-opetition Formulation. According to the common
sense in the field of video signal processing, the PSNR
threshold can be set to different values, such as 40 dB,
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35 dB, or 32 dB, representing perfect, good and acceptable
video quality, respectively. The PSNR threshold can also be
set dynamically according to the total resources available,
the number of users, and so forth. As an illustration, we
choose QoS threshold as PSNR = 35 dB corresponding to
good video quality, that is, Uth = 35 dB in (4). Denote
�Pth as (P1,th, . . . ,PN ,th) representing power required by users
to achieve PSNR of 35 dB. Using co-opetition strategy, if

sum(�Pth) ≤ Ptot( sum(�Pth) means calculating the sum of

all members in �Pth, i.e.,
∑N

n=1Pn,th.) , the lower and upper
bounds of achievable PSNR are set at Ulow = 35dB and
Uupp = ∞, respectively, and Ulow = −∞ and Uupp = 35 dB

otherwise. Correspondingly, when we have sum(�Pth) ≤ Ptot,
lower and upper bounds of rates are �rlow = (r1,th, . . . , rN ,th)
and �rupp = ∞, respectively, and �rlow = (R01, . . . ,R0N) and
�rupp = (r1,th, . . . , rN ,th) otherwise. In this paper, it is easy
to calculate Pn,th, rn,th corresponding to PSNR threshold, for
both (21) and (22) are invertible and monotonic increasing

functions. Thus, given PSNR threshold, sum(�Pth) ≤ Ptot or
not can be easily determined, and consequently, both�rlow and
�rupp are known.

Given each user’s utility definition in (21) and (22),
system utility writes

Us

(
�P
)
= 10

N∑

n=1

log
2552(Cn(Pn)− R0n)

D0n(Cn(Pn)− R0n) + μn
, (23)

where Cn(Pn) refers to as rn. We assume that capacity
approaching channel codes is employed at PHY layer. Then
our co-opetition strategy writes

max U s

(
�P
)

,

s.t.
N∑

n=1

Pn ≤ Ptot,

�rlow,≤ �C ≤ �rupp

(24)

where �C = (C1(P1), . . . ,CN (PN )). Note that (24) has the
same form as (8). The first constraint on the sum of the
power (24) corresponds to �r ∈R in (8).

4.2.2. The Implement of Co-opetition. Using LOD, maximiza-
tion of (24) can be decomposed into

max
�c

N∑

n=1

10 log
2552(cn − R0n)

D0n(cn − R0n) + μn

+
N∑

n=1

((
λ′n − λn

)
cn − λ′nrn,low

)
(25)

where �c = (c1, . . . , cN ), and

max B
N∑

n=1

λnlog2

(

1 +
Pn
σ2

n,n

)

,

s.t.
N∑

n=1

Pn ≤ Ptot

Pn ≤ Pn,upp, ∀n

(26)

where Pn,upp is defined as the upper bound of transmit power
of user n corresponding to rn,upp.

The optimum variable of (25), �c∗ = (c∗1 , . . . , c∗N ), can be
obtained by simply making the partial derivative ofgA and let
it equal to 0,

D0n(cn − R0n)2 + μn(cn − R0n)− 10μn(
λn − λ′n

)
ln10

= 0, ∀n.
(27)

Then we have

c∗n = R0n +

√
μ2
n + 4D0n · tmp− μn

2D0n
, (28)

where tmp = 10μn/(λn − λ′n).
As mentioned in Section 3.3, (26) can be solved at PHY

layer by the weighted sum rate maximization with thecon-
straints of total and individual power. Note that Cn(Pn) in
(22) is concave and increasing with respect to Pn, thus the
item to be maximized in (26) is also concave increasing. The
domain of (26) is formed by two linear inequalities, each
of which forms a convex domain together with Pn ≥ 0,∀n.
Thus the domain of (26) is also convex, and (26) is accessible
to conventional convex optimization techniques, such as
feasible direction method and projected gradient method.
In this paper the feasible increasing direction method is
employed (see the Appendix for details).

So far, given fixed �λ,�λ′, two subproblems, (25) and (26),
have been solved. We denote the optimal values of them

with g∗A (�λ,�λ′) and g∗P (�λ), respectively. In the following, the

optimum �λ,�λ′, denoted by �λ∗,�λ′∗, will be determined such

that the sum of g∗A (�λ,�λ′) and g∗P (�λ) is minimized, that is,

(
�λ∗,�λ′∗

)
= arg min

�λ,�λ′
g∗A
(
�λ,�λ′

)
+ g∗P

(
�λ
)
. (29)

Note that, the dual function might not be differentiable or, in
other words, (29) is not accessible to classical computational
method, such as steepest descent method. In this paper we
employ the sub-gradient method, which applies to both
differentiable and nondifferentiable dual functions. Much
like the feasible increasing direction method, sub-gradient

method also searches the optimal �λ and �λ′ iteratively. The
main iteration writes

⎛

⎜
⎝
�λk+1

�λ′k+1

⎞

⎟
⎠ =

⎛

⎜
⎝
�λk

�λ′k

⎞

⎟
⎠− αk�gk, (30)
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Table 1: test video sequences (videoID, video type, temporal level (TL), frame rate).

ID Video sequence μ D0 R0

1 Foreman (CIF, TL = 4, 30 Hz) 5232400 0 0

2 Coastguard (CIF, TL = 4, 30 Hz) 6329700 4.3 0

3 Mobile (CIF, TL = 4, 30 Hz) 38230000 1 44040

4 Foreman (QCIF, TL = 4, 30 Hz) 2653300 0 19614

5 Foreman (CIF, TL = 4, 15 Hz) 2760000 1 20720

6 Foreman (CIF, TL = 2, 30 Hz) 4610000 3 55080

100 200 300 400 500 600 700 800

Total transmit power, Ptot

32

33

34

35

36

37

38

39

40

41

P
SN

R
(d

B
)

Co-opetition (Foreman)
Co-opetition (Mobile)

NBS SP (Foreman)
NBS SP (Mobile)

Figure 2: Plot of individual PSNRs achieved by the co-opetition,
NBS SP. User 1: Foreman (CIF, TL= 4, 30 Hz), user 2: Mobile (CIF,
TL = 4, 30 Hz).

where αk is the step-size which can be set as constant, and

�gk denotes the sub-gradient at (�λk,�λ′k). Note that, �P =
(P1, . . . ,PN )T at (�λk,�λ′k) rightly forms a sub-gradient, so the
sub-gradient can be obtained almost without any cost.

4.3. Numerical Results. In this subsection, the proposed co-
opetition strategy (co-opetition) is evaluated by comparing
with the strategy proposed in [1], which allocates resources
using the Nash bargaining Solution of Same bargaining
Power (NBS SP). For the sake of comparison, we use the
same test sequences as those in [1], and we list the parameters
in Table I for reader’s convenience.

4.3.1. Comparison in Terms of Individual PSNR. In this
experiment we focus on individual PSNRs in the case of
two users. At APP layer, user 1 transmits Foreman sequence
of CIF resolution at 30 Hz, and user 2 transmits Mobile
sequence of CIF resolution at 30 Hz. At PHY layer, we set the
bandwidth to B = 250 kHz, and let the receiver noise power
to be σ2

n,1 = 50 and σ2
n,2 = 1 for user 1 and user 2, respectively.

1: Set k = 1 and Pk
n = 0, ∀n, Precision ε = 10−4

Repeat:
2: Determine∇gkP using(A.1)

3: Determine �dk according (A.4) and(A.5)
4: Determine αk using(A.6)

5: Compute �Pk+1 using(A.8)

Until: |(∇gkP)T �dk| ≤ ε.

Algorithm 1: Feasible increasing direction method.

Total transmit power Ptot varies from 50 to 800. Figure 2
shows the individual PSNRs achieved by these two schemes.
If NBS SP is employed, user 1 can achieve higher PSNR that
user 2 or, in other words, it is very hard for user 2 to achieve
satisfying video quality (PSNR ≥ 35). In the case of Ptot ≥
200, user 1 can always be satisfied. Note in this case, user 1’s
video satisfaction degree increases very slowly as the PSNR
increases, but significantly for user 2. Taking this observation
into account, co-opetition imposes individual constraint
on each user (see (4)). For example, with Ptot = 200,
which can not satisfy two users simultaneously, co-opetition
decreases user 1’s PSNR to 35 dB, and consequently, user
2’s PSNR achieves an improvement about 1 dB. If have
350 ≤ Ptot ≤ 650, user 2’s PSNR is improved such that
user 2 is just satisfied. Note, in these two cases, co-opetiton
keeps user 1 satisfied, while user 2 either be satisfied or
achieve much QoS improvement. It is worth to mention
that, under a given total transmit power constraint, NBS SP
can achieve higher total PSNR of two users than that in co-
opetition. This is because the NBS SP maximizes the sum
of PSNRs without taking the individual PSNR constraints
into account. The co-opetition works in quite a different
way. It maximizes the sum of PSNRs under the constraints
of individual PSNR. Therefore, the co-opetition is not only
optimal ( As stated in Section 1, in this paper the optimal
means sum utility maximization under certain constraints,
differing from unconstrained optimization.) , but also fairer
than NBS SP. This argument is further verified with other
experiments

4.3.2. Comparison in Terms of the Number of Satisfied
Users and Minimum PSNRs. We study a more complicated
scenario with nine users, each transmitting a sequence ran-
domly selected from Table 1. They also experience different
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Figure 3: Plot of the number of satisfied users (a) and minimum PSNRs (b) achieved by co-opetition and NBS SP in the case of nine users.
Id of sequences transmitted are 3, 6, 1, 3, 5, 1, 3, 2, 2, respectively. These sequences are randomly selected from Table 1. Bandwidth B is set
to 400 KHz for all users, and the receiver noise power are set to 16, 7, 5, 1, 19, 12, 24, 12, 11, respectively, again by random generation.
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Figure 4: Plot of the number of satisfied users (a) and minimum PSNRs (b) achieved by NBS SP and adaptive co-opetition. System setup is
the same as that of Figure 3. 32 dB, 34 dB, and 36 dB refer to PSNR thresholds corresponding to different Ptot.

receiver noises randomly generated from 0 to 25. Figure 3
shows the number of satisfied users and the minimum
PSNRs achieved by NBS SP and co-opetition. We observe
that, the co-opetition always outperforms the NBS SP. For
example, in the case of Ptot = 1250, co-opetition can make
all users satisfied, but only 6 users satisfied by NBS SP.
With respect to the minimum PSNR, which is an important
criteria evaluating system in the worst case, improvement of
around 6 dB can be achieved when Ptot ≥ 200. Note that,
NBS SP can only make minimum PSNRs from about 25 dB

to 29 dB, corresponding to poor video quality, while above
32 dB for co-opetition leading to acceptable video quality.
Recall that, the co-opetition implies a judicious mixture
of competition and cooperation. Through competition,
the best system efficiency can be achieved. However, pure
competition, for example, NBS SP, might make very high
PSNRs for some users, for example, users transmitting
simple video content or having good channel quality, but low
PSNRs for the others. This disadvantage is eliminated by co-
copetition through introducing cooperation among users.
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Figure 5: Plot of individual PSNRs and average PSNR. User 1:
Foreman (CIF, TL = 4, 30 Hz), user 2: Mobile (CIF, TL = 4, 30 Hz).
(a): Ptot = 200 and (b): Ptot = 500.

Again, this experiment indicates that co-opetition provides
a good tradeoff between system efficiency and fairness.

4.3.3. Adaptive Co-opetiton Strategy. In previous experi-
ments, the threshold PSNR is fixed to be 35 dB. In order
to consider more fairness in resource allocation, adaptive
threshold can be employed. As an illustration, we present
a simple method to set the threshold PSNR. More optimal
and fair scheme for determining the threshold PSNR will be
investigated in our future work. We employ PSNR = 32 dB,
34 dB and 36 dB to represent acceptable, good and very good
quality, respectively. Denote resources required by the three

levels with Ra,Rg ,Rv, then threshold PSNR, PSNRth, can be
determined as follows

PSNRth = 32 dB, if Rtot < Rg ,

PSNRth = 34 dB, if Rg ≤ Rtot ≤ Rv,

PSNRth = 36 dB, if Rg ≤ Rtot ≤ Rv,

(31)

where Rtot is denote as total resources available.
Same system setup as that in previous experiment is used.

We observe from Figure 4(a) that, co-opetition employing
adaptive PSNRth still outperforms the NBS SP. Moreover,
adaptive PSNRth is more concerned with fairness than that
using fixed threshold. For example, in the case of low
resource, for example, Ptot ≤ 500, PSNRth = 32 dB is selected.
Consequently, an improvement of about 3 dB and 2 dB can
be achieved for the minimum PSNRs compared to NBS SP
and co-opetition using fixed threshold (see Figure 3(b)),
respectively. Note, these improvements are significantly
important for users having low PSNRs. Although these
improvements come from further decreasing the maximum
achievable PSNR, it can provide fairer resource allocation.
For instance, in Figure 4(a), it is very easy for all users to
achieve similar quality level using co-opetition. Moreover,
PSNRth can also be set to a very high level, for example, 36 dB
in the case of Ptot > 2500. An important advantage of this
is that all users can be guaranteed high video quality, but
cannot by fixed PSNR threshold and NBS SP.

4.3.4. Optimality Verification. Our co-opetition is also opti-
mal. As stated in Section 1, optimal means sum utility
maximization (SUM) under individual constraints. The
optimality is verified by experimental analysis in the case
of two users. Results of two examples of them are shown
in Figure 5(a) and Figure 5(b). System setup is the same as
that in Figure 2. The optimal average PSNRs are achieved
by exhaustive search. Recall that the LOD method consists
of inner and outer iterations. In each inner iteration, the
power allocation is initiated corresponding to (R01,R02) for
Figure 5(a) and (r1,th, r2,th) for Figure 5(b). In the outer

iteration, the values of �λ and �λ′ are initialized randomly.
Figures 5(a) and 5(b) show the results of outer iterations.

From these two figures, we can see that our strategy is
optimal under individual constraints. In Figure 2, Ptot = 200
cannot satisfy two users simultaneously. Therefore the PSNR
of user 1 is pegged at the threshold PSNR = 35 dB. The
optimal average PSNR can be achieved after 14 iterations. In
Figure 5(b), Ptot = 500 can make satisfying PSNR for both
the two users. We observe that, user 2’s PSNR has only little
fluctuation, and converges to the threshold. At the optimal
power allocation, both the two users’ PSNRs are above or
equal to the threshold. All these coincide with the results in
Figure 2.

4.3.5. Summarization. To summarize, threshold PSNR plays
importantly in adaptive/nonadaptive co-opetition strategies.
It provides radio resource allocation (RRA) with more
flexible tradeoff between system efficiency and fairness
among users.
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5. Conclusion

In this paper, we have presented an optimal and fair co-
opetition strategy for multiuser multimedia RRA. Following
contributions and conclusions have been made and drawn

(1) We formulate the co-opetition strategy as sum utility
maximization under constraints from both APP and
PHY layers. APP layer constraints imply that co-
opetition takes the QoS satisfaction degree into
account in RRA.

(2) We show that the co-opetition strategy can be
implemented efficiently through applying the LOD
method. Therefore the co-opetition strategy can
easily apply to real time multimedia services.

(3) We apply the co-opetition strategy to power alloca-
tion among multiple video users. Numerical results
indicate that co-opetition can result in an improved
number of satisfied users and significant improve-
ment in minimum PSNRs as well. A simple method
for adaptively determining threshold PSNR is also
presented, such that fairer resource allocation can be
achieved.

(4) We conclude that co-opetition, that is, mixture of
cooperation and competition, is more applicable to
multiuser multimedia RRA than pure competition
based strategy. Co-opetition strategy is not only
optimal, but also fair.

Our future work is to design more feasible co-opetition
strategy for different system setups, including multicarrier
and multiple antennas systems. We also wish to extend our
preliminary work to future heterogenous network, in which
users not necessarily run in a collaborative way.

Appendix

Feasible Increasing DirectionMethod

Feasible Increasing direction method iteratively searches the

optimum variable, �P∗ = (P∗1 , . . . ,P∗N ), by in each iteration
selecting a feasible increasing direction and update step size.

Denote �Pk = (Pk
1 , . . . ,Pk

N ) as power allocation in the kth

iteration, then �Pk satisfies the constraints in (26). Denote
�dk ∈RN , αk as the direction and step size employed in the kth

iteration, then �dk,αk and �Pk+1 can be determined as follows.
Denote gP(�P) as the item to be maximized in (26), then

the gradient of gP(�P) at �Pk, denoted with∇gkP , writes

∇gkP =
(
∂gkP
∂P1

, . . . ,
∂gkP
∂PN

)T

, (A.1)

where

∂gkP
∂Pn

= Bλn(
σ2

n,n + Pn
)

ln 2
. (A.2)

If �Pk is strictly feasible, that is,

N∑

n=1

Pn < Ptot

Pn < Pn,upp, n ∈ {1, . . . ,N}
(A.3)

then set

�dk = ∇gkP. (A.4)

Otherwise, denote I(�Pk) as set of indexes of active con-
straints, for example, if Pn = Pn,upp, 1 ≤ n ≤ N , then

n ∈ I(�Pk). 0 ∈ I(�Pk) refers to
∑N

n=1Pn = Ptot. Then �dk
can be obtained by solving following maximization through
linear programming,

max
(
∇gkP

)T �dk

s.t. dn ≤ 0,∀n ∈ I
(
�Pk
)

,

N∑

n=1

dn ≤ 0, if 0 ∈ I
(
�Pk
)

− 1 ≤ dn ≤ 1, n ∈ {1, . . . ,N}.

(A.5)

If (∇gkP)T �dk = 0, then �Pk is optimal. Otherwise, compute
αk by solving following one-dimension maximization,

max φ
(
αk
)
= gP

(
�Pk + αk �dk

)

s.t. 0 ≤ αk ≤ αmax,
(A.6)

where

αmax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞,

if
N∑

n=1
dn ≤ 0, dkn ≤ 0, ∀n,

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ptot−
N∑

m=1
Pk
m

∑N
m=1 dm

,
Pn,upp− Pk

n

dkn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

if 0,n /∈I
(
�Pk
)

,

min

{
Pn,upp− Pk

n

dkn

}

,

if 0 ∈ I
(
�Pk
)
, n /∈I

(
�Pk
)
.

(A.7)

Given �dk and αk, �Pk+1 can be set as

�Pk+1 = �Pk + αk �dk. (A.8)

Then the feasible increasing direction method can be sum-
marized in Algorithm 1.
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