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Abstract—Data-driven control based on AI/ML techniques
has a great potential to enable zero-touch automated modeling,
optimization and control of complex wireless systems. However,
it is challenging to collect network traces in the real world
because of high time and labor cost, weather limitations as
well as safety concerns. In this work we attempt to tackle this
challenge by designing a multi-fidelity simulator taking wireless
Unmanned Aerial Vehicle (UAV) networks into consideration.
We design the simulator by interfacing two Unmanned Aerial
System (UAS) simulators we have developed in prior years:
UBSim and UB-ANC. The former focuses on UAV network
optimization and policy training by considering explicitly the
network environments such as blockage dynamics, while the
latter focuses more on high-fidelity UAV flight control. We first
develop a coordination interface referred to as SimSocket for
signaling exchanges between UBSim and UB-ANC in simulations,
and then showcase coordinated simulations based on UBSim and
UB-ANC. The new research that can be enabled by the integrated
simulator is also discussed for digital twin-based UAS systems.

Index Terms—Unmanned Aerial Vehicle (UAV), Multi-Fidelity
Simulation, UBSim, UB-ANC, Data-Driven Control.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been envisioned

as key “tools” that can enable a wide set of new applications.

Notable examples include flying hotspots in cellular networks

[1]–[3], aerial backhaul fabric [4], border surveillance and

environmental monitoring [5], precision agriculture [6] as well

as battlefield inspection [7]. A primary challenge towards wide

adoption of UAVs is that incorporating UAVs can significantly

increase the complexity in controlling the underlying wireless

networks. Data-driven control based on artificial intelligence

(AI) and machine learning (ML) techniques has been shown to

have a great potential to enable zero-touch automated model-

ing, optimization and control of complex wireless systems [8]–

[10]. However, the performance of ML (especially deep learn-

ing) algorithms highly relies on the availability of a sufficient

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contrac-
tor acknowledges Government’s support in the publication of this paper. This
material is based upon work funded by AFRL, under AFRL Contract No.
FA8750-20-1-0501 and FA8750-20-C-1021. (b) Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of AFRL.

Distribution A. Approved for public release: Distribution unlimited AFRL-
2022-1933 on 25 April 2022.

∗The authors contributed equally to this work.

amount of well-labeled, contextual data for model training,

and this will lead to a slow convergence rate when it comes to

online applications [11], [12]. Moreover, it is very challenging

to collect UAV network traces in the real world due to high

time consumption and labor cost, weather limitations, safety

concerns, as well as Federal Aviation Administration (FAA)

regulations.

Alternatively, different network simulators have been de-

veloped that can be used to generate synthetic data for offline

ML model training. For example, in [13] the authors develop a

simulation platform called Simonstrator for ad hoc unmanned

aerial networks. In [14], Bryan Kate et al. develop a simulator

called Simbeeotic for simulating and prototyping large-scale

Micro Air Vehicle (MAV) swarms at early stages of system de-

sign. Simbeeotic has also been integrated with an indoor heli-

copter testbed for real-world experiments. Emerson marconato

et al. develop an ad hoc network simulator called AVENs

[15], which is a hybrid aerial network simulator combining

network simulator OMNeT++, flight simulator X-plane and

architectural model LARISSA. Ahmad Y. Javid et al. develop

UAVSim for cyber security analysis in UAV networks based on

OMNeT++ and a custom-built UAV simulator [16]. In [17], the

authors develop a multi-layer UAV network simulator based

on Gazebo, Ardupilot and NS-3. Similarly, Sabur Badiya et

al. develop FlyNetSim [18] based on Ardupilot and NS-3.

Different from existing simulators, in this work we focus

on simulations of digital twin-enabled data-driven flying net-

works. A digital twin refers to a virtual replica of the physical

world [19]–[21]. Based on the digital twin, agents are allowed

to learn the optimal or at least a desirable policy without

actually interacting with the physical environments. A primary

challenge with a digital twin is that, because of the mismatch

between the dynamics of the source domain (i.e., the digital

twin) and the target domain (the physical environment), the

learned policy may suffer from the so-called sim-to-real gap

problem when applied in real networks. To the best of our

knowledge, none of the existing simulators have been designed

for simulating the dynamic mismatch in digital twin-enabled

flying networks.

The main contributions of this work are twofold. First,

we develop a multi-fidelity simulator for digital-twin enabled
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Fig. 1: Architectures of (a) UBSim and (b) UB-ANC.

wireless UAV networks by interfacing UBSim [1] and UB-

ANC [22]. A middleware called SimSocket has been designed

for signalling exchanges between UBSim and UB-ANC. Sec-

ond, we showcase the multi-fidelity simulation capability of

the integrated simulator. The enabled new experiments for

digital-twin-based UAV networking are also discussed.

The remainder of the paper is organized as follows. In

Sec. II we provide an overview of UBSim and UB-ANC.

Then, we introduce the design of SimSocket in Sec. III. We

then demonstrate the performance of SimSocket in Sec. IV

and discuss the enabled new research in Sec. V. We finally

draw the main conclusions in Sec. VI.

II. UBSIM AND UB-ANC: A PRIMER

In this section we introduce and discuss the overall archi-

tecture of UBSim and UB-ANC before describing the design

of SimSocket in Sec. III.

A. UBSim

UBSim is a Python-based event-driven simulator for broad-

band integrated aerial-ground wireless networks. As shown in

Fig. 1(a), UBSim comprises five major modules: Network Con-
figuration Module (NCM), Network Element Module (NEM),
Discrete Event Driver (DED), Custom Algorithm Module
(CAM) and Network Optimization Agent (NOA). Network

parameters such as the number of base stations, the number

of users, operating frequency, bandwidth and blockage distri-

bution can be configured using this module. The definition of

network elements such as users, base station, blockages can

be conducted in the network element module. These classes

have been designed in a hierarchical manner. At the highest

level is a general network element class net elmt, which

defines the basic network element attributes and operations

such as registering an element in the network, specifying the

parent and children elements of the element. The event-driven

discrete simulation is based on open source library SimPy

[23]. Finally, custom-designed optimization algorithms such

as reinforcement learning algorithms are hosted in the Custom
Algorithm Module. This module can be accessed by the NOA

module for network run-time optimization.

B. UB-ANC

UB-ANC is a simulation framework that can be used to de-

sign, implement and test various UAV networking applications

in software before deploying them onto real UAVs. UB-ANC

has been designed using open-source software components

and is therefore easily usable with several off-the-shelf as

well as custom-built UAVs. As shown in Fig. 1(b), UB-

ANC consists of three main components: UB-ANC agent,

logging and control unit, and emulation engine [22], [24],

[25]. The emulation engine is the core of the emulator and

is responsible for coordinating various tasks and interfaces

with each simulated MAV object. Each MAV object contains a

UB-ANC agent, which contains the information regarding the

target application to be executed on the MAV. A Software-

in-the-loop (SITL) simulator is used to simulate the flight

controller and can be connected to an open source GUI such as

Ardupilot Mission (APM) planner or QGroundControl (QGC)

for visualization of the flight path of the emulated MAVs.

Readers are referred to [26] for more details of UB-ANC.

III. SIMSOCKET DESIGN

UBSim and UB-ANC focus on different aspects of wireless

UAV network simulations. The former primarily focuses on

UAV network optimization and policy training considering ex-

plicitly the network environments such as blockage dynamics.

The latter focuses more on high-fidelity characterization of

UAV flight control, packet loss and throughput measurement,

among others. Recall in Sec. I that our objective is to en-

able multi-fidelity simulation of digital twin-enabled wireless

networks. There are two challenges to integrate the two

simulators. The first challenge is the mismatch in programming

languages. UBSim has been developed based on Python, while

UB-ANC is a C++ based emulator. Second, there are no

available tools for effective signalling exchanges between the

two simulators. To address these challenges, next we design a

middleware called SimSocket for signalling exchanges between

UBSim and UB-ANC. As illustrated in Fig. 2, there are

three major control interfaces: initial simulator setup interface,
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Fig. 2: Coordination interfaces of SimSocket: 1© initial simulator setup interface, 2© network status updating interface, and 3©
network optimization and specification interface.

network status updating interface, and network optimization
and specification interface.

A. Initial Simulator Setup Interface

The job of initial simulator setup is two-fold. First, it pro-

vides through UBSim’s abstraction plane an interface for the

users to define the network control problem. Second, through

UBSim’s optimization plane, it parses the specified centralized

network control problem and decomposes it into a set of

sub-problems, for which operational optimization programs

will be generated automatically for simulations in UB-ANC.

The automatic generation of distributed optimization programs

has been based on Wireless Networking Operating System

(WNOS) [10].

After initial setup, UBSim shares the network parameters to

UB-ANC. This is done via the initial simulator setup interface
(denoted as 1© in Fig. 2). Through this interface UBSim sends

two messages to UB-ANC: node attributes and simulator
attributes. The former includes the parameter values of the

simulated network, such as the number of nodes, the number of

sessions, node coordinates, among others. The latter message

includes the values required to run the simulation in UB-ANC

such as the total number of packets to be transmitted, packet

size, transmission rate, and simulation duration. Before the

messages are sent to UB-ANC, they are first encoded by the

packet encoder/decoder which encodes the packet following

predefined format. Then the encoded messages are transmitted

via the transmitting/receiving UDP socket and further decoded

by packet encoder/decoder on UB-ANC’s side.

B. Network Status Updating Interface

UB-ANC configures the simulations based on the infor-

mation received from UBSim through the initial simulator

setup interface. The simulation results are then sent back to

UBSim via the network status updating interface (denoted

as 2© in Fig. 2). The simulation initialization information

will also be used to update the network visualization. How-

ever, because different coordinate systems have been used

by UBSim (Cartesian coordinate) and UB-ANC (Geodetic

coordinate), the network topology information received from
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Fig. 3: Depiction of ECEF coordinate system.

UBSim cannot be used directly in UB-ANC for simulation

visualization.

To address this challenge, we first convert the node locations

from Cartesian coordinates to Earth Centered Earth Fixed

coordinates (ECEF) [27] using Coordinates System Converter.

As shown in Fig. 3, ECEF is a type of Cartesian coordinate

system with the origin at the center of mass of the Earth,

the Z-axis extending through the true north of the Earth and

the X-axis extending out from the equator (0-degree latitude

and 0-degree longitude). Then we further convert the ECEF

coordinates to Geodetic coordinates using Karl Olsen’s closed-

form algorithm [28], which considers the shape of the Earth

following the World Geodetic System 84 (WGS84) model,

a model used in most modern GPS systems. Finally, the

resulting Geodetic coordinates can then be forwarded to the

QGroundControl for visualization of the UAV flight path [29],

[30].

C. Network Optimization and Specification Interface

This module is responsible for solving the network control

problem following a three-step process based on the network

status information received by UBSim via the network status

updating interface (Step 2© in Fig. 2). First, the optimizer

executes the algorithms loaded during the setup phase and then

calculates the optimized network parameters by substituting

the run-time values in the algorithms. Then, the optimized

This paper has been accepted for publication on IEEE Workshop on Wireless Communications and Networking in Extreme Environments, LA, California, June 2022



11 3

2

(1, 10, 20) (41, 10, 20)

(21, 70, 20)

Source Node Destination Node

Intermediate Node

(a) (b) (c)

Fig. 4: (a) Topology of simulated network ; (b) End-to-End throughput; and (c) Distance between nodes.

Notation Attribute Name Data Type
T Total Simulation Time Integer
N Total Number of Nodes Integer
K Total Number of Packets Integer
Rn Data Rate for Node n, n = 0, 1, 2, · · · , N Float
Pn Transmission Power for Node n Float
S Packet Size Double
xn Initial x-coordinate for Node n Double
yn Initial y-coordinate for Node n Double
zn Initial z-coordinate for Node n Double

TABLE I: Network setup attributes.

network parameters are sent back to UB-ANC via network
optimization and specification interface (denoted as 3© in

Fig. 2) for next-round simulation.

D. SimSocket in Action

We briefly describe SimSocket in action to help readers

understand better how the signals are exchanged between UB-

Sim and UB-ANC. Table I summarizes the involved network

attributes.

As illustrated in Fig. 2, in Step 1© UBSim sends the sim-

ulation configuration parameters to UB-ANC. These include

the simulation time T , the number of nodes N , the number

of packets K. Additionally, for each node n in the network,

UBSim sends the data rate Rn, transmission power Pn, and

the coordinates of the node xn, yn and zn. These attributes

are sent as a comma-separated message for easy decoding

at UB-ANC (refer to packet encoder/decoder in Fig. 2). For

example, the first message will be of form [T,N,K] and the

second message will be sent for individual node n which will

be in the form of [Rn, Pn, xn, yn, zn]. After all the messages

are sent, UBSim listens for the response from UB-ANC

(refer to transmitting/receiving UDP socket in Fig. 2). In the

meantime, UBSim will load the corresponding optimization

algorithms to solve the network control problem and send the

optimized network parameters to UB-ANC periodically during

the simulation.

Once UB-ANC receives the necessary information from

UBSim through transmitting/receiving UDP socket, it decodes

the message using packet encoder/decoder and performs co-

ordinate conversion using coordinate system converter. The

decoded messages are then used to update the simulator and

node attributes of the NS-3 protocol stack. Then, the network

simulation module of UB-ANC conducts simulations and

updates the network performance attributes. Example network

performance attributes include link capacity, link delay, end-to-

end delay, among others. After the current round of simulation,

UB-ANC exchanges the simulation results with UBSim, as

shown with 2© in Fig. 2. The same as in Step 1©, the

reply messages will also follow the comma-separated format.

The network performance results received from UB-ANC is

decoded and the values are updated in the optimization algo-

rithm loaded earlier in Step 1©. After solving the optimization

problem, the network optimization agent replies to UB-ANC

in Step 3© with the optimized results.

IV. DEMONSTRATION AND DISCUSSIONS

In this section we showcase multi-fidelity simulation based

on SimSocket, considering ad hoc flying network with IEEE

802.11n as the radio access technique for UB-ANC and

the wireless channels experiencing Friis propagation loss in

UBSim [1].
In the first demonstration, we consider a three-node network

as shown in Fig. 4(a). The intermediate node (node 2) is

initially placed far away from source node 1 and destination

node 3. The data rates for the nodes are controlled by the

network optimization agent in UBSim while the actual data

transmission is conducted in UB-ANC. From Figs. 4(b) and

4(c), it can be seen that node 2 moves closer to the source and

destination nodes in the network and the achievable throughput

increases accordingly. It is worth mentioning that Fig. 4(b)

plots the average end-to-end throughput for both UBSim and

UB-ANC. It can be seen that UB-ANC achieves slightly lower

throughput because it takes into account the lost and corrupted

packets whereas UBSim assumes capacity-approaching trans-

missions. This indicates that, although UBSim and UB-ANC

have different levels of simulation fidelity, the transmission

decisions obtained by one can still be effective for the other.

This will allow us to evaluate policy learning algorithms by

training them in one domain (e.g., UBSim) and testing in the

other (e.g., UB-ANC), and further study the generalizability of

the learning algorithms across different domains. Figure 4(c)

shows the corresponding trajectories of node 2 in the Cartesian

coordinate system in UBSim and in the ECEF coordinate

system in UB-ANC.
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In the second experiment, we analyze the computational

time of the three main subcomponents of the multi-fidelity

simulator, i.e., UBSim Agent, UBSim Optimizer and UB-

ANC Agent. We consider a multi-session multi-hop network

with four nodes per session. As shown in Fig. 5(a), node

1 (and 5) and node 4 (and 8) are respectively the source

(SRC) and destination nodes (DST) for Session 1 (and Session

2). Similarly, node 2 (node 6) and node 3 (node 7) are the

relay (RLY) nodes for Session 1 (and Session 2). Figure 5(b)

reports the simulation time experienced by each of the three

modules in each simulation round. It can be seen that UB-ANC

simulator takes 1.48 s per iteration while UBSim simulator

and UBSim optimizer take 0.136 s and 0.064 s, respectively.

This is not surprising because UB-ANC simulates the network

with higher fidelity based on NS-3 and hence higher compu-

tational complexity. This will allow us to test policy learning

algorithms at different time scales in different domains.

V. ENABLED NEW RESEARCH

The proposed multi-fidelity simulator can enable a wide

set of new experiments. Examples include adaptive self-

configuration, accelerated policy generation, and event predic-

tion and off-policy learning for digital twin-enabled wireless

networks.

Domain adaptation. The multi-fidelity simulator can pro-

vide a novel framework for testing domain adaptation tech-

niques, leveraging the unique domain dynamics inherent to

both UB-ANC and UBSim. Since these simulators provide

different levels of fidelity, we can leverage the different ob-

servable dynamics between domains, as well as the behavioral

differences between simulation and hardware, to evaluate the

source-to-target gap of novel domain adaptation methods.

Learning acceleration. The multi-fidelity simulator can be

used to accelerate policy convergence by using the UBSim

optimizer for transfer learning. First, the training of deep

neural networks can be conducted quickly on a high-level

implementation of a given network control problem in the

UBSim virtual environment. Then, keeping the lower neural

network layers unchanged by “freezing” them, the trained

model can be passed through SimSocket to re-train the upper

network layers in the high-fidelity UB-ANC simulator to

improve the accuracy of the learned policy, hence reducing

the overall training time of the neural network.

Event prediction and off-policy learning. While performing

high-fidelity simulations in UB-ANC, researchers are allowed

to use the parallel lower-fidelity simulation instances in UB-

Sim for event prediction and synthetic trajectory generation.

This will further allow flexible implementation of both on-

policy learning in UB-ANC as well as off-policy learning in

UBSim.

VI. CONCLUSIONS

In this work we have developed a new multi-fidelity simula-

tor for wireless UAV networks by interfacing UBSim with UB-

ANC. We designed a middleware called SimSocket for signal-

ing exchanges between the two simulators. We showcased the

multi-fidelity simulation capability of the integrated simulator

considering flying ad hoc networks. The new research topics

that can be enabled by the integrated simulator have also been

discussed.
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