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Fig. 4: (a) Topology of simulated network ; (b) End-to-End throughput; and (c) Distance between nodes.

Notation Attribute Name Data Type
T Total Simulation Time Integer
N Total Number of Nodes Integer
K Total Number of Packets Integer
Rn Data Rate for Node n, n = 0, 1, 2, · · · , N Float
Pn Transmission Power for Node n Float
S Packet Size Double
xn Initial x-coordinate for Node n Double
yn Initial y-coordinate for Node n Double
zn Initial z-coordinate for Node n Double

TABLE I: Network setup attributes.

network parameters are sent back to UB-ANC via network
optimization and specification interface (denoted as 3© in

Fig. 2) for next-round simulation.

D. SimSocket in Action

We briefly describe SimSocket in action to help readers

understand better how the signals are exchanged between UB-

Sim and UB-ANC. Table I summarizes the involved network

attributes.

As illustrated in Fig. 2, in Step 1© UBSim sends the sim-

ulation configuration parameters to UB-ANC. These include

the simulation time T , the number of nodes N , the number

of packets K. Additionally, for each node n in the network,

UBSim sends the data rate Rn, transmission power Pn, and

the coordinates of the node xn, yn and zn. These attributes

are sent as a comma-separated message for easy decoding

at UB-ANC (refer to packet encoder/decoder in Fig. 2). For

example, the first message will be of form [T,N,K] and the

second message will be sent for individual node n which will

be in the form of [Rn, Pn, xn, yn, zn]. After all the messages

are sent, UBSim listens for the response from UB-ANC

(refer to transmitting/receiving UDP socket in Fig. 2). In the

meantime, UBSim will load the corresponding optimization

algorithms to solve the network control problem and send the

optimized network parameters to UB-ANC periodically during

the simulation.

Once UB-ANC receives the necessary information from

UBSim through transmitting/receiving UDP socket, it decodes

the message using packet encoder/decoder and performs co-

ordinate conversion using coordinate system converter. The

decoded messages are then used to update the simulator and

node attributes of the NS-3 protocol stack. Then, the network

simulation module of UB-ANC conducts simulations and

updates the network performance attributes. Example network

performance attributes include link capacity, link delay, end-to-

end delay, among others. After the current round of simulation,

UB-ANC exchanges the simulation results with UBSim, as

shown with 2© in Fig. 2. The same as in Step 1©, the

reply messages will also follow the comma-separated format.

The network performance results received from UB-ANC is

decoded and the values are updated in the optimization algo-

rithm loaded earlier in Step 1©. After solving the optimization

problem, the network optimization agent replies to UB-ANC

in Step 3© with the optimized results.

IV. DEMONSTRATION AND DISCUSSIONS

In this section we showcase multi-fidelity simulation based

on SimSocket, considering ad hoc flying network with IEEE

802.11n as the radio access technique for UB-ANC and

the wireless channels experiencing Friis propagation loss in

UBSim [1].
In the first demonstration, we consider a three-node network

as shown in Fig. 4(a). The intermediate node (node 2) is

initially placed far away from source node 1 and destination

node 3. The data rates for the nodes are controlled by the

network optimization agent in UBSim while the actual data

transmission is conducted in UB-ANC. From Figs. 4(b) and

4(c), it can be seen that node 2 moves closer to the source and

destination nodes in the network and the achievable throughput

increases accordingly. It is worth mentioning that Fig. 4(b)

plots the average end-to-end throughput for both UBSim and

UB-ANC. It can be seen that UB-ANC achieves slightly lower

throughput because it takes into account the lost and corrupted

packets whereas UBSim assumes capacity-approaching trans-

missions. This indicates that, although UBSim and UB-ANC

have different levels of simulation fidelity, the transmission

decisions obtained by one can still be effective for the other.

This will allow us to evaluate policy learning algorithms by

training them in one domain (e.g., UBSim) and testing in the

other (e.g., UB-ANC), and further study the generalizability of

the learning algorithms across different domains. Figure 4(c)

shows the corresponding trajectories of node 2 in the Cartesian

coordinate system in UBSim and in the ECEF coordinate

system in UB-ANC.
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Fig. 5: (a) Example topology for a multi-session, multi-hop network and (b) comparison of the network optimization and simulation time.

In the second experiment, we analyze the computational

time of the three main subcomponents of the multi-fidelity

simulator, i.e., UBSim Agent, UBSim Optimizer and UB-

ANC Agent. We consider a multi-session multi-hop network

with four nodes per session. As shown in Fig. 5(a), node

1 (and 5) and node 4 (and 8) are respectively the source

(SRC) and destination nodes (DST) for Session 1 (and Session

2). Similarly, node 2 (node 6) and node 3 (node 7) are the

relay (RLY) nodes for Session 1 (and Session 2). Figure 5(b)

reports the simulation time experienced by each of the three

modules in each simulation round. It can be seen that UB-ANC

simulator takes 1.48 s per iteration while UBSim simulator

and UBSim optimizer take 0.136 s and 0.064 s, respectively.

This is not surprising because UB-ANC simulates the network

with higher fidelity based on NS-3 and hence higher compu-

tational complexity. This will allow us to test policy learning

algorithms at different time scales in different domains.

V. ENABLED NEW RESEARCH

The proposed multi-fidelity simulator can enable a wide

set of new experiments. Examples include adaptive self-

configuration, accelerated policy generation, and event predic-

tion and off-policy learning for digital twin-enabled wireless

networks.

Domain adaptation. The multi-fidelity simulator can pro-

vide a novel framework for testing domain adaptation tech-

niques, leveraging the unique domain dynamics inherent to

both UB-ANC and UBSim. Since these simulators provide

different levels of fidelity, we can leverage the different ob-

servable dynamics between domains, as well as the behavioral

differences between simulation and hardware, to evaluate the

source-to-target gap of novel domain adaptation methods.

Learning acceleration. The multi-fidelity simulator can be

used to accelerate policy convergence by using the UBSim

optimizer for transfer learning. First, the training of deep

neural networks can be conducted quickly on a high-level

implementation of a given network control problem in the

UBSim virtual environment. Then, keeping the lower neural

network layers unchanged by “freezing” them, the trained

model can be passed through SimSocket to re-train the upper

network layers in the high-fidelity UB-ANC simulator to

improve the accuracy of the learned policy, hence reducing

the overall training time of the neural network.

Event prediction and off-policy learning. While performing

high-fidelity simulations in UB-ANC, researchers are allowed

to use the parallel lower-fidelity simulation instances in UB-

Sim for event prediction and synthetic trajectory generation.

This will further allow flexible implementation of both on-

policy learning in UB-ANC as well as off-policy learning in

UBSim.

VI. CONCLUSIONS

In this work we have developed a new multi-fidelity simula-

tor for wireless UAV networks by interfacing UBSim with UB-

ANC. We designed a middleware called SimSocket for signal-

ing exchanges between the two simulators. We showcased the

multi-fidelity simulation capability of the integrated simulator

considering flying ad hoc networks. The new research topics

that can be enabled by the integrated simulator have also been

discussed.
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