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ABSTRACT

Digital twin has been envisioned as a key tool to enable data-driven real-time monitoring and prediction, auto-
mated modeling as well as zero-touch control and optimization in next-generation wireless networks. However,
because of the mismatch between the dynamics in the source domain (i.e., the digital twin) and the target domain
(i.e., the real network), policies generated in source domain by traditional machine learning algorithms may suffer
from significant performance degradation when applied in the target domain, i.e., the so-called “source-to-target
(S2T) gap” problem. In this work we investigate experimentally the S2T gap in digital twin-enabled wireless
networks considering a new class of reinforcement learning algorithms referred to as robust deep reinforcement
learning. We first design, based on a combination of double deep Q-learning and an R-contamination model, a
robust learning framework to control the policy robustness through adversarial dynamics expected in the target
domain. Then we test the robustness of the learning framework over UBSim, an event-driven universal simu-
lator for broadband mobile wireless networks. The source domain is first constructed over UBSim by creating
a virtual representation of an indoor testing environment at University at Buffalo, and then the target domain
is constructed by modifying the source domain in terms of blockage distribution, user locations, among others.
We compare the robust learning algorithm with traditional reinforcement learning algorithms in the presence of
controlled model mismatch between the source and target domains. Through experiments we demonstrate that,
with proper selection of parameter R, robust learning algorithms can reduce significantly the S2T gap, while
they can be either too conservative or explorative otherwise. We observe that robust policy transfer is effective
especially for target domains with time-varying blockage dynamics.

Keywords: Zero-touch Networks, Digital Twin, Reinforcement Learning, Domain Adaptation, Source-to-Target
Gap.

1. INTRODUCTION

Reinforcement learning (RL) has been envisioned as a key technique to enable zero-touch autonomous control
in next-generation wireless networks [1–4]. Based on RL, the optimal or at least a desirable network operating
point can be achieved by communication agents interacting in a self-organizing manner with the complex network
environments. However, there are several challenges to address. First, it typically requires a large amount of
data for the policy training to converge, and this process can be very time-consuming if the data is collected
online at network run time. The situation will be even worse in large-scale time-varying networks. Second, while
the training data can be generated offline using simulators, the trained neural networks may suffer from poor
generalizability if the simulated and real transition kernels are very different. Moreover, collecting data directly
in real environments may cause safety issues in networks with mobile nodes, since some states may be hazardous
to people or the hardware.

To address the above challenges, in this work we explore a new network control approach based on digital
twin (DT)-assisted RL. A DT system combines a physical domain system with its virtual replica, through which
control, monitoring and prediction objectives can be achieved [5–7]. With DT, the state space can be explored
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possibly faster than real time by a virtual agent without actually interacting with the physical environment.
In recent literature, DT has been shown to have a great potential in accelerating the training phase in data-
driven mobile edge computing networks [8], UAV swarm networks [6], reconfigurable intelligent surface assisted
wireless communications [9], among others. However, it is both challenging and time consuming to virtualize
with high fidelity a physical network environment. As a result, because of the mismatch between dynamics in
the source domain (i.e., the digital twin) and the target domain (i.e., the real network), policies learned in the
source domain may suffer from the so called source-to-target (S2T) gap problem, i.e., their performance may be
significantly degraded when applied in the target domain. In this work we take an initial step towards addressing
this challenge by studying how to transfer the policy obtained in the source domain to the target domain in
digital twin-enabled wireless networks. The primary contributions of this work are summarized as follows:

• Domain-Adaptation Framework Design. We first present a novel framework for testing domain adaptation
algorithms in digital twin-enabled wireless networks. The framework combines double deep Q-learning for
policy optimization and the R-contamination model for robustness to unexpected environmental dynamics.
This provides configurable learning parameters for a variety of possible network control problems, as well as
a tunable robustness parameter R to account for different levels of discrepancy between domain dynamics.

• Scenario Development and Experimental Evaluation. For source domain, we create a virtual replica of
an indoor testing environment at University at Buffalo considering different factors that can affect the
dynamics, such as blockage distribution and user locations. Then the target domain is constructed by
introducing mismatch for those factors. Both source and target domains are deployed over UBSim, a
newly developed event-driven broadband network simulator. Then, we create four network scenarios and
analyze the domain adaptation capability of the proposed robust learning framework through an extensive
experimentation campaign.

2. RELATED WORK

RL, particularly deep RL, has attracted significant research attention in data-driven wireless networks. For
example, the authors of [10] use fully-connected deep neural network (DNN) for robot mobility prediction and
user association in networks with ultra reliable low latency communications (URLLC). In [11], a double deep
Q-learning architecture is used to predict the optimal channel access scheme in multi-user networks. The authors
of [12] propose a fully-connected deep Q-network to predict the optimal MIMO beamforming in millimeter-wave
networks. Deep Q-learning has also been adopted in [13] to predict the optimal channel access to maximize
the long-term probability of successful transmission in heterogeneous networks. Similarly, the authors of [14]
leverage deep Q-learning to make binary offloading decisions in mobile edge computing networks. Please refer to
[15–17] and references therein for a good survey of the main results in this field. Different from these works, our
work focuses on domain adaptation-enabled deep reinforcement learning in digital twin-based wireless systems.

Domain adaptation has also attracted significant attention in existing literature. Representative domain
adaptation schemes include importance weighting [18], domain-agnostic features [19, 20], meta-learning [21],
system identification [22], robustness mechanisms [23–25] and dynamics classifiers [26]. For example, domain
adaptation is demonstrated for robotic control optimization in [19], leveraging domain-adversarial training with
pixel-level observation adaptation for effective policy transfer. The authors of [26] propose probabilistic inter-
pretation of RL, which leverages a modified utility function to penalize an agent for interacting with dynamics
not present in the target domain. Sim-to-real transfer learning is investigated in [22], where robot navigation
tasks are evaluated identically in both simulation and physical scenarios, demonstrating the impact of the reality
gap. A model-free approach to robust learning is proposed in [24] to facilitate policy transfer across domains
with varying dynamics. In [20], unsupervised adversarial domain adaptation is proven to improve generalization
between synthetically-generated and real images through pixel-level domain classification. In [25], a three-phase
learning system is devised by combining a source-domain object detection model, an image classification model
and a robust object detection model. The authors of [18] introduce importance-weighted adversarial neural
networks for partial domain adaptation. Meta-learning (or “learning to learn”) is investigated in [21] to improve
policy learning based on a generated set of Markov decision processes (MDPs) with different state transition
probabilities. Readers are referred to [23] and references therein for a survey of robust reinforcement learning and
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[27, 28] for other domain adaptation techniques. Different from these works, we study the domain adaptation
capability of robust learning in digital twin-enabled wireless networks.

3. DOMAIN ADAPTION FRAMEWORK

In this section we propose a novel domain adaptation framework based on robust learning with R-contamination
model [24]. To this end, we consider double deep Q network (DDQN) as our deep RL algorithm for its stability
of convergence, ease of implementation, and the capability of policy generation in continuous state spaces.

3.1 DQN and DDQN: A Primer

Consider a discrete-time MDP problem characterised by (S,A, P, r, γ), where S is the state space, A is the
action space, P is the transition kernel, r is a function which maps action at in state st to the immediate reward
provided by the environment in time step t, and γ ∈ [0, 1) is the discount factor. The transition kernel P is
defined as P = {pas ∈ Δ|S|, a ∈ A, s ∈ S}, where pas � [pas,s′ ]s′∈S , pas,s′ denotes the probability of ending up in
state s′ after taking action a in state s, and Δ|S| is the probability simplex over the states. Further define policy
π as the mapping from observations in S to actions selected from A. The action value function associated with
policy π is defined as the expected cumulative discounted reward as follows:

Qπ(s, a) = E

[ ∞∑
t=0

γtrt(st, at)|s0 = s, a0 = a, π

]
. (1)

The optimal action value for each state-action pair (st, at), denoted as Q∗(st, at), can be determined by the
Bellman optimality equation [17]:

Q∗(st, at) = E

[
rt(st, at) + γ max

a∈A
Q∗(st+1, a)|st, at

]
. (2)

The goal of double deep Q-learning is to solve the MDP problem by finding the optimal policy π∗ that maximizes
the action value function Qπ(s, a) for any initial state-action pair (s0, a0).

In Q-learning, the action value function Qπ(s, a) is estimated through iterative updates, and the policy is
determined based on a Q-table with dimensions S × A containing each action value. Experience is collected
by an agent by making observations from S, selecting actions from A and discovering rewards r(s, a). These
experiences are used to update the corresponding Qπ(s, a) in the Q-table according to the following equation:

Qt+1(st, at) = Qt(st, at) + α(rt(st, at) + γ max
a∈A

Qt(st+1, a)−Qt(st, at)), (3)

where α is the learning rate, Qt is the Q-table at time t, and the expression Yt � rt(st, at) + γ max
a∈A

Qt(st+1, a)

is called the Q-target [29]. After the Q-table is updated with sufficient experience, the policy π is determined by
the maximum-value action in each state, i.e., argmax

a∈A
Qπ(st, a).

With deep Q-learning, the policy π can be approximated by training a parameterized neural network [29].
This is especially preferable to the tabular method for MDPs with large or continuous state spaces. In deep
Q-learning, experience tuples (st, at, rt(st, at), st+1) are collected from the environment and stored at each time

step in an experience replay buffer D. The DQN is used to compute a vector of action values {Qθ(st, ai,t)}|A|
i=0

in a given state st, where θ are the parameters or weights of the neural network. Then, the Q-target Yt can be
rewritten as

Yt = rt(st, at) + γmax
a′∈A

Qθ(s
′, a′), (4)

where Qθ is the Q-network parameterized by θ and rt(st, at) is the immediate reward received by taking action
at in state st. To train the DQN, the buffer D is shuffled to prevent time-domain correlation among samples,
and a batch of experience tuples are selected to train the network. For each tuple, the maximum action value
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max
a∈A

Qθ(st, at) is calculated from the Q-network Qθ and compared to Q-target Yt calculated in (4). The difference

between Yt and max
a∈A

Qθ(st, at) is used to update the parameter set θ as follows:

θt+1 ← θt + α(Yt −Qθ(st, at))∇θQθ, (5)

where α is the learning rate of the network and ∇θ is the gradient of the network training loss function.

Because both Yt and max
a∈A

Qθ(st, at) are computed by the same network in DQN, Yt will keep changing as the

action value estimated by Qθ gets closer to Yt. This can reduce the training stability and lead to potentially sub-
optimal performance. This challenge can be addressed in DDQN by using two DQNs with identical architecture
for updating Q-value and Q-target [13, 29]. In DDQN, while the main DQN parameters θmain are updated
according to (5) in the same way as single deep Q-learning, the target DQN parameters θtarget are updated
periodically with the same weights as the main network.

3.2 DDQN with Domain Adaptation

The objective of domain adaptation is to allow an agent to learn a policy in the source domain while applying the
policy in the target domain. We consider as in [24] the R-contamination model (aka ε-contamination model) for
predicting the relative difference between source and target domain dynamics. Considering domain transfer with
identical transition probabilities, a policy learned in the source domain πsource can be applied directly to the target
domain. However, as the difference between transition kernels Psource and Ptarget increases, the circumstances for
which πsource is valid in the target domain become increasingly scarce. The goal of domain adaptation through
robust learning is to learn a source-domain policy πsource using samples generated by Psource so that the best
possible performance can be achieved with trajectories generated by Ptarget. Denote the transition kernel P at

Algorithm 1 DDQN with Domain Adaptation

1: Initialize: main network Qθmain
, replay memory D, target network Qθtarget

, state space S, and action
space A

2: Design parameters: batch size N , exploration probability ε = 1, contamination probability R
3: for each training episode do:
4: Initialize s0 ∈ S
5: for each environment step do:
6: Observe state st
7: Select i from the uniform distribution U[0,1]

8: if i ≥ ε then:
9: select at ← argmax

a
Qθmain

10: else
11: select at ∈ A
12: With probability R replace selected at with a′t ∈ A\{at}
13: Perform at and observe rt and st+1

14: Store tuple et = (st, at, rt, st+1) in D
15: end if
16: end for
17: Shuffle D and sample batch E = e0...eN
18: Compute Q-target Yt using (4)
19: Perform gradient descent step on (Yt −Qθmain

(st, at))
2

20: Update Qθmain
parameters

21: if training episode % target update period = 0 then
22: Copy Qθmain

parameters to Qθtarget

23: end if
24: Decay exploration probability: ε ← ε ∗ e−0.001

25: end for
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time t as Pt, and the sequence of transition kernels as κ = (P0, P1, ...), ∀t ≥ 0, where Pt ∈ P, with P being the
uncertainty set containing all possible combinations of state and next-state transitions s, s′ ∈ S. Further define
the target domain problem as an MDP with unknown Ptarget ∈ P. The size of P is an estimate of the amount
of differences between Psource and Ptarget.

In order to estimate the transitions from Ptarget and account for unexpected transitions, we need to construct
an estimate of P based on both Psource and selected transition probabilities from P. Denote Pa

s ∈ P as a subset
of P to represent all possible distributions of Psource and Ptarget for state s and action a. We can then apply
the R-contamination model to estimate transitions in Pa

s as follows:

Pa
s = {(1−R)pas +Rq | q ∈ Δ|S|}, s ∈ S, a ∈ A, 0 ≤ R ≤ 1, (6)

where pas is the transition probability introduced in Section 3.1, q is a state transition probability selected from
P, Δ|S| is the simplex of S, and R is a design parameter representing the probability of transition according to
q. The selected value of R describes the size of the uncertainty set P. Based on R-contamination model, we
take Pa

s as a sample-based estimation of the overall uncertainty set P. The estimate Pa
s can be implemented

in the DDQN learner using (6) by modifying possible next-step trajectories with probability R. In this way,
the experience collected by an agent by interacting with different trajectories in an environment is perturbed
during training to estimate P. We implement the R-contamination in the experience replay of the DQN. Since
the transition kernel Psource is native to the simulation environment and q is an arbitrary distribution from
P, this can be accomplished by randomizing the next state s′ ∈ Δ|S| observed by the agent in each step with
probability R. This perturbation is designed to train an agent to learn a policy to provide better performance
under unexpected dynamics in an environment. The integration of R-contamination to double deep Q-learning
is summarized in Algorithm 1.

4. DOMAIN CONSTRUCTION AND PERFORMANCE EVALUATION

In this section we test the domain adaptation capability of DDQN-based robust learning described in Algorithm 1
in a controlled simulation environment. To this end, we first construct different network scenarios in the source
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- Initialize network and environment 
- Register and deploy all nodes
- Initialize simulation GUI 
- Specify control process
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Figure 1: Architecture of the UBSim network simulator.
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MBS Agent 

LTE User

GBS Backhaul

Configurable blockage

Exploration path

Figure 2: Example scenario in the source domain: the MBS agent determines its optimal location to maximize
the sum user throughput.

and target domains over UBSim. UBSim is a custom event-driven wireless network simulator, written in Python
3.9 and supporting heterogeneous aerial-ground network topologies in microwave, millimeter-wave and terahertz
bands. The diagram of UBSim is provided in Fig. 1, where there are three primary modules, i.e., network element
module (NEM), network controller module (NCM), and discrete event module (DEM). NEM contains property
and function definitions of all network element classes, including LTE base station (BS), LTE mobile base station
(mBS), LTE UE and blockages. This module defines all functions necessary to model the interactions between
network elements, including network association, SINR and interference calculations, and physical properties.
The NCM module serves as an interface between NEM and DEM. NCM compiles configuration details provided
by the APIs, including transmission parameters, mobility controls, and custom algorithm deployment, and uses
these instructions for initialization of the network and virtual networking environment. Finally, DEM implements
behavioral modeling of the defined network topology and visualization of the simulations.

4.1 Source and Target Domain Construction

Based on UBSim, the source domain is constructed considering wireless networks with mobile base station
deployed over the indoor autonomy research testbed at Unviersity at Buffalo. The indoor autonomy research
testbed consists of a netted UAV enclosure, a set of mobile nodes such as custom-built UAVs and ground robots,
and a set of Universal Software Radio Peripherals (USRP) software radios (B210 and N210). The UAVs are
capable of carrying USRP B210 and the ground robots are able to carry USRP B210 or N210 for experiments
in integrated aerial-ground mobile wireless networks. In order to maximize the behavioral similarity between
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the virtual and physical testbed deployments, manual measurements of this space were taken and added in
UBSim, including networking area, testbed area, locations of user nodes, and other static environmental features
such as lab furniture. The access links are configured to operate at 2.4 GHz band with 10 MHz bandwidth
and the transmission power is set to 50 mW. A snapshot of the UBSim GUI is given in Fig. 2, where the
MBS agent lte bs mobile 1 is exploring the environment according to an ε-greedy exploration path, collecting
and processing training samples as outlined in Algorithm 1. The agent maintains a communication link with
the LTE users lte ue 1, lte ue 2 and lte ue 3. In this work, we consider a mobile BS with backhaul link that
operates on frequency band orthogonal to the access links (e.g., the millimeter-wave band) and has sufficient
capacity. That is, the backhaul link provided by lte bs 1 is sufficient to support the maximum possible aggregate
throughput for all users. The configurable blockage blk 12 is designed via the Environment Definition API and
implemented via the NCM module of UBSim with an absorption coefficient sufficient to block most, but not all,
RF communications between lte ue 1 and lte bs mobile 1.

We further design four scenarios in the target domain over UBSim with different levels of fidelity by intro-
ducing certain measurable discrepancy between source and target domains. For example, in the first scenario
we consider a minimal noise floor (-174 dB) and zero blockages in the source domain. For the target domain,
blockages are added to change the transition distribution of the corresponding MDP. Multiple variables are
modified between policy training and testing in order to ensure sufficient distribution shift between source and
target domains. These variables include the number and locations of static users, transmission bandwidth and
frequency, the dimension, location and absorption coefficient of blockages, the number of blockages, and the
global RF interference.

The objective of the mobile base station is to maximize the sum rate of the users by moving around the
network. We define this network control problem as an MDP as in Section 3.1. Specifically, the current state
s is defined as the coordinates of the mobile base station (i.e., the agent) within the netted area; the agent’s
actions a ∈ A are defined as moving up, down, left or right by a predefined distance or staying stationary in each
time step; and the reward function r(s, a) is defined as the change in the achievable sum user rate from state
s to s′. In this way, the agent will be rewarded for transiting to states that improve the overall sum user rate

(a) (b) (c)

(d) (e) (f)

Figure 3: Minimum, average and maximum sum user rates achieved in source (upper) and target (lower) domains
with different values of R in Scenario 1.

This paper has been accepted for publication on SPIE Conference Big Data IV: Learning, Analytics, and Applications, Orlando, Florida, April 2022



while will be penalized for transiting to states that reduce this value. The transition probabilities P are defined
in Section 3 and the discount factor γ is set to 0.95. All policies are generated through 1000 training episodes
in each scenario in the source domain, considering an ε-greedy policy with ε = 0.9, and tested on 50 episodes
each of 100 time steps with one action per step in the corresponding target domain. The DRL agent is designed
with a neural network comprised of three dense layers, each with 128 neurons and “relu” activation functions.
Tensorflow 2.7 has been used to construct a fully-connected neural network architecture, and we select the Adam
optimizer to minimize mean squared error loss during backpropagation after each training episode.

4.2 Experimental Results

In the first scenario, the source domain is constructed with the most basic UBSim network configuration, which
virtualizes the indoor autonomy research facility at University at Buffalo. The target domain introduces an
arbitrary blockage with high RF absorption placed near the middle of the network area. As a result, the
difference in transition kernel is caused by the mobility limitations imposed on the mobile BS node by this
obstacle. The results are reported in Fig. 3. It can be seen that training with R = 0.05 or R = 0.25 provides
good transfer learning across domains as shown in Fig. 3(b) for the source domain and Fig. 3(e) for the target
domain; while the transfer learning performance of the naive policy (R = 0) is severely degraded in the target
domain. Specifically, R = 0.05 provides the highest average sum user rate among all target domain evaluations
at up to 78 Mbps, while R = 0.10 provides the highest average minimum value of 58.8 Mbps for most steps
and R = 0.15 provides the highest average maximum value in general, at 89.6 Mbps. Considering a loss in
average throughput of around 17% between source and target domains for the naive case in Scenario 1, optimal
R selection reduces this loss to around 12%. In contrast, improper selection of R (i.e. R = 0.50 in this case)
is shown to potentially limit the maximum throughput in the target domain to 86.5 Mbps, compared to over
89 Mbps for all other values as shown in Fig. 3(f). Additionally, as shown in Figure 3(b) and (e) for R = 0.50,
improper selection of R may result in no change to average throughput compared to the naive case.

In the second scenario, the difference in transition kernel between source and target domains is attributed
to the model mismatch between blockage dimensions and location in the source and target domain. To this

(a) (b) (c)

(d) (e) (f)

Figure 4: Minimum, average and maximum sum user rates achieved in source (upper) and target (lower) domains
with different values of R in Scenario 2.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Minimum, average and maximum sum user rates achieved in source (upper) and target (lower) domains
with different values of R in Scenario 3.

end, the configurable blockage is dilated by 20 cm in all dimensions and moved 20 cm north and 20 cm west
in the target domain. We report the results in Fig. 4, which demonstrates in general much worse naive policy
transfer performance than in the first scenario, with the average rate decreasing from 70 Mbps to around 60 Mbps
in both source and target domains. Interestingly, the gap between domains is not apparent from the average
throughput results, indicating that the naive agent in the source domain was unable to converge to any optimal
point. However, we observe improved performance over the naive case for all R values in the source domain,
achieving on average 80 Mbps with R = 0.05 and 70 Mbps throughput for other R values. Specifically, Figs. 4(a)
and (d) demonstrate a significant improvement in the minimum sum user rate across testing episodes provided
by robust training at R = 0.05, providing an average minimum rate of 75 Mbps by the end of the testing episode,
providing 25-30% rate improvement in both domains. However, it is clear from all subfigures in Fig. 4 that the
naive policy (i.e. R = 0) cannot achieve good performance in general in this scenario, and that the robust policy
was able to navigate better in the obstructed environment.

In the third scenario, the transition kernel is altered by the difference in sum user rate distribution hence
reward function across the domains. Specifically, we consider the source domain with two LTE users (users
a and b) and the target domain with two new users (users c and d). Users a and b start respectively at the
positions of USRPs 2 and 3 in Fig. 2 and do not change their positions during the experiment. Users c and d
are deployed at the next available USRP indices (i.e., USRPs 4 and 5). It can be seen in Fig. 5 that, which is
somewhat surprising, the basic DDQN agent outperforms the robust DDQN implementations in both source and
target domains, with consistently higher overall sum user rate. Interestingly, the naive policy was better able to
maximize the sum rate with the addition of new users than any R > 0.00. The naive policy achieved an average
rate of 94.25 Mbps in the target domain, which shows 13.5% improvement over the average source domain rate
of 83 Mbps. However, the best selection of R > 0.00, which was determined to be R = 0.25, achieved 93.5 Mbps
in the target domain, compared to the source domain average of 82 Mbps. The worst selection of R > 0.00, i.e.
R = 0.15, demonstrated no throughput gains to maximum, minimum, or average rate with the addition of more
users, indicating an inability to account for the difference in optimal BS location. This indicates that the policy
generated by the R-contamination model is more conservative than the naive case in this scenario.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Minimum, average and maximum sum user rates achieved in source (upper) and target (lower) domains
with different values of R in Scenario 4.

Finally, in the fourth scenario we consider domain discrepancy caused by users migrating between training
and testing time. To this end, we deploy four users starting from the first USRP index (i.e. USRPs 1, 2, 3, 4)
in Fig. 1 in the source domain. In the target domain, the four users move to USRPs 3, 4, 5 and 6, respectively.
The results are shown in Fig. 6. In Figs. 6(a), (b), (d) and (e), the agent with R = 0.15 resembles very closely
the naive implementation with R = 0.00 in the source domain, achieving 96.7 Mbps compared to 96.2 Mbps in
the naive case, while providing an improvement of roughly 1 Mbps to the average rate of 95.5 Mbps achieved by
the naive case in the target domain. The minimum rate achieved by R = 0.15 was 90.1 Mbps, which shows 0.5
Mbps improvement over the naive minimum rate of 89.6 Mbps. The maximum achieved rate for both policies
is the same in source and target domains at roughly 98 Mbps. Although the difference is small, i.e. < 5%
difference in most experiments2, this behavior represents an accurate selection of R in that the robust case
provides both similar performance in the source domain and some performance improvement over the naive case
in the target domain. We expect the difference to be small since the number of users is not changing and there
are no obstructions to LOS conditions of the MBS. In contrast, the worst selection of R, i.e. R = 0.10, provided
roughly 5 Mbps lower throughput than the naive case in both source and target domains, demonstrating an
inability to generalize to the new scenario.

5. CONCLUSIONS AND FUTURE WORK

In this work we have analyzed experimentally the S2T gap of a new class of reinforcement learning algorithms
referred to as robust deep reinforcement learning in the context of digital twin-enabled wireless networks. We first
designed a robust learning framework to control the policy robustness through adversarial dynamics expected
in the target domain based on a combination of double deep Q-learning and R-contamination model. We then
tested the robustness of the learning framework over UBSim. The source domain was constructed over UBSim
by creating a virtual representation of an indoor testing environment at University at Buffalo, and the target
domain was constructed by modifying the source domain, e.g., the blockage distribution and user locations. We
compared the robust learning algorithm with traditional reinforcement learning algorithms in the presence of
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controlled model mismatch between the source and target domains. Through an extensive simulation campaign
we verified that the negative impact of unknown dynamics of a target domain on an agent’s performance can
be effectively reduced by a robust policy trained on source domain dynamics perturbed by the R-contamination
model. From the results we can observe that the robust learning (with R > 0.00) can improve the policy transfer
performance especially when there are blockage dynamic differences between the source and target domains.
However, this requires accurate selection of R, which further requires feedback from the target domain during
training. It is also shown in some scenarios that robust learning is demonstrated to be more conservative than
naive policy transfer, which may not be favorable without further knowledge of the S2T gap. In future work we
will further analyze the domain adaptation capabilities of robust Reinforcement learning by considering testbed
experiments for the target domain, and determine the optimal contamination model parameter R based on online
interaction between the source and target domains.
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