
RF-SITL: A Software-in-the-loop
Channel Emulator for UAV Swarm Networks

Nicholas Mastronarde1, Daniel Russell2, Zhangyu Guan1, George Sklivanitis3,
Dimitris Pados3, Elizabeth Serena Bentley4, and Michael Medley4

1Department of Electrical Engineering, University at Buffalo, Buffalo, NY 14260, USA
2GE Aviation, Grand Rapids, MI 49512, USA

3Dept. of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
4Air Force Research Laboratory (AFRL), Rome, NY 13440, USA

Email: {nmastron, guan}@buffalo.edu, daniel.russell@ge.com, {gsklivanitis, dpados}@fau.edu
{elizabeth.bentley.3, michael.medley}@us.af.mil

Abstract—We introduce RF-SITL, a radio frequency (RF)
software-in-the-loop (SITL) channel emulator developed with
GNU Radio and the University at Buffalo’s Airborne Networking
and Communications (UB-ANC) emulator to enable integrated
simulation of systems comprising multiple unmanned aerial ve-
hicles (UAVs) interacting over a wireless communication channel.
RF-SITL could be paired with any multi-robot simulator to
enable I/Q sample-level fidelity simulation of communication
interactions between the robots by accurately simulating channel
effects, including interference, noise, distance-dependent path
loss, and packet losses. RF-SITL works as follows: 1) it in-
stantiates a virtual software-defined transceiver in GNU Radio
for each UAV simulated in the UB-ANC Emulator; 2) it builds
an interference channel model in which each network node
receives the superposition of signals transmitted from other
nodes; and 3) it synchronizes the location of each simulated UAV
in the UB-ANC Emulator with the virtualized RF transceivers
in RF-SITL, such that the communication channel between
nodes can accurately model distance-dependent channel effects,
such as path loss. With these capabilities, we can use both
off-the-shelf and custom-built signal processing flowgraphs that
simulate Gaussian Minimum Shift Keying (GMSK), 802.11-
like Orthogonal Frequency Division Multiplexing (OFDM), and
direct sequence spread-spectrum (DSSS) links in GNU Radio
to simulate swarm UAV networks prior to their deployment in
software-defined radios in a swarm UAV network.

I. INTRODUCTION

Unmanned aerial vehicle (UAV) swarms are poised to
enable breakthroughs in a variety of applications including
surveillance, emergency first response, package delivery, en-
vironmental monitoring, and precision agriculture. Many of

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) This
material is based upon work supported by United States Air Force under
Contract No. FA8750-20-1-0501 and FA8750-20-C-1021; (b) Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United
States Air Force.

The work of Dr. Dimitris A. Pados and Dr. George Sklivanitis was also
supported in part by NSF ECCS-2030234.

Distribution A. Approved for public release: Distribution unlimited AFRL-
2022-1528 on 30 Mar 2022

these applications include aspects of multi-agent task allo-
cation [1], [2], planning [3], or mapping [4], which require
UAVs to take actions collaboratively after interacting with the
environment and communicating over a wireless channel. This
leads to challenging multidisciplinary problems at the intersec-
tion of wireless networking and multi-agent coordination.

Recognizing this, in the last few years, many simulators
have been developed to study these challenges, e.g., [5]–
[7]. FlyNetSim [5] interfaces two open source tools, namely,
ArduPilot [8] and ns-3 [9], to provide synchronized simulation
of UAV operations, communications, and networking dynam-
ics. However, it runs as a command line application and does
not provide a graphical user interface for visualizing the sim-
ulations. We developed the University at Buffalo’s Airborne
Networking and Communications (UB-ANC) Emulator [7],
[10] independently of FlyNetSim. The UB-ANC Emulator
interfaces ArduPilot, ns-3 [9], and a ground control station
for visualization, such as QGroundControl [11] or APM Plan-
ner [12]. More recently, ROS-NetSim [6] was introduced to
enable simulation of perception-action-communication loops
in multi-agent systems. It can interface with many network
and physics simulators, such as ns-3 for network simulation
and Gazebo [13] for physics simulation. While ns-3 provides
accurate modeling of protocols at the link layer and above,
it uses simplistic mathematical models of bit-rates and bit-
error rates at the physical layer (see, e.g., the YANS Wi-Fi
model in [14]), and does not support I/Q sample-level fidelity
transceiver modeling and channel emulation.

Hardware-based channel emulators, such as RFnest [15],
enable channel emulation with multiple RF inputs (e.g., ra-
dios). However, they can be prohibitively expensive for aca-
demic use. Colosseum [16], the worlds most powerful wireless
network emulator, is open-access and free to use. It includes
128 standard radio nodes and a massive FPGA-based channel
emulator that passes baseband signals through finite impulse
response filters representing the channel taps between pairs of
standard radio nodes. Although Colosseum supports mobile



nodes, such as UAVs, node trajectories are fixed and cannot
be changed in real-time based on network interactions between
nodes. Consequently, it cannot be used for multidisciplinary
research at the intersection of wireless networking and multi-
agent coordination.

To address the aforementioned challenges and fill the gaps
in existing tools, we propose RF-SITL: a radio frequency (RF)
software-in-the-loop (SITL) channel emulator developed with
GNU Radio and the UB-ANC Emulator. RF-SITL provides
I/Q sample-level fidelity simulation and enables a network of
virtual software-defined wireless transceivers to experience re-
alistic channel effects. RF-SITL has the following capabilities:

• Instantiate a virtual software-defined transceiver for each
UAV that is simulated in the UB-ANC Emulator;

• Develop an interference channel model in which each
network node receives the superposition of signals trans-
mitted from other nodes; and

• Synchronize the location of each simulated UAV in the
UB-ANC Emulator with the virtual RF transceivers in
RF-SITL, such that the channel models between nodes
can accurately model distance-dependent channel effects,
such as path loss.

With these capabilities, it is possible to simulate UAV
swarm networks using any off-the-shelf or custom-built
software-defined transceiver architecture implemented in GNU
Radio (e.g., Gaussian Minimum Shift Keying (GMSK),
802.11-like Orthogonal Frequency Division Multiplexing
(OFDM), and Direct Sequence Spread-Spectrum (DSSS)
links) prior to deploying the software-defined transceivers in
an actual UAV swarm network. Although we describe how
RF-SITL interfaces with the UB-ANC Emulator in this paper,
RF-SITL could be paired with any multi-robot simulator to
enable I/Q sample-level fidelity simulation of communication
interactions.

The remainder of this paper is organized as follows. In
Section II, we describe the basic UB-ANC Emulator software
architecture and how it interfaces with RF-SITL. In Section III,
we design and optimize RF-SITL’s architecture. In Section IV,
we evaluate RF-SITL’s performance and scalability. We con-
clude and discuss future work in Section V.

II. UB-ANC EMULATOR WITH RF-SITL
Fig. 1 provides a high-level diagram of the UB-ANC

Emulator’s software architecture, which comprises four key
components: UB-ANC Agents, software-in-the-loop (SITL)
simulators of the flight controller, a ground control station,
and RF-SITL.

UB-ANC Agents are implemented using C++ and Qt5 [17].
Each UB-ANC Agent represents a simulated UAV and com-
prises four components: the Agent Control Unit (ACU), the
Network Control Unit (NCU), the Micro Air Vehicle Link
(MAVLink) Control Unit (MCU), and the Logging Unit (LU).
The ACU is the “brains” of a UB-ANC Agent: it contains the
application/mission logic and interfaces through well-defined
APIs with 1) the NCU to talk with different network elements;
2) the MCU to talk with different flight controllers using the

UB‐ANC Agent

Network 
Control 

Unit (NCU)

Logging 
Unit (LU)

MAVLink
Control Unit 

(MCU)

Agent 
Control 

Unit (ACU)

SITL 
Simulator

Ground 
Control 
Station

Local TCP Internal associations

RF‐SITL

Net Port

Location 
Port

Fig. 1: RF-SITL integrated with UB-ANC Emulator software
and SITL simulator of the flight controller.

MAVLink communication protocol; and 3) the LU to log
status information. The MCU connects to the open-source
Ardupilot SITL Simulator [8], which mimics the behavior of
the autopilot code without any autopilot hardware. Finally, the
NCU: 1) allows the corresponding UB-ANC Agent to send
and receive network packets through RF-SITL using a local
TCP port; and 2) sends periodically the corresponding UB-
ANC Agent’s GPS location to RF-SITL, using another local
TCP port, so that RF-SITL can adapt the channel conditions
between UB-ANC Agents based on their relative locations (see
Section III for more details). Each UB-ANC Agent’s SITL
Simulator can be connected to an open-source GUI, such as
QGroundControl [11] or APM Planner [12], to visualize the
emulated UB-ANC Agents.

Note that every UB-ANC Agent, every SITL Simulator, and
the ground control station are executed as separate processes.
As we discuss further in Section III, RF-SITL can be executed
using a single GNU radio flowgraph, which is executed as
a single process, or it can be split into multiple GNU radio
flowgraphs (one for each UB-ANC Agent), which are executed
as separate processes. More information about the UB-ANC
Emulator can be found in our prior work [7]. The following
section describes RF-SITL in more detail.

III. RF-SITL ARCHITECTURE

RF-SITL is implemented using Python 2.7.x, GNU Radio
3.7.x, and PyQt4. RF-SITL is executed from a Python script
that procedurally generates a flowgraph with N transceivers
– each containing the transmit and receive signal paths of a
single network node – and constructs an interference channel
among them using N ×N channel blocks. Fig. 2 provides a
high-level block diagram of RF-SITL. The following subsec-
tions provide details about the key components of RF-SITL’s
architecture.

A. Channel models

RF-SITL connects each of the N transceivers as illustrated
in Fig. 2. The link between the output of transceiver n and
the input of transceiver m, is associated with one channel
model block, denoted by “Channel n → m” in Fig. 2, where
n,m ∈ {1, 2, . . . , N}. We include a self-interference channel



from node n’s output to its input so that it cannot transmit and
receive at the same time in the same frequency band.

Each channel block includes a path loss component that
is updated dynamically based on the distance between the
corresponding UB-ANC Agents. This is achieved using a
custom block that is implemented as an out-of-tree (OOT)
GNU Radio module. Specifically, this block collects the GPS
coordinates of each node, and translates those to a matrix of
channel coefficients that are used to dynamically update the
channel taps in each channel block. This is illustrated as the
“GPS to Channel” block in Fig. 2.

By default, the channel taps in the channel block between
the output of node n and the input of node m are calculated
as:

cnm[t] =
1√
2
(1 + j) · PLnm[t], (1)

PLnm[t] = (dnm[t] + 1)−3, (2)

where PLnm[t] and dnm[t] denote the path loss and distance
in meters, respectively, between nodes n and m at time t; and
1√
2
(1 + j) denotes the nominal complex channel coefficient

when PLnm[t] = 1. Under this model, the time-domain signal
received at TXR m can be expressed as:

ym[t] =

N∑
n=1

cnm[t]xn[t] + η[t], (3)

where xn[t] denotes the transmitted signal from the nth node
at time t; ym[t] denotes the received signal at node m at time
t; cnm[t] is the channel coefficient between the nth node and
node m at time t as defined in (1); and η[t] is zero-mean
additive white Gaussian noise at time t with variance σ2,
which is generated by the “Noise Source” block in Fig. 2.
To reduce complexity, we use the same additive noise from
the “Noise Source” block at the input of all transceivers. Note
that this simple channel model can be easily modified. For
instance, we can adjust the path loss exponent, introduce a
vector of complex channel taps to model multi-path fading,
add a non-isotropic antenna propagation pattern to model
directional communication, modem I/Q hardware impairments,
model signal losses due to airframe occlusion, etc.

B. Hierarchical transceivers

To allow plug-and-play operation, any software-defined
transceiver that we want to simulate in RF-SITL is defined
in a hierarchical block, denoted by “Hier TXR n” in Fig. 2.
The hierarchical block’s input is a stream of complex samples
that it receives over the simulated interference channel and its
output is a stream of complex samples that it transmits over
the simulated interference channel. We have implemented and
tested three different hierarchical transceiver blocks:

1) A basic Gaussian Minimum Shift Keying (GMSK) based
transceiver;

2) An 802.11-like OFDM transceiver based on GNU Ra-
dio’s OOT module gr-ieee802-11 [18]; and

3) A cognitive interference avoiding DSSS-based
transceiver developed at Florida Atlantic University [19].

Any transceiver-specific parameters can be set through the
corresponding hierarchical blocks.

C. Network ports

The nth UB-ANC Agent, n ∈ {1, 2, ..., N}, sends and
receives data through its corresponding hierarchical transceiver
block via the local TCP port

BASE_NET_PORT + 10 * n, (4)

where BASE_NET_PORT = 15763. For example, if there
are three UB-ANC Agents, then they will send/receive their
respective network traffic through ports 15773, 15783, and
15793. This is illustrated in Fig. 2 by the blocks labeled
“Net Port (TCP)” in each hierarchical transceiver. Here, data
coming “From UB-ANC Agent n” enter the GNU Radio
flowgraph, propagate through transceiver n’s transmit path,
and get transmitted through the simulated interference channel;
similarly, data going “To UB-ANC Agent m” are received over
the simulated interference channel, processed by transceiver
m’s receive path, and passed to the corresponding UB-ANC
Agent.

D. Location ports

The nth simulated UB-ANC Agent, n ∈ {1, 2, ..., N},
hands over its GPS location to RF-SITL via the local TCP
port

BASE_LOC_PORT + 10 * n, (5)

where BASE_LOC_PORT = 15766. For example, if there
are three UB-ANC Agents, then they will send their respective
GPS locations to RF-SITL through ports 15776, 15786, and
15796. This is illustrated in Fig. 2 by the block labeled
“Location Ports (TCP).”

E. Split RF-SITL architecture

The default scheduler in GNU Radio allows each block
to operate on its own thread and the operating system will
distribute them across different CPU cores. GNU Radio signal
processing blocks read the available samples in their input
memory buffer(s), process them as fast as they can, and
place the result in the corresponding output memory buffer(s),
each of them being executed in its own, independent thread.
An underlying runtime scheduler is in charge of managing
the flow of data through the flow graph from source(s) to
sink(s). As a result, the RF-SITL flowgraph illustrated in
Fig. 2 performs a significant amount of signal processing
tasks sequentially and requires large amount of time to process
each transmitted packet. To overcome this limitation, we adopt
hierarchical blocks in RF-SITL, which provide a way to define
an arbitrary number of algorithms and implementations (e.g.,
N separate flowgraphs – one for each UB-ANC Agent – that
can execute in parallel) for each processing block, which will
be instantiated according to the configuration. Additionally,
we create separate threads for controlling the noise source
blocks and the distance-based channel model updates to further
parallelize the implementation of RF-SITL. The split RF-SITL



Hier TXR 1

Net Port
(TCP)

TX 
Path

RX 
Path

Hier TXR 2

Net Port
(TCP)

TX 
Path

RX 
Path

Hier TXR N

Net Port
(TCP)

TX 
Path

RX 
Path

+
From TX 1

From TX 2

From TX N

+

+

…

…

To/From UB‐ANC Agent 1

To/From UB‐ANC Agent 2

To/From UB‐ANC Agent N

Noise Source

From Noise 
Source

From Noise 
Source

To RX 1, 2, … , N

Channel 12

Channel 11

Channel 1N

To Channel 11

To Channel 12

To Channel 1N

…

Channel 22

Channel 21

Channel 2N

…

Channel N2

Channel N1

Channel NN

…
Location Ports

(TCP)From UB‐ANC Agents 1, 2, … , N

GPS to Channel

Channel Model Updates

GPS Coordinates

…
…

…

To Channel 21

To Channel 22

To Channel 2N

To Channel N1

To Channel N2

To Channel NN

From TX 1

From TX 2

From TX N

…

From TX 1

From TX 2

From TX N

…

Fig. 2: Centralized RF-SITL architecture with N hierarchical transceiver blocks (“Hier TXR n” for n ∈ {1, 2, . . . , N})
interconnected through N ×N channel blocks in a single flowgraph. Channel block (n,m) (“Channel n → m”) connects the
output of TXR n’s transmit path (“TX Path”) to the input of TXR m’s receive path (“RX Path”). For clarity, these connections
are not explicitly shown. Instead, they are indicated by the statements “To Channel n → m” and “From TX n.” A single “Noise
Source” block generates additive white Gaussian noise at the input of each TXRs’ receive path. For clarity, these connections
are indicated by the statements “From Noise Source” except at the input of TXR N .

architecture (i.e., the flowgraph built on hierarchical GNU
Radio blocks) is illustrated in Fig. 3.

To split the centralized flowgraph, we create custom source
and sync blocks in GNU Radio labeled “Signal Subscribe” and
“Signal Publish,” respectively, in Fig. 3. These blocks take the
place of the connectors between the output of the hierarchical
transceiver block and the input of the channel blocks in the
original centralized flowgraph. The nth transceiver’s Signal
Publish block, for n ∈ {1, 2, . . . , N}, acts as a sink that simply
publishes the transceiver’s transmitted signal samples to N
Unix sockets, with one socket for each outbound channel from
node n to nodes m ∈ {1, 2, . . . , N}. On the other hand, the nth
transceiver’s Signal Subscribe block, for n ∈ {1, 2, . . . , N},
acts as a source block that reads signal samples from the
Unix sockets corresponding to each inbound channel from
nodes m ∈ {1, 2, . . . , N} to node n and appends them to
buffers associated with each inbound channel. This happens
in a separate thread for each channel (and separately from
the flowgraph’s thread) so it is not blocked by any other
processing.

The Signal Subscribe block’s “work” function publishes the
same number of samples from each buffer to the corresponding
channel block. If one of the buffers does not contain enough
samples, then the signal is padded with null values (0 + 0j).

Additionally, a synchronization mechanism is added to ensure
that each transceiver’s flowgraph performs the same number
of work cycles. Specifically, the nth transceiver’s Signal Sub-
scribe block, for n ∈ {1, 2, . . . , N}, will send a “ready” signal
when it is ready to publish signal samples to each channel
block, and then wait for a “trigger” signal to continue. A
thread that executes as part of the “GPS to Channel” block
listens for these “ready” signals and, upon receiving all of
them, sends back a “trigger” signal to every Signal Subscribe
block to process a certain number of samples.1 In this way,
each channel processes the same number of samples at the
same rate.

IV. SIMULATION RESULTS

In this section, we demonstrate simulation performance
gains obtained using the split RF-SITL architecture, by first
comparing the round trip times through the centralized and
split architectures with N = 6 GMSK transceivers. Subse-
quently, to illustrate RF-SITL’s scalability, we compare the
round trip times through the split architecture when there
are N = 2, 3, . . . , 15 GMSK transceivers. In all simulations,

1In the original centralized flowgraph, the “GPS to Channel” block was
implemented as a custom GNU Radio block; however, in the split flowgraph,
it is just a Python script.



Hier TXR n

Net Port
(TCP)

TX 
Path

RX 
Path+

…

Channel 2n

Channel 1n

Channel N n

To/From UB‐ANC Agent n

Signal 
Publish

Signal 
Subscribe

From TX 1

From TX 2

From TX N

Location Ports
(TCP)

From UB‐ANC Agents 
1, 2, … , N

GPS to Channel
Channel Model Updates

GPS Coordinates

Split flowgraph for TXR n

Noise Source

Fig. 3: Split RF-SITL architecture constructed from N flowgraphs that each contain N channel blocks and one hierarchical
transceiver block (“Hier TXR n”). The “Signal Publish” block publishes the output of TXR n’s transmit path (“TX Path”)
on a Unix socket. The “Signal Subscribe” block reads the published outputs from TXRs m ∈ {1, 2, . . . , N} and passes them
through channel blocks (m,n) (“Channel m → n”) to the input of TXR n’s receive path (“RX Path”). Each split flowgraph
has its own noise source that generates additive white Gaussian noise at the input of the corresponding TXRs’ receive path
(RX path).

packets have a fixed length of 80 bytes. Simulations take place
on a Virtual Box virtual machine running Ubuntu 16.04 LTS
with 12 virtual CPU cores (Execution Cap 90%) and 8 GB
RAM. The virtual machine is hosted on a computer with an
Intel Core i9-9900K 3.60 GHz CPU (8-core, 16-threads) and
64 GB RAM running Windows 10 Pro.

Instead of directly using UB-ANC Agents to send/receive
packets through RF-SITL, we created a lightweight COM
manager for each transceiver to 1) transmit packets to other
transceivers; 2) receive packets from other transceivers and
then reply with acknowledgement packets; and 3) measure
round trip times. The COM managers for each transceiver are
hosted on a separate computer and connected to the machine
hosting RF-SITL through a Gigabit ethernet (GigE) switch.
Packets transmitted by the COM manager associated with
transceiver n are sent through the GigE switch before entering
RF-SITL through transceiver n’s Net Port. Similarly, packets
received by transceiver n in RF-SITL exit through transceiver
n’s Net Port and are sent through the GigE switch to the COM
manager associated with transceiver n.

Fig. 4 illustrates the empirical cumulative distribution func-
tions (CDFs) of round trip times acquired from executing
both the centralized and split GNU Radio architectures with
N = 6 GMSK transceivers (and N × N = 36 channel
blocks). Each CDF was generated by measuring the round trip
times of 100 packets through the corresponding flowgraph and
represents the fraction of these packets with round trip times
less than or equal to the round trip time on the x-axis. Since
the centralized RF-SITL architecture requires processing to be
performed sequentially for every signal processing block and
the split RF-SITL architecture enables parallel processing of
each transceiver’s flowgraph, we observe that the round trip
times are smaller when using the latter. The average round trip

times measured for the centralized and split architectures are
2.67 seconds and 0.15 seconds, respectively, thus showing that
the split architecture is almost 18x faster than the centralized
one.

Fig. 5 illustrates the round trip times using the split RF-
SITL architecture with N = 2, 3, . . . , 15 (and N × N =
4, 9, . . . , 225 channel blocks). For each value of N , we
measured the round trip times of 100 packets through the
corresponding flowgraph and plotted the average, 10th per-
centile, and 90th percentile round trip times of these packets.
Since the number of flowgraphs increases with the number of
transceivers and the split RF-SITL architecture enables parallel
processing of each transceiver’s flowgraph, the average round
trip times increase roughly linearly in N .2

From Figs. 4 and 5 it is clear that there are significant
variations in the measured round trip times. We were not
able to identify the exact cause of these variations, but have
several non-mutually exclusive hypotheses. First, the simula-
tions were run in a lab with over 15 networked computers
running VNC servers, FTP services, and other applications
that may produce network traffic. It is possible that the transit
time through the GigE switch between the COM managers
and RF-SITL fluctuated because of this traffic. Second, the
network interface controller (NIC) on the machine hosting RF-
SITL has VNC messages passing through it along with other
background network traffic. It is possible that this additional
traffic introduced delays. Finally, RF-SITL is executed within
a virtual machine and on a host machine sharing resources
with other processes. Therefore, it is also possible that the
resources available to RF-SITL fluctuated over time.

2If there are N transceivers, then each transceiver’s flowgraph has N
channel blocks as illustrated in Fig. 3. Therefore, the complexity and round
trip times are actually superlinear in N .



0 1 2 3 4 5 6 7 8 9

Round Trip Time (seconds)

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 C

D
F

Centralized flowgraph
Split flowgraph

Fig. 4: Empirical CDF of the round trip times in the centralized
and split RF-SITL architectures with 6 GMSK transceivers (80
byte packets).

2 4 6 8 10 12 14 16

Number of Transceivers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ou

nd
 T

rip
 T

im
e 

(s
ec

on
ds

)

10th percentile
Average
90th percentile

Fig. 5: Round trip times versus the number of GMSK
transceivers using the split RF-SITL architecture (80 byte
packets).

V. CONCLUSION

We developed and optimized RF-SITL, a radio frequency
(RF) software-in-the-loop channel emulator implemented with
GNU Radio and UB-ANC. After implementing RF-SITL with
a centralized GNU Radio flowgraph, we observed that it took
a long time to process each transmitted packet because of
the default design of GNU Radio’s scheduler. To overcome
this challenge, we adopted a hierarchical design that split
the centralized RF-SITL flowgraph into parallel synchronized
flowgraphs for each transceiver. Our measurements showed
that the split flowgraph was nearly 18× faster than the
centralized flowgraph (measured in terms of packet round
trip times) in a network with six transceivers. We further
demonstrated the scalability of the split flowgraph, which
could achieve average round trip times under 300 ms in
a network of 15 transceivers. In future work, we will use

RF-SITL to compare the effect of different physical layer
transceiver architectures on the performance of various multi-
agent coordination algorithms (such as task allocation) in the
UB-ANC Emulator and compare the results to field tests using
the same algorithms and transceiver architectures.

REFERENCES

[1] M. Rantanen, N. Mastronarde, J. Hudack, and K. Dantu, “Decentralized
task allocation in lossy networks: A simulation study,” in 16th Annual
IEEE Int. Conf. on Sensing, Communication, and Networking (SECON),
2019, pp. 1–9.

[2] S. Nayak, S. Yeotikar, E. Carrillo, E. Rudnick-Cohen, M. K. M. Jaffar,
R. Patel, S. Azarm, J. W. Herrmann, H. Xu, and M. Otte, “Experimental
comparison of decentralized task allocation algorithms under imperfect
communication,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 572–579, 2020.

[3] S. S. Ponda, L. B. Johnson, A. N. Kopeikin, H.-L. Choi, and J. P.
How, “Distributed planning strategies to ensure network connectivity for
dynamic heterogeneous teams,” IEEE J. Sel. Areas Commun., vol. 30,
no. 5, pp. 861–869, 2012.

[4] M. Pfingsthorn, B. Slamet, and A. Visser, “A scalable hybrid multi-
robot slam method for highly detailed maps,” in Robot Soccer World
Cup. Springer, 2007, pp. 457–464.

[5] S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An open source
synchronized uav network simulator based on ns-3 and ardupilot,” in
ACM Int. Conf. on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2018, pp. 37–45.

[6] M. Calvo-Fullana, D. Mox, A. Pyattaev, J. Fink, V. Kumar, and
A. Ribeiro, “Ros-netsim: A framework for the integration of robotic
and network simulators,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1120–1127, 2021.

[7] J. Modares, N. Mastronarde, and K. Dantu, “Simulating unmanned aerial
vehicle swarms with the UB-ANC emulator,” Int. Journal of Micro Air
Vehicles, vol. 11, pp. 1–16, 2019.

[8] “SITL Simulator (Software in the Loop).” [Online]. Available:
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

[9] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[10] “UB-ANC Emulator.” [Online]. Available: https://github.com/jmodares/
UB-ANC-Emulator

[11] “QGroundControl.” [Online]. Available: http://qgroundcontrol.com/
[12] “APM Planner.” [Online]. Available: https://ardupilot.org/planner2/
[13] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), vol. 3, 2004, pp. 2149–2154.

[14] M. Lacage and T. R. Henderson, “Yet another network simulator,” in
Proceeding from the 2006 workshop on ns-2: the IP network simulator.
ACM, 2006, p. 12.

[15] “RFnest RF Channel Emulator.” [Online]. Available: https://www.i-a-i.
com/product/rfnest-rf-channel-emulator/

[16] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder et al., “Colos-
seum: Large-scale wireless experimentation through hardware-in-the-
loop network emulation,” in IEEE Int. Symp. on Dynamic Spectrum
Access Networks (DySPAN), 2021, pp. 105–113.

[17] “Qt Cross-platform software developmenet for embedded and desktop.”
[Online]. Available: https://www.qt.io/

[18] B. Bloessl, “IEEE 802.11 a/g/p transceiver for GNU radio.” [Online].
Available: https://github.com/bastibl/gr-ieee802-11

[19] G. Sklivanitis, A. Gannon, K. Tountas, D. A. Pados, S. N. Batalama,
S. Reichhart, M. Medley, N. Thawdar, U. Lee, J. D. Matyjas et al.,
“Airborne cognitive networking: Design, development, and deployment,”
IEEE Access, vol. 6, pp. 47 217–47 239, 2018.


