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Abstract—Terahertz (THz)-band communications have been
envisioned as a key technology to support ultra-high-data-rate
applications in 5G-beyond (or 6G) wireless networks. Compared
to the microwave and mmWave bands, the main challenges with
the THz band are in its i) large path loss hence limited network
coverage and ii) visible-light-like propagation characteristics
hence poor support of mobility in blockage-rich environments.
This paper studies quantitatively the applicability of THz-band
communications in blockage-rich mobile environments, focusing
on a new network scenario called FlyTera. In FlyTera, a set of
hotspots mounted on flying drones collaboratively provide data
streaming services to ground users, in the microwave, mmWave
and THz bands. We first provide a mathematical formulation of
the FlyTera control problem, where the objective is to maximize
the network spectral efficiency by jointly controlling the flight of
the drone hotspots, their association to the ground users, and the
spectrum bands used by the users. To solve the resulting problem,
which is shown to be a mixed integer nonlinear nonconvex
programming (MINLP) problem, we design distributed solution
algorithms based on a combination of echo state learning and
reinforcement learning. An extensive simulation campaign is
then conducted with SimBAG, a newly developed Simulator of
Broadband Aerial-Ground wireless networks. It is shown that no
single spectrum band can meet the requirements of high data rate
and wide coverage simultaneously. Moreover, from the network-
level point of view, THz-band communications can significantly
benefit from the mobility of the flying drones, and on average
4−6 times higher (rather than lower) throughput can be achieved
in mobile than in static environments.

Index Terms—Terahertz Band; Mmwave Band; Mircowave
Band; Drone Networks; Echo State Network; Reinforcement
Learning.

I. INTRODUCTION

With the advancements of new material development and
transceiver design [2]–[6], THz (i.e., Terahertz, with frequency
ranging from 100 GHz to 10 THz) communications have
been envisioned as a key technology to meet the increasing
demands of bandwidth-hungry applications in 5G-beyond and
6G wireless networks, such as wireless virtual/augmented
reality (VR/AR) [7], [8], high-data-rate communications [9],
[10], vehicular networks [11], among others [12]–[14]. How-
ever, compared to lower frequency bands, e.g., sub-6 GHz
and mmWave bands, there are two main challenges with
the THz band. First, its communication range is significantly
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reduced because of the large signal attenuation in THz band
in radio in-air environments. For example, the attenuation
due to water vapor and oxygen absorption is approximately
0.6 − 1000 dB/km for THz band, while it is 0.01 dB/km
at sub-6 GHz band and 0.3 − 0.6 dB/km for the mmWave
band [15]. Second, the THz links can be easily blocked
because of the visible-light-like directional waves in extremely
high frequency range.

In the past few years, significant research efforts have
been directed towards addressing these challenges, focusing
on either THz or mmWave bands. For example, in [16], [17]
Han et al. propose a multi-wideband waveform design for the
THz band, which improves the communication distance by dy-
namically varying the rate and the transmit power on each sub-
window. The concept of ultra-massive MIMO communications
was studied in [18] to increase the communication distance
and the achievable capacity of THz-band communications. In
mobile environments, fast beam search and alignment schemes
have been proposed in [19]–[22]. For example, Hassanieh
et al. propose Agile-Link in [19], which can provably find
the optimal direction in logarithmic number of measurements.
BeamSpy is proposed in [21] to instantaneously predict the
quality of mmWave beams without the costly beam searching.
Readers are referred to [23], [24] and references therein for
an excellent survey of the main results in this area.

Most of these above discussed works require to redesign
the lower layers (i.e., physical and link) of the communicating
devices’ protocol stack, and hence are not backward compat-
ible. Moreover, these work either focus on only single link or
static networking scenarios, while the applicability of THz-
band communications for mobile wireless networking has not
been thoroughly explored so far.

Novelty and Contributions. In this work we aim to
understand from a network perspective the applicability of
THz-band communications and how it can complement the
lower-frequency bands in mobile blockage-rich environments.
Inspired by the newly emerging drone cells [9], [25]–[28],
in this paper we focus on a network scenario called FlyTera,
where a set of hotspots mounted on flying drones collabora-
tively provide data streaming services to ground users in the
microwave, mmWave and THz bands. In FlyTera, we consider
UAVs endowed with multiple radio interfaces to achieve a
good tradeoff between high-data-rate communications and
large network coverage [29]. It is worth pointing out that
it is feasible to deploy multiple radio interfaces on modern
UAVs, since a mmWave or THz antenna array can be easily
packed in a small area because of the short wavelength in those
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frequency bands. Universal transceivers across multiple fre-
quency bands can also be enabled by the recent advancements
of material and manufacturing technologies [30]. Moreover,
with the advancement of battery technologies, the flight time
of UAVs has been significantly prolonged with enhanced
capability of operating complex computing algorithms. An
example is hybrid solar cell HEPS, a lithium-ion polymer
battery and super-capacitor bank based propulsion system [31].
Additionally, several techniques have been proposed to further
extend the fight time of UAVs, e.g., Simultaneous Wireless
Information and Power Transmission (SWIPT) [32], automatic
battery replacement mechanism (Endless Flyer) [33], and
solar-cell powered UAV [34].

We consider FlyTera because the drone hotspots can be
deployed dynamically at network run time, and hence i)
it is more likely for them to establish line-of-sight (LOS)
links to their users in blockage-rich environments; and ii) the
network coverage and spectral efficiency can be enhanced by
dynamically deploying more drone hotspots in those areas with
higher user density and higher traffic demand. There are two
major challenges to address in FlyTera. First, it is challenging
for the distributed drone hotspots to coordinate with each other
to achieve extended network coverage while still maintaining
high-data-rate wireless links. This is because a drone hotspot
may fly away from the ground network infrastructure when it
moves closer to the users, hence reducing the data rate of the
backhaul link. Second, the spectrum access and association
strategies of the ground users are closely coupled with the
drone hotspot locations and the interference levels on each
spectrum band. This makes it both essential yet challenging
to achieve a good tradeoff between network coverage and
network spectral efficiency. To the best of our knowledge, this
is the first work studying the joint access and flight control
jointly considering the microwave, mmWave and THz bands
in mobile blockage-rich environments. We claim the following
three main contributions:

• We first formulate mathematically the control problem in
FlyTera, where the objective is to maximize the network-
wide spectral efficiency by jointly determining the flight
of the drone hotspots, their association to the ground
users, and the spectrum bands used by the users. It
is shown that the resulting problem is a mixed integer
nonlinear non-convex programming (MINLP) problem.

• We design distributed algorithms to solve the MINLP
problem based on a combination of the echo state network
(ESN) learning and reinforcement learning techniques.
The echo state learning is shown to be able to predict the
optimal movements for the drone hotspots with nearly-
constant, low computational complexity in dynamic net-
work environments.

• We develop a new event-driven, universal broadband
simulator called SimBAG for integrated aerial-ground
wireless networking. An extensive simulation campaign
has been conducted based on SimBAG, which proves the
great potential of THz-band communications from the
network’s point of view. Results indicate that significantly
(4−6 times) higher throughput can be achieved by THz-

band communications in mobile than in static networks.
The reminder of the paper is organized as follows. In Sec-
tion II, we discuss the related works. In Section III, we present
the system model and problem formulation. The distributed
algorithm design is described in Section IV, and in Section V
we discuss the development of SimBAG and analyze the
performance evaluation results. Finally, we draw the main
conclusions in Section VI.

II. RELATED WORK

MmWave and THz band communications have been ex-
plored for wide variety of applications over the last decade [8],
[12], [35]–[42]. For example, in [35] the authors propose an
algorithm of QoS-aware bandwidth allocation and concurrent
scheduling to achieve higher network throughput in THz
wireless backhaul networks. In [8], Chaccour et al. explore
the potential of THz in VR applications to provide high-data-
rate low-latency communications. In [36], the authors study
the feasibility of wireless communications in the terahertz
bands for four practical altitude-dependant applications. In
[37] Barati et al. study the discovery latency and energy con-
sumption caused by beam discovery in mmWave-band com-
munications. In [38] the authors propose a novel risk-based
framework for rate optimization and reliable performance for
THz-enabled wireless VR networks. The readers are referred
to [12], [39]–[42] and references therein for a good survey a
main results in this area. None of these works have studied
the effects of node mobility on THz-band communications
in drone networks. Moreover, while these works have been
focusing on either mmWave or THz frequency band, we study
joint spectrum access and flight control in drone networks
across the microwave, mmWave and THz bands.

Drone-assisted spectrum access has drawn significant re-
search attention [26], [43]–[56]. For example, in [43] Qiu et
al. propose an SDN-enabled hierarchical network architecture
by integrating the low- and high-altitude platform with the
terrestrial cellular networks. In [44] the authors propose a
privacy preserving secure spectrum trading and sharing based
on blockchain technology to resolve the security issues in
wireless UAV networks. In [45] the authors propose a tractable
three-dimensional (3D) spatial model for evaluating the aver-
age downlink performance of unmanned aerial vehicle (UAV)
networks in the mmWave bands. Zhu et al. realize in [46]
flexible coverage by exploring 3D beamforming for mmWave
UAV communications with a phased uniform planar array. In
[47], Gapeyenko et al. investigate the use of UAVs to mitigate
the impact of blockage on the backhaul links. In [48], the
authors propose a fast beam tracking scheme to achieve high-
quality communications in the mmWave band. Xiao et al.
explore in [49] the use of mmWave spatial-division multiple
access to improve the cellular network capacity. In [50], the
authors evaluate the performance of UAV-assisted mmWave
networks in urban environments utilizing access points carried
by UAVs. In [51], Feng et al. propose a spectrum management
architecture and evaluate the performance of the proposed
mmWave based wireless backhaul in UAV-assisted cellular
networks. Significant efforts have also been made in existing
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literature to enable UAV applications in the THz frequency
[26], [52]–[55]. In [26] Xia et al. propose to use multi-array
antennas to achieve higher data rate with extended commu-
nication range for wireless links in the sub-THz bands; in
[52] intelligent reflective surface (IRS) is adopted to enhance
the data rate for THz-band UAV communications; in our
prior work [54], we propose a mobility-resilient beamforming
scheme for communications between flying UAVs by dynam-
ically controlling the beamwidth for the mmWave/THz links.
The readers are referred to [56] for an excellent survey of the
main results in this area.

Reinforcement learning based UAV control has recently
received significant attention in the scientific literature [54],
[55], [57]–[66]. In [57] Hu et al. propose a distributed sense-
and-send protocol to coordinate UAVs for sensing and trans-
mission and use reinforcement learning for trajectory control
and resource management. In [58] the authors propose a
reinforcement learning scheme to maximize the uplink sum
rate in the absence of vital information such as user locations
and transmission power. The authors of [59] study the optimal
deployment of UAVs based on Q-learning to maximize the
real-time downlink capacity. In [60] Zhou et al. propose a deep
reinforcement learning (DRL) based dynamic channel alloca-
tion scheme by integrating DRL with long short-term memory
(LSTM) to learn from the past experience. Similarly, in [61]
the authors propose a DRL based method to maximize the
energy efficiency of UAV systems by jointly considering the
communication coverage, fairness and connectivity. A novel
framework for dynamic UAV deployment based on Q-learning
is proposed in [62]. In [63] Tafinstev et al. study dynamic
associations based on RL for UAV applications in cellular
networks with integrated access and backhaul (IAB). In our
prior works [54] [55], we proposed an ESN based solution to
reduce the link outage probability caused by the movement of
drones considering different levels of mobility uncertainties.
The readers are referred to [64]–[66] and references therein
for an excellent survey of the main results in this field.

Different from the above works, in this paper we focus on
a new network scenario called FlyTera, where drone hotspots
and ground users are allowed to operate in the microwave,
mmWave and THz bands, and study how different spectrum
bands complement each other in mobile blockage-rich environ-
ments. We use ESN learning to predict the achievable rate of
the user by jointly considering the drone locations and design
RL-based ESN to optimize their flight trajectories.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In FlyTera there are a set of ground and drone base stations
collaboratively providing access services to ground users in the
microwave band fmc, mmWave band fmm and THz band f tz,
as shown in Fig. 1. Define the set of spectrum bands F as F ,
{fmc, fmm, f tz}. Denote Bgrd,Bfly and U as the sets of the
ground base stations (GBS), flying drone base stations (FBS)
and users, respectively. Let B represent the set of all the base
stations and B̃ the set of all the nodes, i.e., B = Bgrd∪Bfly and
B̃ = B∪U . Our objective is to, given the blockage distribution
in the network, maximize the network spectral efficiency by

Flying Base Station
Ground Base Station
Ground User

Backhaul link
Access link
Blockages

𝑢

𝑖(𝑢)

𝑢

𝑖(𝑢)

𝑅෨௨
ୟୡ

Flight Control

Spectrum Access Control

mmWave or 
THz link

μWave, 
mmWave or 
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Fig. 1: FlyTera System Model.

jointly controlling the flight of the FBSs, their association with
the ground users as well as the spectrum bands used by the
users. Next we describe the blockage, link, spectrum access
models and mobility models sequentially. The key notations
are summarized in Table I for the reader’s convenience.

A. Blockage Model
Let K represent the set of blockages in the network. As

illustrated in Fig. 2, each blockage k ∈ K is represented as a
rectangle of dimensions Lk×Wk×Hk, with Lk, Wk and Hk

being the length, width and height of the blockage, respec-
tively. Denote Ck as the center of blockage k. The orientation
of blockage k, denoted as θk, is considered to be uniformly
distributed in [0, 2π]. Define Pblk

k (Ck, Lk,Wk, Hk, θk) as the
set of points contained in blockage k.

Let codi = (xi, yi, zi) denote the coordinate vector of node
i ∈ B̃ (the phone in Fig. 2), with xi, yi and zi being the
x-, y- and z-axis components, respectively. Similarly, denote
codj as the coordinate vector of node j ∈ B̃ (the drone in
Fig. 2). Further define Pseg

ij as the point set of the segment
connecting nodes i and j. Finally, use I(codi, codj , k) to
indicate whether blockage k is blocking the link between
nodes i and j, with I(codi, codj , k) = 1 if yes, i.e., Pseg

ij ∩
Pblk
k (Ck, Lk,Wk, Hk, θk) 6= φ, and I(codi, codj , k) = 0

otherwise.
Then, given the set K of blockages, the total number of

blockages in the link between nodes i and j, denoted as Ki,j ,
can be expressed as

Ki,j =
∑
k∈K

I(codi, codj , k), ∀i, j ∈ B̃. (1)

Fig. 2: Illustration of the blockage model in FlyTera.
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Notation Physical Meaning
fmc Frequency of microwave frequency band
fmm Frequency of millimeter-wave frequency band
ftz Frequency of terahertz frequency band
F Set of spectrum bands
Bgrd Set of ground base stations
Bfly Set of flying drone base stations
U Set of users
B Set of all base stations
B̃ Set of all nodes
K Set of blockages

Lk,Wk, Hk Length, width, height of a blockage k ∈ K
Ck, θk Center and orientation of a blockage k ∈ K
Pblk

k (·) Set of points contained in blockage k
codi x-, y-, z- coordinate vector of node i ∈ B̃
codj x-, y-, z- coordinate vector of node j ∈ B̃
Pseg

ij Point set of segment connecting nodes i and j
I(·) Indicator function
Ki,j Total number of blockages in the link i, j
Li,j Path loss between nodes i and j
β0 Per-blockage absorption coefficient

αi,j(f) Path loss exponent for link i, j in frequency band f
C Speed of light
di,j Distance between nodes i and j
γmc
u Microwave band link SINR for user u

γmm
u Millimeter-wave band link SINR for user u
γtz
u Terahertz band link SINR for user u

i(u) Serving base station of user u
Pi(u) Transmission power of serving base station i(u)
Pj Transmission power of interfering base station j 6= i(u)
Ui(u) Set of users served by serving base station i(u)
N0 Noise power
Ru(·) Rate achievable by user u
G Transmit gain of base station
G̃ Receive gain of user
θ Offset angle (boresight) of user u’s antenna
θ′ Offset angle (boresight) of drone base station antenna

ψ(·, ·) Frequency selection function
Rac, Rbk Access and backhaul link rates

ζ Association vector
T Total simulation duration

TABLE I: Summary of Key Notations.

B. Link Model

In this section we describe the interference model focusing
on ground users in U , while the model can be derived similarly
for flying base stations in Bfly. To this end, we first describe
the path loss model.

Path Loss. Denote Li,j(f) as the path loss between nodes
i, j ∈ B̃ operating in frequency band f ∈ F . Then Li,j(f)
can be modelled as in [67]:

Li,j(f) = β
Ki,j

0

(
4πf

C

)2

(di,j)
αi,j(f) (2)

where C is the speed of light, αi,j(f) is the path-loss exponent
for the link between nodes i and j in frequency band f , Ki,j

defined in (1) represents the number of blockages along the
link, β0 ∈ [0, 1] is the per-blockage absorption coefficient [9]
[68], and finally di,j = di,j(codi, codj) denotes the distance
between nodes i and j, i.e.,

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, (3)

given coordinate vectors codi and codj defined in Sec-
tion III-A for nodes i and j, respectively.

Microwave-Band Link. Denote γmc
u as the SINR of ground

user u ∈ U if it receives on the microwave frequency band
fmc, then γmc

u can be expressed as

γmc
u =

Pmc
i(u)Li(u),u(fmc)∑

j∈Bmc/i(u)

Pmc
j Lj,u(fmc) +Nmc

0

(4)

where Bmc ⊂ B represents the set of BSs operating on
this band, and i(u) ∈ Bmc represents the serving BS of
user u ∈ U ; Pmc

i(u) and Pmc
j are the transmission power

of the serving BS i(u) and interfering BS j ∈ Bmc/i(u),
respectively; Li(u),u(fmc) and Lj,u(fmc) are the path loss
defined in (2), and finally Nmc

0 is the power of noise at
node u in the microwave band and is expressed as Nmc

0 =
Nthermal = kBTB

mc, where kB is the Boltzmann constant, T
is the temperature and Bmc is the bandwidth of the microwave
band. Let Umc

i(u) ∈ U represent the set of users served by BS
i(u) in this band and consider that its transmission time is
shared among its users based on time-division multiple access
(TDMA). Then the rate achievable by user u in this band,
denoted as Ru(fmc), can be written as

Ru(fmc) =
1

|Umc
i(u)|

Bmc log2(1 + γmc
u ), (5)

where |·| represents the cardinality of a set, i.e., the number of
users served by BS i(u) in this frequency band for our case;
coefficient 1

|Umc
i(u)
| denotes the fraction of the time allocated to

user u ∈ Umc
i(u).

MmWave-Band Link. Let Pmm
i(u) denote the transmission

power of the serving base station of user u (i.e., i(u)) in the
mmWave band. Further denote Umm

i(u) ∈ U as the set of users
served by BS i(u) and |Umm

i(u)| as the number of users in Umm
i(u) .

Different from the microwave band, where the BS serves its
users based on TDMA, in mmWave band the BS is able to
serve the users simultaneously with the directional mmWave-
band links. Let Pmm

i(u),u′ represent the transmission power of
BS i(u) allocated to user u′ ∈ Umm

i(u) , then we have∑
v∈Umm

i(u)

Pmm
i(u),v ≤ P

mm
i(u) , ∀u ∈ U

mm. (6)

The received SINR of user u ∈ U in this band, denoted as
γmm
u , can then be written as

γmm
u =

Pmm
i(u),uLi(u),u(fmm)Gmm

maxG̃
mm
max∑

u′∈Umm/u

Pmm
i(u′),u′Li(u′),u(fmm)Gmm

i(u′),uG̃
mm
u,i(u′) +Nmm

0

(7)

(a) (b)

Fig. 3: Interference model for the mmWave-band links: (a) inter-BS
interference; (b) intra-BS interference.
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where Umm represents the set of all the users operating in the
mmWave band, and Nmm

0 is the power of noise in this band
at each user. In (7), Li(u),u(fmm) represents the path loss
between BS i(u) and user u in the mmWave band; Gmm

i(u′),u

and G̃mm
u,i(u′) represent the transmit gain of BS i(u′) and

receive gain of user u respectively; Gmm
max and G̃mm

max denote the
maximum transmit gain of BSs and maximum receive gain of
users, respectively. Denote the resulting link rate as Ru(fmm)
for user u, then we have

Ru(fmm) = Bmm log2(1 + γmm
u ), (8)

where Bmm is the bandwidth of the mmWave frequency band.
We consider sectorized interference model as in [69] to

determine the transmit and receive gains, i.e., Gmm
i(u′),u and

G̃mm
u,i(u′) in (7). As illustrated in Fig. 3, let θ ∈ [−π, π]

denote the offset angle of the antenna boresight direction of
user u with respect to the reference direction, and θ′ as the
offset angle for the drone base station. Here, the reference
direction refers to the direction along which the transmitting
and receiving beams are perfectly aligned, as indicated by the
dashed beams in Fig. 3. Denote θu and θi(u′) as the beamwidth
of user u and BS i(u′), respectively. Then, the transmit gain
for BS i(u′) and receive gain of user u can be determined as
follows, taking Fig. 3(a) as an example:

Gmm
i(u′),u =

{
Gmm

max, if θ′ ≤ θi(u′)
Gmm

min, otherwise
(9)

for the transmit gain, and

G̃mm
u,i(u′) =

{
Gmm

max, if θ ≤ θu
Gmm

min, otherwise
(10)

for the receive gain.
THz-Band Link. The SINR achievable by a user in the THz

band can be derived similarly as in (7)-(10) for the mmWave
band, except that only LOS transmissions will be considered
because of the significantly higher path loss. Then, we have
Ki,j = 0 in (2) and the overall path loss can be rewritten as

Li,j(f
tz) =

(
4πf tz

C

)2

(di,j)
αi,j(ftz)eAabs(f

tz,di,j), (11)

where di,j defined in (3) is the distance between nodes i
and j, and αi,j(f tz) represents the path loss exponent in the
THz band and Aabs(f

tz, di,j) is molecular absorption factor at
frequency f tz and distance di,j . Finally, denote the resulting
SINR as γtz

u for user u and the corresponding link rate as
Ru(f tz).

C. Spectrum Access Model

Consider single-band spectrum access for the ground users
and multi-band spectrum access for the base stations, i.e., each
user is allowed to use at most one frequency band at the same
time, while each base station is able to serve multiple users
in different frequency bands. Then we have∑

f∈F

ψ(u, f) ≤ 1, ∀u ∈ U (12)

where ψ(u, f) is the frequency selection function, with
ψ(u, f) = 1 if frequency band f is used by user u, and
ψ(u, f) = 0 otherwise. Then the overall access link rate of
user u ∈ U , denoted as Rac

u , can be expressed as

Rac
u =

∑
f∈F

ψ(u, f)Ru(f), (13)

where Ru(f) is defined in Section III-B, with f ∈ F . Since the
aggregate access link rate of each FBS should not exceed the
rate of the backhaul link, i.e., the link between FBS and the
ground network infrastructure, the adjusted access link rate,
denoted as R̃ac

u for user u ∈ U , can be given as

R̃ac
u = min

( ∑
v∈Ui(u)

Rac
v , R

bk
i(u)

)
︸ ︷︷ ︸
Minimum of access and

backhaul link rates

Rac
u∑

v∈Ui(u)

Rac
v︸ ︷︷ ︸

Proportional rate

allocation among users

(14)

where Rbk
i(u) is the backhaul link rate of user u’s serving base

station, i.e., i(u) and Ui(u) is the set of users sharing base
station i(u). In (14), the first item on the right-hand side is
used to determine the minimum rate of the access and backhaul
links, and the objective of the second item is to allocate the
resulting minimum rate among the users sharing the same
backhaul link.

D. Problem Statement

Finally, the control objective of FlyTera is to maximize the
aggregate rate of all the users in U , by jointly controlling the
flight of the flying base stations in Bfly, their association with
the ground users as well as the spectrum band selection of
the users, under the constraints of single-band access for the
users and wireless backhaul links for the flying base stations.
Let cod = (codi)i∈B̃ represent the coordinate vector of all
the nodes in the network, and ψ = (ψ(u, f))f∈Fu∈U denote the
spectrum band selection vector of the users. Further denote
ζ = (ζui)

i∈B
u∈U as the association vector, with ζui = 1 if user u

is associated with BS i and ζui = 0 otherwise. If we consider
single-home association for the users, i.e., each user is allowed
to be associated to at most one base station at the same time,
then we have ∑

i∈B
ζui ≤ 1, ∀u ∈ U . (15)

The FlyTera control problem can then be formulated as

Given : U , Bfly, Bgrd, F
Maximize
cod, ψ, ζ

∑
u∈U

R̃ac
u (cod, ψ, ζ)

Subject to : (6), (12), (15)

(16)

where R̃ac
u (cod, ψ, ζ) = R̃ac

u defined in (14) is the adjusted
access link rate of user u.

The network control problem formulated in (16) is a mixed
integer nonlinear nonconvex (MINLP) problem, because of the
involved mathematical expression of R̃ac

u (cod, ψ, ζ) and the
binary association variables and frequency selection variables.
Given an arbitrary such problem, it is still an open problem
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Fig. 4: Diagram of the distributed algorithm design based on a combination of echo state learning and reinforcement learning.

to obtain the globally optimal solution with polynominal
computational complexity. Recall in Section I that in this
work our objective is to investigate the applicability of THz-
band communications in mobile blockage-rich environments
and how the THz band can complement the lower-frequency
bands. To this end, in next section we solve problem (16)
by designing distributed algorithms based on a combination
of echo state learning and reinforcement learning, and then
evaluate their performance in Section V.

IV. DISTRIBUTED SOLUTION ALGORITHMS

The framework of the distributed solution algorithm design
is illustrated in Fig. 4, where there are three major modules,
i.e., i) ESN-based Utility Prediction (ESN-Pdt), ii) ESN-based
Utility Optimization (ESN-Opt), and iii) RL-based FlyTera
Control (RL-Ctl). The objective of ESN-Pdt is to predict the
utility for each FBS by approximating the mapping from the
network control variables, i.e., cod, ψ and ζ in (16), to
the individual utility function R̃ac

u (cod, ψ, ζ) based on
echo state learning. Then, given the predicted utilities each
FBS determines its own next-step action based on the ESN-
Opt module. Finally, the RL-Ctl module is used to achieve a
tradeoff between exploring and exploiting in favor of higher
network spectral efficiency. In this work we design the RL
algorithm based on ESN, which is a new reservoir computing
technique for recurrent neural networks. Comparing to tradi-
tional neural networks, ESN is simpler to train while still able
to model the complex time-varying behaviors of dynamical
systems [70]–[79]. It is worth pointing out that in this work our
focus is on studying how different spectrum bands complement
each other in mobile blockage-rich UAV networks, and the
designed joint flight and spectrum control framework can also
be extended to other learning techniques such as LSTM [80],
actor critic methods [81].

A. ESN-Pdt: ESN-based Utility Prediction

In FlyTera with distributed flying drone base stations, it
is hard to obtain the complete and up-to-date network status
information required for the base stations to derive the exact
mathematical expression of R̃ac

u (cod, ψ, ζ). To address
this challenge, in this work we approximate the individual
utility function R̃ac

u (cod, ψ, ζ) based on ESN. Roughly
speaking, as shown in Fig. 4, the objective of an ESN is to

model approximately the mapping from the input signals to the
output signals of a system, by training its input weights Win,
the reservoir weights W and output weights Wout using a
sigmoidal transfer function (e.g., hyperbolic tangent). Next we
first describe the ESN-Pdt module (the left block in Fig. 4)
design in FlyTera.

The ESN-Pdt module consists of four components: Agent,
Input, Action and Reward Function. In ESN-Pdt, the Agent
refers to individual BSs in Bfly, i.e., each BS is endowed with
an ESN-Pdt module for approximating its own utility function.
Then, in each time slot t ∈ T , each BS i ∈ Bfly feeds an Input
(denoted as inpti) and a candidate Action (denoted as actti)
to its ESN-Pdt module, which will then output the Reward
Function value of the BS.

Input Design. The input of BS i’s ESN-Pdt module in
time slot t, defined as inpti , {cod

t
−i, ψ

t, ζt}, comprises
the locations of all the other BSs codt−i = (codtj)j∈Bfly/i

with codtj being the coordinate vector of BS j in time slot
t, the association profile of the ground users ζt as well as
their spectrum band selection strategies ψt (confer Section III
for the definitions of codtj , ψ

t and ζt)1 The dimension of
inpti increases quadratically with the scale of the network
because of the association vector ζt. This can slow down the
training of the ESN-Pdt module and hence degrade the utility
approximation accuracy in large-scale networks. To address
this challenge, we reform inpti by reducing the number of
primal variables in the input vector based on the following
three simple but effective policies. First, each ground user
u ∈ U is associated to its nearest base station, i.e., the serving
base station i(u) is selected so that

i(u) = arg min
i′∈B

di′u(codi′ , codu), ∀u ∈ U , (17)

where di′u(·, ·) calculates the distance between two nodes as
defined in (3). Second, two distance thresholds are adopted,
denoted as dmc

0 and dtz
0 with dtz

0 < dmc
0 , for the microwave

and THz bands, respectively. Then, the microwave band will
be selected for user u if du,i(u), i.e., the distance between
user u and its serving base station i(u) determined based
on the first policy, satisfies du,i(u) ≥ dmc

0 ; if du,i(u) ≤ dtz
0 ,

the THz band will be selected; otherwise, user u will use
the mmWave band if dtz

0 < du,i(u) < dmc
0 . Finally, the

1In previous sections, superscript t has been omitted for notational conve-
nience.
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network area is divided into a number Nx × Ny × Nz of
three-dimensional rectangles, each with Lx

Nx
, Ly

Ny
and Lz

Nz
for

width, length and height, respectively. Denote N as the set of
the resulting rectangles. Each rectangle n ∈ N is represented
using a vector rectn = (c̃odn, idn), where c̃odn is the
coordinate vector of the center point of the rectangle, and
idn = 0, 1, · · · , Nx ×Ny ×Nz − 1 is the rectangle index.

Based on the first two policies, the association and spectrum
band selection vectors (i.e., ψt and ζt}) can be determined
given the coordinates of all the BSs (i.e., codt) in each time
slot t. As a result, codt−i is the only primal variable in
inpti. The dimension of inpti can be further reduced based
on Policy 3 by mapping each component of codt−i to the
index of the corresponding rectangle. Finally, the input of the
ESN-Pdt module can be rewritten as inpti = (idtj)j∈Bfly/i,
with idtj being the index of BS j’s rectangle in time slot t.

Action and Reward. Given input inpti for the ESN-Pdt
module for BS i in time slot t, BS i makes its action decisions
and observes an output of the action. To this end, BS i chooses
to move to a new rectangle in N except those occupied by
other BSs. Then, the set of actions for BS i, denoted as actti
for time slot t, can be written as

actti = {idm|m ∈ N/{nt(j), j ∈ Bfly/i}}, (18)

where nt(j) represents the rectangle index of BS j in time
slot t. The corresponding reward, denoted as rwdti(idm), is
determined by the aggregate rate achievable by the users it
serves at new location idm, i.e.,

rwdti(idm) =
∑

v∈Ui(idm)

R̃ac
v , (19)

where R̃ac
v defined in (14) is the adjusted access rate of user v

and Ui(idm) is the set of users served by BS i at rectangle
idm.

ESN-Pdt Training. During the training phase, we move
each FBS to different coordinates and measure the resulting
utility i.e., the sum access rate defined in (19) and use it as
the target rate denoted as rwdttgt for time slot t. The objective
of ESN training is to learn a model that can approximate the
mapping between the input data and target rate rwdttgt. In
this work, this is accomplished by setting the cost function of
the ESN-Pdt module as the root-mean-square error (RMSE)
between rwdti and rwdttgt as follows, for each FBS i ∈ Bfly,

E(rwdti, rwd
t
tgt) =

1

Nout

Nout∑
n=1

√√√√ 1

|T |

|T |∑
t=1

(rwdti − rwdttgt)
2,

(20)

where Nout is the dimension of the output units of the ESN
and | · | represents the cardinality of a set, and rwdti is the
predicted reward for FBS i in time slot t. The collection of
the training data and the validation of the trained ESN model
will be discussed in Section V.

B. ESN-Opt: ESN-based FlyTera Optimization

The job of the ESN-Opt module (the middle block in Fig. 4)
is to determine the optimal next-step location for each BS,

Algorithm 1: FlyTera Algorithm
Data: FBS Coordinates codi = (xi, yi, zi); ∀i ∈ Bfly, Total

duration of simulation T
Result: Action actt+1

i for time slot t+ 1 ∈ T determined by
RL-Ctl module based on the combination of
ESN-Opt and ESN-Pdt modules

1 Initialization: Set of actions acti defined in (18)
2 while t ∈ T do
3 ESN-Pdt: ESN-based Utility Prediction
4 for each FBS i ∈ Bfly do
5 for each rectangle index idm,m ∈ N do
6 Calculate the reward based on (19) and use it as

target rate rwdttgt;
7 Train an ESN model (i.e., ESN-Pdt) that can

minimize RMSE between predicted rate rwdti
and target rate rwdttgt as defined by (20);

8 end
9 end

10 ESN-Opt: ESN-based FlyTera Optimization
11 for each FBS i ∈ Bfly do
12 Predict reward for each candidate based on ESN-Pdt

module as defined in (21);
13 Train an ESN model (i.e., ESN-Opt) that can

minimize RMSE between predicted location index
idt and target location index idttgt.

14 end
15 RL-Ctl: Reinforcement Learning Based Flight

Control
16 for each FBS i ∈ Bfly do
17 Determine the next-step best location based on the

combination of ESN-Pdt and ESN-Opt modules;
18 Determine actt+1

i based on (22).
19 end
20 end

given the locations of all the other BSs. The agents and inputs
of this module is the same as in ESN-Pdt, that is, ESN-Opt is
also operated in individual flying BSs, and each BS takes the
location information of the other BSs (i.e., inpti defined above)
as its input. Differently, the action set of BS i, denoted ãct

t

i

contains only single rectangle in each time slot t (its current
rectangle), i.e., ãct

t

i = {idti}. The reward, denoted as r̃wd
t

i,
is the maximum utility that BS i may achieve by moving to
a new rectangle in next time slot, i.e.,

r̃wd
t

i = max
id∈actti

rwdti(id) (21)

where rwdti and actti are the reward and the action set of BS
i’s ESN-Pdt module discussed in Section IV-A. Denote the
resulting optimal next-step rectangle for BS i as idt∗i .

C. RL-Ctl: Reinforcement Learning Based Flight Control

Based on a combination of the ESN-Pdt and ESN-Opt
modules discussed above, each FBS determines its own best
location for the next time slot. This may lead to a local
optimum of the FlyTera control problem (16), which is not
desirable. In favor of high network spectral efficiency, in this
work we use reinforcement learning to guide the exploration
and exploitation in the flight control. Reinforcement learning
(RL) [82] has been widely used to solve very complex prob-
lems that cannot be solved by conventional techniques. The
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Fig. 5: Architecture of SimBAG: a simulator for broadband aerial-ground wireless networks.

same as above discussed ESN modules, as shown in Fig. 4 (the
right block), the RL agents are also the flying base stations, the
environment is the discretized network area. The state of each
agent i is denoted as codti in time slot t, and the feedback
reward from the environment is denoted as rwdti. Then for
any action actti taken by the agent, let codt+1

i and rwdt+1
i

denote the corresponding state and reward at time t+ 1. The
output of the RL-Ctl module is the next optimal action denoted
as actt∗i for the agent i in time slot t. In this paper, we design
the RL-Ctl module based on ε-greedy exploration strategy
[82]. The pseudocode of FlyTera Algorithm is summarized
in Algorithm 1.

Theorem 1. If mixed strategies are adopted by the FBSs, the
distributed algorithm proposed in this section converges to
a stationary network operating point at which no FBS has
incentive to fly to other locations if the other FBSs do not.

Proof. The theorem can be proved based on the convergence
framework developed in [79]. Specifically, given the finite
set of actions actti defined in (18), let ∆(actti) represent
the set of all probability distributions over the elements
of actti, and πi = [πi(id1), · · · , πi(id|N |)] with πi ∈
∆(actti) denoting the probability distribution used by FBS
i ∈ Bfly to select an action from its action set actti, and
|N | being the cardinality of the set of rectangles defined
in Section IV-A. Then, the mixed strategy profile for FBS
i, denoted as π∗i ∈ ∆(actti),∀ i ∈ Bfly, can be given
as π∗i = [π∗i (id1), · · · , π∗i (id|N |)]. The flight control and
spectrum access problem (16) can then be reformulated as a
non-cooperative game, and to prove this theorem it is sufficient
to show that the game converges to a mixed Nash Equilibrium
(MNE) with mixed strategy probability [79], [83]. To this end,
we need to show the following condition holds for a mixed
strategy profile π∗i = [π∗i (id1), · · · , π∗i (id|N |)] = (π∗i , π

∗
−i)

[79], i.e., ũi(π∗i , π
∗
−i) ≥ ũi(πi, π∗−i).

Recall that ε-greedy exploration strategy is adopted in
FlyTera to ensure that the probability of choosing an action
actti is always greater than 0. Then, the probability of FBS

i ∈ Bfly choosing an action actti can be given as

P (actti) =

1− ε+ ε
|actti|

; arg max
actti

rwd(actti)

ε
|actti|

; a random action
(22)

Let ãct
t+1,∗
i denote the action that results in optimal reward

given the optimal mixed strategy (π∗i , π
∗
−i). Then the utility

function of FBS i can be given as

ũi(π
∗
i , π
∗
−i)− ũi(πi, π∗−i)

=
∑

ãct
t+1
i ∈actti

[π∗
i,ãct

t+1
i

U− π
i,ãct

t+1
i

U] (23)

=
∑

ãct
t+1
i ∈actti

E[ui(ãct
t+1

i )]{π∗
i,ãct

t+1
i

− π
i,ãct

t+1
i
}

= (1− ε)
(
E[ui(ãct

t+1,∗
i )]− E[ui(ãct

t+1

i )]

)
(24)

where U =
∑

ãct
t+1
−i ∈actt−i

ui(act
t+1
i ,actt+1

−i )π∗
i,actt+1

−i

.
(24) is obtained from (22). We can then conclude that
E[ui(ãct

t+1,∗
i )] − E[ui(ãct

t+1

i )] ≥ 0 based on the fact that
in FlyTera the optimal action actt+1,∗

i results in optimal
E[ui(ãct

t+1,∗
i )] and the value of E[ui(ãct

t+1

i ) cannot exceed
the optimal value and therefore the difference is always greater
than or equal to 0. This completes the proof. �

V. PERFORMANCE EVALUATION

In this section, we first verify the effectiveness of the
distributed solution algorithms proposed in Section IV and
then analyze the performance of FlyTera. As of today, there are
still no publicly available testbed or simulator that can support
experiments of integrated aerial-ground wireless networking
in the microwave, mmWave and THz bands. In this work we
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Fig. 7: Examples trajectory of FBS during the training process with (a) random movement, (b) horizontal scanning and (c) diagonal scanning
mobility models, respectively.
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Fig. 6: Illustration of (a) horizantal scanning and (b) diagonal
scanning.

conduct simulations over a newly designed simulator called
SimBAG2.

A. SimBAG Design

SimBAG is a Python-based event-driven simulator for
broadband integrated aerial-ground wireless networks. As il-
lustrated in Fig. 5, SimBAG comprises four modules: Net-
work Configuration Module (NCM), Network Element Module
(NEM), Discrete Event Driver (DED), and Custom Algorithm
Module (CAM). Through the NCM module, one can con-
figure various network parameters, including the number of
BSs and users, the bandwidth of each spectrum band, the
transmission power of the nodes, the simulation time, among
others. Experimenters can also specify the pattern following
which the blockages are generated and the drone base sta-
tions are deployed, e.g., Poisson Point Process and uniform
distribution. The NEM module defines the classes for all the
network elements, including Network, Ground Base Station,
Flying Base Station, Blockage, Links, Interference, among
others. These classes have been designed in a hierarchical
manner. At the highest level is a general network element class
net elmt, which defines the basic network element attributes
and operations such as registering an element in the network,
specifying the parent and children elements of an element.
The DED module provides the discrete network simulation

2It is worth pointing out that another reason for us to conduct simulations
based on SimBAG is that we plan to interface SimBAG to software defined
experimentation platforms in the future, based on which we can further test
FlyTera with testbed experiments.

environment based on the open-source library SimPy [84].
Finally, the CAM module hosts the custom-designed network
control algorithms, e.g., the ESN-Pdt and ESN-Opt algorithms
discussed in Section IV. APIs have been provided for all the
four modules and the source code of the SimBAG project has
been released to the community via GitHub [85].

B. Results and Discussion

A FlyTera network has been designed based on SimBAG
with parameters configured through the NCM module. We
consider a network area of 200 × 200 × 50 m3. The center
frequency is set to 3 GHz, 30 GHz and 300 GHz and the
bandwidth is set to 40 MHz, 1 GHz and 10 GHz for the
microwave, mmWave and THz bands, respectively. For THz
band, the corresponding molecular absorption is set to 0 [67].
The transmission power of BSs is set to 1 W, 250 mW and
20mW for the three bands. The blockages k ∈ K are uni-
formly distributed with minimum and maximum dimensions
of 5 m and 20 m, respectively. The network area is discretized
into rectangles with length, width and height of 10 m, 10 m
and 50 m, respectively. The number of BSs (or users) varies
from 1 to 15. The threshold distances dmc

0 and dtz
0 are set to

100 m and 10 m, respectively. The results are averaged over 50
independent simulations. Next we first evaluate the accuracy
and complexity of the echo state learning algorithm, and then
analyze the throughput achievable in different spectrum bands.

Accuracy and Complexity. In this experiment we first
study the accuracy of the trained ESN module, which has been
implemented based on open-source library pyESN [86]. To this
end, we consider three mobility models for the UAVs in the
training phase: (i) Random Way Point Model, (ii) Horizontal
Scanning Model and (iii) Diagonal Scanning Model. For each
model, the FBSs move at a speed of 10-15 m/s. The latter two
mobility models are illustrated in Fig. 6, and the examples of
the resulting trajectories are plotted in Fig. 7, considering two
FBSs with the top, middle and bottom subfigures correspond-
ing to the x-, y- and z- coordinates of the FBSs, respectively.

In Figs. 8(a) and (b) we plot the accuracy of ESN-Pdt and
ESN-Opt considering FlyTera with one FBS and 10 users.
This experiment is conducted in two steps. (i) Training Data
Generation: The training data is obtained by moving the FBS
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Fig. 8: Prediction Accuracy (a) Rate prediction based on the ESN-Pdt module; (b) Optimal FBS movement based on the ESN-Opt module;
(c) Computational complexity of the ESN-Opt module.
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Fig. 9: Performance of FlyTera RL-Ctl Algorithm for (a) Number
of FBS = 2; (b) Number of FBS = 5

to a new rectangle in each time slot based on the three mobility
models defined earlier for 10000 time slots. (ii) Training and
validation of the model: The ESN-Pdt module is trained with
the data from the first 9850 time slots and the remaining data
of 150 time slots is used for validation. It can be seen that
ESN-Pdt is able to effectively predict the rate for the FBS with
good accuracy in all the tested time slots. Similar performance
can also be achieved by the ESN-Opt module as reported in
Fig. 8(b).

The testing-phase computational complexity of the ESN
learning in terms of time taken for prediction is reported in
Fig. 8(c), taking ESN-Opt as an example while similar results
can be observed for ESN-Pdt. The experiments are conducted
on a workstation with Intel(R) Core(TM) i7−7700K CPU @
4.20 GHz, memory of 32.0 GB, and 64-bit Windows Operating
System. It can be seen that the prediction can be finished in
less than 5 ms with different number of users and FBSs. For
example, when the number of FBSs varies from 6 to 14, the
average computational time is 4.4 ms, 5.0 ms and 4.2 ms for
5, 7, and 10 users, respectively. Therefore, based on echo state
learning each FBS is able to predict its optimal movement in
each time slot with very low and nearly constant computational
complexity in different network settings.

In the training phase, the ESN module solves an RMSE
minimization problem (confer (20)) and has a complexity of
O(N ′ 2res|T |), where N ′res = 1 +Ninp +Nres with Ninp being
the number of input units, Nres the number of reservoir units
and |T | the number of training samples. This may cause
high training complexity and low training accuracy in large-
scale networks with many UAVs because of the “curse of
dimensionality” problem. A possible solution is to divide the

network into a number of subnetworks and train the ESN
module for each subnetwork. This will be studied in our future
work.

Finally, we study the convergence of the FlyTera Algorithm
in Fig. 9. We consider two scenarios with 2 and 5 FBSs and
plot the achievable sum rate by averaging over 10 simulations
for greedy scheme (i.e., ε = 0) and FlyTera scheme (i.e., ε =
0.1). The results are reported in Fig. 9 with the confidence
interval represented by the shaded region. It can be seen that
FlyTera can converge to sum rates significantly higher than
that of the greedy scheme. For example, FlyTera achieves sum
rate of around 818 Mbps and 1381 Mbps with 2 and 5 FBSs,
respectively, which are only 459 Mbps and 818 Mbps for the
greedy scheme. This verifies the effectiveness of the FlyTera
control scheme.

Performance Analysis. In this experiment we analyze the
sum rate performance of the distributed control algorithms pro-
posed in Section IV. We first consider one FBS and the number
of users varies from 1 to 15 at step of 2. FlyTera is compared
to two benchmark algorithms with fixed BS and randomly
moving BS, respectively. For FlyTera, the flight trajectories of
the UAVs are controlled by the RL-Ctl module described in
Section IV-C. The results are reported in Fig. 10. We found
that the network sum rate can be significantly increased by
FlyTera, with an average gain of 24% and 40% comparing to
random movement and fixed FBS. For example, in the case of
2 users a sum rate of 463 Mbps can be achieved by FlyTera,
which is 261 Mbps and 142 Mbps for random movement and
fixed FBS, respectively. This experiment further verifies the
superiority of the FlyTera control algorithm.

Next, FlyTera is evaluated in three more different scenarios:
i) mobile FBS, ii) static FBS with mobile users, and iii) static
FBS with static users. Here, for case (ii) we consider that
the users move randomly at a speed of 1-3 m/s. In each
scenario, FlyTera is compared with six benchmark spectrum
access schemes: i) microwave band only, (ii) mmWave band
only, iii) THz band only, iv) microwave and mmWave bands,
v) microwave and THz bands, and vi) mmWave and THz
bands. The results are plotted in Fig. 11. As expected, in all
scenarios the sum rate increases with the number of FBSs but
at different speeds. For example, in Fig. 11(a) the sum rate
increases by 24 Mbps on average by deploying one more FBS
in the microwave band, which are 56 Mbps and 52 Mbps for
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the mmWave and THz bands, respectively. The correspond-
ing network spectral efficiency gains are 16 bps/Hz/FBS,
2 bps/Hz/FBS and 3 × 10−3 bps/Hz/FBS for the mi-
crowave, mmWave and THz bands, respectively. Therefore,
although the available bandwidth is much wider, e.g., 10 GHz
for THz vs 2 MHz for microwave in this experiment, neither
of the mmWave and THz bands can be used alone to achieve
orders of magnitude higher network capacity than that of the
microwave band, primarily because of the significantly lower
spectral efficiency.

From these experiments we also find that, which is a
bit surprising, obviously higher rather than lower sum rate
can be achieved by the THz band in mobile than in static
environments. For example, the sum rate is around 500 Mbps
and 370 Mbps with 8 mobile FBSs in Figs. 11(a) and 11(b),
respectively, while it is only less than 100 Mbps in Fig. 11(c)
where both FBSs and users are static. This is without no
reasons. While a single THz link can be easily disconnected
in blockage-rich environments, the problem can be effectively
mitigated in FlyTera by adaptively deploying the flying base
stations so that line-of-sight links can be maintained in most
time. Therefore, it is important to exploit the mobility gain in
future wireless networks in the THz band.

Finally, We find that FlyTera achieves the highest sum
rate in all the three tested scenarios, which is 6, 5, and
7 times higher than that using the microwave band only.
Particularly, in Fig. 11(a) obviously higher sum rate can be
achieved with mobile FBSs than simply adding up the rates
of the three single-band cases. For example, in the case of 8
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Fig. 12: Rate Allocation Fairness.

FBSs, the sum rate is around 1650 Mbps for FlyTera, while
274 Mbps, 581 Mbps and 477 Mbps for the microwave,
mmWave and THz bands with the corresponding sum rate of
1332 Mbps. Similar results can also be observed for the cases
using two spectrum bands in Figs. 11(b) and (c). This verifies
the effectiveness and importance of joint flight and spectrum
access control in FlyTera.

In Fig. 12 we show the fairness results considering mobile
and static FBSs and different spectrum access strategies as
in Fig. 11. We use Jain’s Fairness Index as the measure of
the rate allocation fairness. We can see that, in the case of
microwave band only, the network achieves the best fairness
(0.98), while the data rates of the users are the lowest (Fig.
11). Similarly, when we consider millimeter or terahertz band
only, the fairness indices are 0.6 and 0.7 in the case of mobile
scenario and only 0.4 and 0.5 in static scenario. The same
trend can be observed for the combinations of frequency
bands as well. Finally, we can see that with FlyTera the
network achieves a fairness index almost the same as that of
the microwave band in mobile scenario, while still achieving
the highest user rate (Fig. 11). This verifies the capability of
FlyTera in achieving a good tradeoff between higher network
spectral efficiency and better network coverage.

VI. CONCLUSIONS

In this paper, we have studied the problem of joint flight
control and spectrum access in mobile blockage-rich envi-
ronments in the microwave, mmWave and THz bands. We
first provided a mathematical formulation of the FlyTera
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control problem, which is shown to be an MINLP problem.
Then we designed distributed solution algorithms based on a
combination of echo state learning and reinforcement learning.
An event-driven simulator called SimBAG has been developed,
over which the effectiveness and efficiency of the algorithms
are verified and the performance of FlyTera is analyzed
through an extensive simulation campaign. It is found that
the THz-band wireless networks can significantly benefit from
the mobility of FBSs in blockage-rich environments. Future
research directions include i) development of link capacity
models considering specific transmission strategies and the
effects of UAV vibrations; ii) designing multi-timescale ESN-
RL algorithms by decomposing the joint spectrum access and
flight control problem based on dual method; iii) extending
FlyTera by designing more learning algorithms based on, e.g.,
LSTM, actor-critic methods and deep Q learning; and iv)
further verifying the results obtained in this work based on
testbed experiments.
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