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Abstract—In this article we explore new techniques that can
enable open remote experimentation for mobile networks. We
first propose a cloud-based framework called CloudRAFT, based
on which experimenters are allowed to remotely access and
control experimental resources via public cloud AWS and share
the resulting data and code via the cloud. Then, we discuss the en-
abling techniques for CloudRAFT, including Amazon serverless
service, VNC-based remote command line, and Websocket-based
real time communications, among others. Finally, we showcase
the application of these techniques in enabling remote access to
UB NeXT, a software-defined testbed that has been developed
at University at Buffalo for wireless mobile network modeling,
optimization and deployment. This work verifies the feasibility
of accessing, controlling and sharing wireless testbeds through a
remote public cloud.

Index Terms—Wireless Experimentation, Software-defined Ra-
dios, Testbed Sharing, Amazon Web Services (AWS).

I. INTRODUCTION

Over the past decade, significant efforts have been made

by the wireless community to build open, shared experi-

mental facilities. A notable effort is the National Science

Foundation (NSF) Platforms for Advanced Wireless Research

(PAWR) Program [1]. The goal of PAWR is to develop

four city-scale shared experimentation platforms for advanced

wireless research. As of today, three PAWR platforms have

been developed: the Platform for Open Wireless Data-driven

Experimental Research (POWDER) [2], the Cloud enhanced

Open Software defined Mobile wireless testbed for city-scale

deployment (COSMOS) [3], and the Aerial Experimentation

Research Platform for Advanced Wireless (AERPAW) [4].

A fourth platform, the Wireless Living Lab for Smart and

Connected Rural Communities (aka ARA), was launched

recently [5].
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While these existing facilities have significantly advanced

the experimental research for next-generation wireless sys-

tems, it is still challenging to fully meet the needs of experi-

mental wireless research in terms of diversity, generalizability
and accessibility. First, existing community experimentation

platforms focus on rather specific areas in wireless research

(e.g., AERPAW focuses on wireless UAV systems), while

there are many research areas in wireless systems that still

lack well-designed community shared experimental facilities

such as sensing and networking for robotic autonomy, mo-

bility intelligence, underwater and underground communica-

tions and networking, among others. Second, existing facil-

ities are deployed in pre-selected environments with nodes

installed at fixed locations. For example, PAWR platforms

focus on experiments “in-the-wild” with wireless systems

deployed in outdoor environments, however it is challenging

to test the generalizability of the obtained results to different

environments (e.g., indoors) or climates (which may affect

significantly the signal propagation behavior, particularly in

mmWave and terahertz frequency bands [6], [7]). The same

concern also applies to experimental research in data-driven

wireless systems, where it is crucial to assure the general-

izability (or transferability) of the trained models and the

resulting artificial intelligence (AI) and machine learning (ML)

algorithms [8]. Moreover, as experimental research becomes

more and more important for the wireless community, the

needs of experimental resources (e.g., software-defined radios,

computing capability, and bandwidth) may exceed what can

be offered by existing community facilities in the near future.

These challenges cannot be addressed without a systematic
shift in the paradigm of sharing experimentation facilities for
mobile networks.

In this paper we propose a new approach called CloudRAFT

for remote experimentation and testbed sharing for wireless

mobile networks. At the core of CloudRAFT is to develop an

open control plane based on a public cloud for management

of the data, code and hardware resources associated with the

testbeds. We claim the following two contributions in this

paper.
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Fig. 1: CloudRAFT: Cloud-based Remote Access for Wireless Testbeds.

• We first propose the CloudRAFT framework, based on

which experimenters are allowed to remotely access and

control experimental resources via public cloud Amazon

Web Service (AWS) [9] and share the resulting data and

code via the cloud. The enabling techniques are also

discussed, including Amazon serverless service, Virtual

Network Computing (VNC)-based remote command line,

and Websocket based real time communications.

• We test these enabling techniques by connecting UB

NeXT to AWS. UB NeXT is a software-defined testbed

that has been developed at the University at Buffalo for

wireless network modeling, optimization and deployment.

Demonstrations of remote experiments over UB NeXT

via AWS are also presented.

II. CLOUDRAFT FRAMEWORK

The overall architecture of CloudRAFT is illustrated in

Fig. 1, which consists of three planes: User Plane, Cloud
Plane, and Testbed Plane.

A. User Plane

CloudRAFT uses this plane to manage three types of users,

i.e., the CloudRAFT Administrator, the Testbed Owner, and

Testbed User. The CloudRAFT administrator will oversee

the operation of CloudRAFT, including user and testbed

registration management, name space management for testbed

resources, and troubleshooting. Testbed owners can create

new profiles for their testbeds, manage the testbed profiles

by adding testbed devices (e.g., USRP software-defined radio

(SDR) [10]) and configure their parameters (e.g., the USRP

type and IP address), approve and manage testbed users,

and schedule and oversee the experiments on their testbeds.

Lastly, testbed users will be allowed to subscribe to those

testbeds connected to CloudRAFT, reserve testbed resources

(e.g., computing and SDR resources), conduct experiments

and monitor their status and output, and finally share the

collected datasets via CloudRAFT. All the users will access

CloudRAFT via the Internet using a CloudRAFT web portal

deployed on AWS. User authorization and access control for

CloudRAFT resources, including the dataset repository, code

repository and virtual machine (VM) pool will be powered by

AWS Cognito, a user identity, data synchronization and secure

management service provided by AWS [11]. In this work we

design CloudRAFT based on AWS taking the advantages of

AWS’s well-developed integrated web hosting, data storage

and cloud computing services.

B. Cloud Plane

The primary challenges in testbed sharing are at least two-

fold. First, it is complicated and costly for testbed owners to

develop and deploy their own dedicated software, hardware

and user interfaces for remote access, user authorization, ex-

periment scheduling, and data storage. Second, for researchers,

the complexity, inflexibility, and non-uniformity in accessing

different testbeds can discourage their use. For example, most

testbeds are deployed in subnets and can only be accessed

through the corresponding local gateways. To access a testbed,

a user needs to contact the testbed owner first, who will then

contact the gateway manager to add the user to the allowed-

user list. This whole process is time-consuming and repels

interested users.

To address these challenges, as illustrated in Fig. 1, the

Cloud Plane provides software and tools that can be used for

testbed owners to conveniently share their testbeds with the

community; hide the complexity in accessing different testbeds

by enabling researchers to register a single CloudRAFT

account and then subscribe to different testbeds; provides

a bridge between researchers and testbed developers; and

finally accelerates the formation of a mature ecosystem for

experimental research for the wireless community focusing on

mobile networks. In CloudRAFT, this can be accomplished by

five major modules of the Cloud Plane, i.e., Testbed Directory,

Dataset Repository, Code Repository, Virtual Machine (VM)
Pool, and Data and Control Channel.

Testbed Directory. This directory maintains the basic in-

formation of the testbeds connected to CloudRAFT and hence

increases their visibility to users. For each testbed, a table

will be created and managed based on DynamoDB, a fully

managed proprietary NoSQL database service provided by

AWS [9]. Each table includes general information, such as

the testbed name, testbed owner, supported research topics,

allowed-user list, among others; and resource information,

such as the hardware devices available to the testbed and their

parameters, e.g., the type, image version and IP address of

the USRP SDRs, the list of datasets and software that are

applicable to the testbed, the list of VM images prebuilt for the
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testbed, and others. Each table also tracks the corresponding

testbed’s usage status, the availability of its devices (e.g.,

online, offline, and occupied) as well as upcoming scheduled

experiments. The design of the Testbed Directory is extendable

i.e., once a new testbed is created in CloudRAFT by its owner,

a blank testbed profile and the associated DynamoDB tables

will be created and initialized automatically, which can be

further configured by the testbed owner.

Dataset and Code Repositories. In order to store and

manage the experimental datasets and code, a dataset and code

repository will be designed and hosted on AWS S3 (Simple

Storage Service), which provides object storage through a

web-service interface. Each dataset (or code) will be asso-

ciated, through the above discussed testbed directory tables,

to one or more testbeds so it will be accessible to the

corresponding testbed users. Once an experiment begins, the

user will be able to load the selected dataset (or code) either

to the VM launched in the VM Pool within the Cloud Plane
through a high-speed connection (25 Gbps), or to the edge

cloud in the Testbed Plane using a data channel established

based on “AWS SDK for Java” (which provides a Java API

for AWS infrastructure services including AWS S3, EC2 and

DynamoDB). New datasets collected during experiments will

be first uploaded to the dataset repository, and later loaded to

the VM for annotation and sharing. The Dataset and Code
Repositories will effectively alleviate the burden of data/code

storage, management and sharing for both testbed owners and

users.

VM Pool. For each experiment, one or more VMs will be

launched using the AWS EC2 (i.e., Elastic Compute Cloud)

service. For each testbed, CloudRAFT will provide a set of

prebuilt VM images with pre-installed software and libraries

as needed for the experiments. Through the launched VM,

the experimenter can i) execute non-time-sensitive programs

in the VM, e.g., routing, transport-layer rate control, motion

control, among others; ii) access the reserved edge cloud using

ssh (or frp if the edge cloud is deployed in a subnet) to exe-

cute time-sensitive programs, e.g., baseband signal processing,

scheduling, and power control; and iii) monitor the status and

output of the experiments. The VM pool will be interfaced

with the dataset/code repository via high-speed in-datacenter

connections.

Data and Control Channel. Two types of channels will be

established for each experiment, a data channel and a control

channel, to bridge the Cloud Plane and the Testbed Plane. The

data channel transfers datasets and code from the Dataset/Code

Repository to the testbed edge cloud, and vice versa. The

control channel sends control commands from Cloud Plane

to the testbed. The testbed will then execute the commands

on the edge cloud. For example, by sending the command

uhd_find_devices to the edge cloud (which is connected

to front-end SDRs via Ethernet cables), the edge cloud will

return information about the currently active and available

USRP SDRs. The two channels are designed based on a

combination of AWS Lambda, Gateway API and WebSocket
API services. AWS Lambda acts as the serverless computing

service, runs code in response to events and automatically

manages the computing resources required by that code, and

Gateway API and WebSocket API act as the “front door” for

applications to access data, business logic, or functionality

from backend services, e.g., the predefined Lambda functions.

C. Testbed Plane

The Testbed Plane provides a set of three tools in addition

to the custom tools made available by the testbed owners.

These include the Communication Agent, which serves as a

relay between the Cloud Plane and the edge cloud for data

transfer; the Event Agent, which receives and executes control

commands from the cloud plane; and the Monitoring Tool,
which feeds the real-time status of various computing and SDR

devices to the Cloud Plane.

III. ENABLING TECHNIQUES

In this section we identify several enabling techniques for

CloudRAFT, including Amazon’s serverless service (ASS),

websocket based real time communications, VNC-based re-

mote command line, and fast reverse proxy.

A. Amazon Serverless Service

With ASS [12], [13], the cloud service providers take

care of infrastructure management tasks allowing testbed and

CloudRAFT developers to focus on the program development.

This is very beneficial in the design of the cloud plane of

CloudRAFT. The ASS offers a wide array of Application

Programming interfaces (APIs) including REpresentational

State Transfer (REST) API Gateway, Websocket API Gateway,

Lambda Function, DynamoDB, Simple Storage Service (S3),

and Cognito, among others.

The REST and Websocket API Gateways act as a firewall

that will block, redirect or forward the requests from the users.

They also take care of detection and execution of specific

parameters in the user requests. The Lambda Function takes

care of the execution of custom code defined by the testbed

developers based on the parameters in the user requests. The

DynamoDB is a key-value and document database that delivers

low-latency responses. S3 is a static file storage server and

provides easy-to-use management features and also configures

the access controls based on the experiment requirements.

Finally, Cognito provides a simple user-friendly GUI that

allows users to sign up, log in and control their access to

CloudRAFT via a webportal.

B. Websocket Based Real Time Communication

The websocket based real time communication is the back-

bone of the CloudRAFT framework that takes care of the

communications between the CloudRAFT control plane and

the testbed edge server. These functions can be designed based

on the WebSocket protocol. When the user types a command in

the webpage, the command will be sent to an AWS Websocket

API Gateway, which will then forward the command to the

related Lambda function according to the “action” parameter

in the WebSocket requests. The Lambda function will then
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Fig. 2: (a) Snapshot of USRP SDR deployment, (b) edge servers, and (c) ground robot vehicle.

further forward the command to the edge cloud servers. A

Python script will run in the edge server waiting for the

messages from the Websocket Gateway. Upon reception of

the commands, the script will execute them and return the

results to the WebSocket API Gateway, where the results will

be returned to the experimenters. The same logic is applicable

for the real-time update of testbed resources except that the

periodic signalling messages will be transmitted between the

edge cloud server and the AWS cloud.

The WebSocket API gateway manages a routing table

with different actions and the corresponding call functions.

For example, the routing table consists of two special route

keys, “connect” and “disconnect”. The former is used when

a user wants to establish a connection to the edge server

and the latter will be used for tearing down the connec-

tion. The server maintains a data table that contains all

active hosts connected to the server. When the client host

sends the connect message with action:$connect, this

request will be forwarded to the handle_connect func-

tion, which will add the user name and the connection

ID of the host to the data table and indicate it as an

active user. Similarly, after the experiments, the host can

send the disconnect message with action:$disconnect,

and then the handle_disconnect function will be in-

voked to remove the corresponding entry from the data ta-

ble. Other messages include action:$send_message and

action:$p2p_message with their corresponding func-

tions handle_message and handle_p2pmessage. The

former handles all the broadcast messages while the latter

deals with point-to-point messages.

C. Fast Reverse Proxy

It is important for testbed owners to provide secure con-

nections to their local networks that can be accessed by

experimenters from outside of their local networks. This can

be achieved by implementing a reverse proxy such as Fast

Reverse Proxy (FRP) [14]. FRP acts like a tunnel that can

redirect the Internet requests from one IP address to another

using TCP or UDP connections. This allows us to hide the

testbed address and at the same time preserve the integrity of

the testbed information.

D. VNC-Based Remote Command Line

The remote execution of commands from a unified web

portal can be enabled by Virtual Network Computing (VNC), a

technique that can achieve desktop sharing with low overhead.

VNC is platform-independent and follows a client-server-

based architecture allowing multiple clients to connect to

one VNC server simultaneously without any compromise in

performance. VNC is based on an extensible protocol called

Remote Frame Buffer protocol (RFB) [15], which allows

connections between different versions of VNC clients and

servers. An FRP server can be used to tunnel the connection

between the public cloud server and the edge server located

at the testbed. Before the VNC server connects to the FRP

server, an SSH tunnel is established to enhance the security

of the connection.

IV. PROTOTYPING AND DEMONSTRATIONS

In this section we prototype CloudRAFT by integrating

UB NeXT, a software-defined testbed for wireless network

modeling, optimization and deployment. Next we first give a

brief description of the NeXT testbed and then showcase the

remote access to the testbed through CloudRAFT.

A snapshot of the NeXT testbed is shown in Fig. 2,

where there are two major components: edge server and front-

end SDR. The edge server consists of five Dell EMC R340

PowerEdge workstations, each with Intel Xeon E-2246G 3.6

GHz CPU and Ubuntu v18.04. The workstations serve as the

controlling hosts of the front-end SDRs for baseband signal

processing. The front-end SDR is divided into a static front-
end SDR and a mobile front-end SDR. The former supports

experiments with stationary nodes and the latter supports

experiments with mobile nodes. For mobile experiments, the

SuperDroid programmable robot [16] is used to carry the

software radios. In order to control the movement of the

ground vehicular robot we use a Marvelmind super beacon

[17] to provide a precise indoor positioning and navigation

system. The front-end SDRs consist of 20 N210 and 4 B210

USRPs. The N210 USRPs are powered by three CyberPower
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Fig. 4: Demonstration of (a) point-to-point data transmission; (b) point-to-point data reception; and (c) online video streaming for remote
experiment monitoring.

PDU41001 Switched Power Distribution Units (PDU). The

PDUs allow experimenters to remotely turn on and off the

software radios remotely and reboot them in case of technical

issues. The edge servers and the front-end SDRs are connected

using two switches with Gigabit Ethernet cables.

Establishing Secure Connection. For remote experiments,

it is important to establish a secure connection between the

experimenter’s personal computer and the edge server that con-

trols the front-end SDRs. This can be accomplished following

three steps, as shown in Figs. 3(a)-(c).

(i) Initialization of VNC Server and SSH Tunnel.
First, the testbed owner starts the secure VNC server

using the vncserver command. After successful server

initialization, an ssh tunnel is created on the edge server

that will securely forward the traffic from the VNC server

to the edge server. This is done using command ssh
-L 9901:127.0.0.1:5901 -C -l wings 127.0.0.1,

where the -L switch specifies the port bindings. In this

case we are binding port 5901 of the remote connection to

port 9901 on the local edge server. The -C switch enables

compression and the -l switch specifies the remote login

name. A snapshot of the terminal is shown in Fig. 3(a).

(ii) Initialization of NoVNC Server. Second, a

NoVNC server is started, which acts as a web-

based VNC server. This is achieved using command

sudo novnc --listen 6081 --vnc localhost:

9901 --cert/snap/novnc/self.pem, where cert
is the certificate for the proxy to encrypt its traffic using

WebSocket. Figure 3(b) shows a snapshot of the terminal of

this step.

(iii) Initialization of FRP Sever and Client. As discussed

earlier, the FRP server plays an important role in exposing

the local private IP address of the edge server to a public

IP address that can be accessed by the testbed users

remotely. This is achieved by instantiating an Amazon

Elastic Compute Cloud (EC2) instance to create a public

IP address and a RSA encrypted private key. Then, the

public IP address provided by FRP-EC2 instance is added to

the list of known hosts using the following command ssh
-i frpServerKey.pem ubuntu@3.143.218.142,

where frpServerKey.pem is the private key. Then,

the FRP proxy server can be started using the command

./frps -c frps.ini. The terminal snapshot is shown

in Fig. 3(c). Finally, the FRP client can be started using

command ./frpc -c frpc.ini.

After successful initialization of the FRP server and the

client, the remote edge server can be accessed using the

following URL: 〈public_ip_address〉/vnc.html. The

access link along with login credentials will be transmitted to

testbed users after an initial request form to ensure the safety

and integrity of the testbed operations.

Remote Experiment: Point-to-Point Communications. In
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this demonstration we will showcase remote experimentation

through CloudRAFT. We consider narrow-band point-to-point

communications between two USRP N210 software-

defined radios, with IP addresses 192.168.10.11
(tx) and 192.168.10.16 (rx), respectively. Two

terminals are opened remotely for tx and rx. The first

terminal executes the transmission command python
benchmark_tx.py -f 2.45G -r 200000 -m gmsk
-M 50 --args="addr=192.168.10.11". Similarly,

the second terminal executes the receiving command python
benchmark_rx.py -f 2.45G -r 200000 -m gmsk
--args="addr=192.168.10.16", where -f, -r, -m,

-M, --args specify the center frequency, transmission rate,

modulation scheme, total data size and the address of the

USRP devices, respectively. The corresponding snapshot

with the packet transmission and reception are shown in

Figs. 4 (a) and (b). Notice that both the transmission and
receiving programs are started remotely through the secure
link established in the above demonstration.

Live Monitoring of Remote Experiment. In this demon-

stration we aim to monitor remotely the movement of the

mobile nodes during the experiment. To this end, we stream

the live video of the experiment based on a combination

of Open Broadcaster Software (OBS) [18] and Real-Time

Messaging Protocol (RTMP) [19]. The built-in webcam of

Dell Inspiron Laptop is used to capture the live video of the

experiment, as shown in Fig. 4(c). To enable indoor navigation

of the ground robot vehicle without GPS reception, six static

beacons deployed on the net enclosure (the enlarged version

of the static beacon is shown in Fig. 4(c)) and one mobile

beacon is carried by the robot vehicle.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented CloudRAFT, a cloud-

based remote experimentation framework for mobile networks.

We discussed the enabling techniques for CloudRAFT. We

have also developed a new software-defined testbed called

NeXT and showcased the remote access to NeXT based on

CloudRAFT. Through this work we verified the feasibility of

accessing, controlling and sharing wireless testbeds through

a remote public cloud. In future work, we will standardize

the communication interfaces between the cloud plane and

testbed plane within the CloudRAFT framework and then fully

integrate the NeXT testbed by connecting other software radios

available at University at Buffalo, including mmWave radios

and UAV systems, among others.
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